// SPDX-License-Identifier: GPL-2.0-only
/* Marvell RVU Admin Function driver
*
* Copyright (C) 2020 Marvell.
*
*/
#include <linux/bitfield.h>
#include <linux/pci.h>
#include "rvu_struct.h"
#include "rvu_reg.h"
#include "mbox.h"
#include "rvu.h"
/* CPT PF device id */
#define PCI_DEVID_OTX2_CPT_PF 0xA0FD
#define PCI_DEVID_OTX2_CPT10K_PF 0xA0F2
/* Length of initial context fetch in 128 byte words */
#define CPT_CTX_ILEN 1ULL
#define cpt_get_eng_sts(e_min, e_max, rsp, etype) \
({ \
u64 free_sts = 0, busy_sts = 0; \
typeof(rsp) _rsp = rsp; \
u32 e, i; \
\
for (e = (e_min), i = 0; e < (e_max); e++, i++) { \
reg = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(e)); \
if (reg & 0x1) \
busy_sts |= 1ULL << i; \
\
if (reg & 0x2) \
free_sts |= 1ULL << i; \
} \
(_rsp)->busy_sts_##etype = busy_sts; \
(_rsp)->free_sts_##etype = free_sts; \
})
static irqreturn_t cpt_af_flt_intr_handler(int vec, void *ptr)
{
struct rvu_block *block = ptr;
struct rvu *rvu = block->rvu;
int blkaddr = block->addr;
u64 reg, val;
int i, eng;
u8 grp;
reg = rvu_read64(rvu, blkaddr, CPT_AF_FLTX_INT(vec));
dev_err_ratelimited(rvu->dev, "Received CPTAF FLT%d irq : 0x%llx", vec, reg);
i = -1;
while ((i = find_next_bit((unsigned long *)®, 64, i + 1)) < 64) {
switch (vec) {
case 0:
eng = i;
break;
case 1:
eng = i + 64;
break;
case 2:
eng = i + 128;
break;
}
grp = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng)) & 0xFF;
/* Disable and enable the engine which triggers fault */
rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), 0x0);
val = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng));
rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val & ~1ULL);
rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), grp);
rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val | 1ULL);
spin_lock(&rvu->cpt_intr_lock);
block->cpt_flt_eng_map[vec] |= BIT_ULL(i);
val = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(eng));
val = val & 0x3;
if (val == 0x1 || val == 0x2)
block->cpt_rcvrd_eng_map[vec] |= BIT_ULL(i);
spin_unlock(&rvu->cpt_intr_lock);
}
rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT(vec), reg);
return IRQ_HANDLED;
}
static irqreturn_t rvu_cpt_af_flt0_intr_handler(int irq, void *ptr)
{
return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT0, ptr);
}
static irqreturn_t rvu_cpt_af_flt1_intr_handler(int irq, void *ptr)
{
return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT1, ptr);
}
static irqreturn_t rvu_cpt_af_flt2_intr_handler(int irq, void *ptr)
{
return cpt_af_flt_intr_handler(CPT_10K_AF_INT_VEC_FLT2, ptr);
}
static irqreturn_t rvu_cpt_af_rvu_intr_handler(int irq, void *ptr)
{
struct rvu_block *block = ptr;
struct rvu *rvu = block->rvu;
int blkaddr = block->addr;
u64 reg;
reg = rvu_read64(rvu, blkaddr, CPT_AF_RVU_INT);
dev_err_ratelimited(rvu->dev, "Received CPTAF RVU irq : 0x%llx", reg);
rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT, reg);
return IRQ_HANDLED;
}
static irqreturn_t rvu_cpt_af_ras_intr_handler(int irq, void *ptr)
{
struct rvu_block *block = ptr;
struct rvu *rvu = block->rvu;
int blkaddr = block->addr;
u64 reg;
reg = rvu_read64(rvu, blkaddr, CPT_AF_RAS_INT);
dev_err_ratelimited(rvu->dev, "Received CPTAF RAS irq : 0x%llx", reg);
rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT, reg);
return IRQ_HANDLED;
}
static int rvu_cpt_do_register_interrupt(struct rvu_block *block, int irq_offs,
irq_handler_t handler,
const char *name)
{
struct rvu *rvu = block->rvu;
int ret;
ret = request_irq(pci_irq_vector(rvu->pdev, irq_offs), handler, 0,
name, block);
if (ret) {
dev_err(rvu->dev, "RVUAF: %s irq registration failed", name);
return ret;
}
WARN_ON(rvu->irq_allocated[irq_offs]);
rvu->irq_allocated[irq_offs] = true;
return 0;
}
static void cpt_10k_unregister_interrupts(struct rvu_block *block, int off)
{
struct rvu *rvu = block->rvu;
int blkaddr = block->addr;
int i;
/* Disable all CPT AF interrupts */
rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(0), ~0ULL);
rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(1), ~0ULL);
rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(2), 0xFFFF);
rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1);
rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1);
for (i = 0; i < CPT_10K_AF_INT_VEC_CNT; i++)
if (rvu->irq_allocated[off + i]) {
free_irq(pci_irq_vector(rvu->pdev, off + i), block);
rvu->irq_allocated[off + i] = false;
}
}
static void cpt_unregister_interrupts(struct rvu *rvu, int blkaddr)
{
struct rvu_hwinfo *hw = rvu->hw;
struct rvu_block *block;
int i, offs;
if (!is_block_implemented(rvu->hw, blkaddr))
return;
offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF;
if (!offs) {
dev_warn(rvu->dev,
"Failed to get CPT_AF_INT vector offsets\n");
return;
}
block = &hw->block[blkaddr];
if (!is_rvu_otx2(rvu))
return cpt_10k_unregister_interrupts(block, offs);
/* Disable all CPT AF interrupts */
for (i = 0; i < CPT_AF_INT_VEC_RVU; i++)
rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(i), ~0ULL);
rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1);
rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1);
for (i = 0; i < CPT_AF_INT_VEC_CNT; i++)
if (rvu->irq_allocated[offs + i]) {
free_irq(pci_irq_vector(rvu->pdev, offs + i), block);
rvu->irq_allocated[offs + i] = false;
}
}
void rvu_cpt_unregister_interrupts(struct rvu *rvu)
{
cpt_unregister_interrupts(rvu, BLKADDR_CPT0);
cpt_unregister_interrupts(rvu, BLKADDR_CPT1);
}
static int cpt_10k_register_interrupts(struct rvu_block *block, int off)
{
struct rvu *rvu = block->rvu;
int blkaddr = block->addr;
irq_handler_t flt_fn;
int i, ret;
for (i = CPT_10K_AF_INT_VEC_FLT0; i < CPT_10K_AF_INT_VEC_RVU; i++) {
sprintf(&rvu->irq_name[(off + i) * NAME_SIZE], "CPTAF FLT%d", i);
switch (i) {
case CPT_10K_AF_INT_VEC_FLT0:
flt_fn = rvu_cpt_af_flt0_intr_handler;
break;
case CPT_10K_AF_INT_VEC_FLT1:
flt_fn = rvu_cpt_af_flt1_intr_handler;
break;
case CPT_10K_AF_INT_VEC_FLT2:
flt_fn = rvu_cpt_af_flt2_intr_handler;
break;
}
ret = rvu_cpt_do_register_interrupt(block, off + i,
flt_fn, &rvu->irq_name[(off + i) * NAME_SIZE]);
if (ret)
goto err;
if (i == CPT_10K_AF_INT_VEC_FLT2)
rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), 0xFFFF);
else
rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), ~0ULL);
}
ret = rvu_cpt_do_register_interrupt(block, off + CPT_10K_AF_INT_VEC_RVU,
rvu_cpt_af_rvu_intr_handler,
"CPTAF RVU");
if (ret)
goto err;
rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1);
ret = rvu_cpt_do_register_interrupt(block, off + CPT_10K_AF_INT_VEC_RAS,
rvu_cpt_af_ras_intr_handler,
"CPTAF RAS");
if (ret)
goto err;
rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1);
return 0;
err:
rvu_cpt_unregister_interrupts(rvu);
return ret;
}
static int cpt_register_interrupts(struct rvu *rvu, int blkaddr)
{
struct rvu_hwinfo *hw = rvu->hw;
struct rvu_block *block;
irq_handler_t flt_fn;
int i, offs, ret = 0;
if (!is_block_implemented(rvu->hw, blkaddr))
return 0;
block = &hw->block[blkaddr];
offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF;
if (!offs) {
dev_warn(rvu->dev,
"Failed to get CPT_AF_INT vector offsets\n");
return 0;
}
if (!is_rvu_otx2(rvu))
return cpt_10k_register_interrupts(block, offs);
for (i = CPT_AF_INT_VEC_FLT0; i < CPT_AF_INT_VEC_RVU; i++) {
sprintf(&rvu->irq_name[(offs + i) * NAME_SIZE], "CPTAF FLT%d", i);
switch (i) {
case CPT_AF_INT_VEC_FLT0:
flt_fn = rvu_cpt_af_flt0_intr_handler;
break;
case CPT_AF_INT_VEC_FLT1:
flt_fn = rvu_cpt_af_flt1_intr_handler;
break;
}
ret = rvu_cpt_do_register_interrupt(block, offs + i,
flt_fn, &rvu->irq_name[(offs + i) * NAME_SIZE]);
if (ret)
goto err;
rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), ~0ULL);
}
ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RVU,
rvu_cpt_af_rvu_intr_handler,
"CPTAF RVU");
if (ret)
goto err;
rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1);
ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RAS,
rvu_cpt_af_ras_intr_handler,
"CPTAF RAS");
if (ret)
goto err;
rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1);
return 0;
err:
rvu_cpt_unregister_interrupts(rvu);
return ret;
}
int rvu_cpt_register_interrupts(struct rvu *rvu)
{
int ret;
ret = cpt_register_interrupts(rvu, BLKADDR_CPT0);
if (ret)
return ret;
return cpt_register_interrupts(rvu, BLKADDR_CPT1);
}
static int get_cpt_pf_num(struct rvu *rvu)
{
int i, domain_nr, cpt_pf_num = -1;
struct pci_dev *pdev;
domain_nr = pci_domain_nr(rvu->pdev->bus);
for (i = 0; i < rvu->hw->total_pfs; i++) {
pdev = pci_get_domain_bus_and_slot(domain_nr, i + 1, 0);
if (!pdev)
continue;
if (pdev->device == PCI_DEVID_OTX2_CPT_PF ||
pdev->device == PCI_DEVID_OTX2_CPT10K_PF) {
cpt_pf_num = i;
put_device(&pdev->dev);
break;
}
put_device(&pdev->dev);
}
return cpt_pf_num;
}
static bool is_cpt_pf(struct rvu *rvu, u16 pcifunc)
{
int cpt_pf_num = rvu->cpt_pf_num;
if (rvu_get_pf(pcifunc) != cpt_pf_num)
return false;
if (pcifunc & RVU_PFVF_FUNC_MASK)
return false;
return true;
}
static bool is_cpt_vf(struct rvu *rvu, u16 pcifunc)
{
int cpt_pf_num = rvu->cpt_pf_num;
if (rvu_get_pf(pcifunc) != cpt_pf_num)
return false;
if (!(pcifunc & RVU_PFVF_FUNC_MASK))
return false;
return true;
}
static int validate_and_get_cpt_blkaddr(int req_blkaddr)
{
int blkaddr;
blkaddr = req_blkaddr ? req_blkaddr : BLKADDR_CPT0;
if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
return -EINVAL;
return blkaddr;
}
int rvu_mbox_handler_cpt_lf_alloc(struct rvu *rvu,
struct cpt_lf_alloc_req_msg *req,
struct msg_rsp *rsp)
{
u16 pcifunc = req->hdr.pcifunc;
struct rvu_block *block;
int cptlf, blkaddr;
int num_lfs, slot;
u64 val;
blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
if (blkaddr < 0)
return blkaddr;
if (req->eng_grpmsk == 0x0)
return CPT_AF_ERR_GRP_INVALID;
block = &rvu->hw->block[blkaddr];
num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
block->addr);
if (!num_lfs)
return CPT_AF_ERR_LF_INVALID;
/* Check if requested 'CPTLF <=> NIXLF' mapping is valid */
if (req->nix_pf_func) {
/* If default, use 'this' CPTLF's PFFUNC */
if (req->nix_pf_func == RVU_DEFAULT_PF_FUNC)
req->nix_pf_func = pcifunc;
if (!is_pffunc_map_valid(rvu, req->nix_pf_func, BLKTYPE_NIX))
return CPT_AF_ERR_NIX_PF_FUNC_INVALID;
}
/* Check if requested 'CPTLF <=> SSOLF' mapping is valid */
if (req->sso_pf_func) {
/* If default, use 'this' CPTLF's PFFUNC */
if (req->sso_pf_func == RVU_DEFAULT_PF_FUNC)
req->sso_pf_func = pcifunc;
if (!is_pffunc_map_valid(rvu, req->sso_pf_func, BLKTYPE_SSO))
return CPT_AF_ERR_SSO_PF_FUNC_INVALID;
}
for (slot = 0; slot < num_lfs; slot++) {
cptlf = rvu_get_lf(rvu, block, pcifunc, slot);
if (cptlf < 0)
return CPT_AF_ERR_LF_INVALID;
/* Set CPT LF group and priority */
val = (u64)req->eng_grpmsk << 48 | 1;
if (!is_rvu_otx2(rvu)) {
if (req->ctx_ilen_valid)
val |= (req->ctx_ilen << 17);
else
val |= (CPT_CTX_ILEN << 17);
}
rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
/* Set CPT LF NIX_PF_FUNC and SSO_PF_FUNC. EXE_LDWB is set
* on reset.
*/
val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
val &= ~(GENMASK_ULL(63, 48) | GENMASK_ULL(47, 32));
val |= ((u64)req->nix_pf_func << 48 |
(u64)req->sso_pf_func << 32);
rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
}
return 0;
}
static int cpt_lf_free(struct rvu *rvu, struct msg_req *req, int blkaddr)
{
u16 pcifunc = req->hdr.pcifunc;
int num_lfs, cptlf, slot, err;
struct rvu_block *block;
block = &rvu->hw->block[blkaddr];
num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
block->addr);
if (!num_lfs)
return 0;
for (slot = 0; slot < num_lfs; slot++) {
cptlf = rvu_get_lf(rvu, block, pcifunc, slot);
if (cptlf < 0)
return CPT_AF_ERR_LF_INVALID;
/* Perform teardown */
rvu_cpt_lf_teardown(rvu, pcifunc, blkaddr, cptlf, slot);
/* Reset LF */
err = rvu_lf_reset(rvu, block, cptlf);
if (err) {
dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
block->addr, cptlf);
}
}
return 0;
}
int rvu_mbox_handler_cpt_lf_free(struct rvu *rvu, struct msg_req *req,
struct msg_rsp *rsp)
{
int ret;
ret = cpt_lf_free(rvu, req, BLKADDR_CPT0);
if (ret)
return ret;
if (is_block_implemented(rvu->hw, BLKADDR_CPT1))
ret = cpt_lf_free(rvu, req, BLKADDR_CPT1);
return ret;
}
static int cpt_inline_ipsec_cfg_inbound(struct rvu *rvu, int blkaddr, u8 cptlf,
struct cpt_inline_ipsec_cfg_msg *req)
{
u16 sso_pf_func = req->sso_pf_func;
u8 nix_sel;
u64 val;
val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
if (req->enable && (val & BIT_ULL(16))) {
/* IPSec inline outbound path is already enabled for a given
* CPT LF, HRM states that inline inbound & outbound paths
* must not be enabled at the same time for a given CPT LF
*/
return CPT_AF_ERR_INLINE_IPSEC_INB_ENA;
}
/* Check if requested 'CPTLF <=> SSOLF' mapping is valid */
if (sso_pf_func && !is_pffunc_map_valid(rvu, sso_pf_func, BLKTYPE_SSO))
return CPT_AF_ERR_SSO_PF_FUNC_INVALID;
nix_sel = (blkaddr == BLKADDR_CPT1) ? 1 : 0;
/* Enable CPT LF for IPsec inline inbound operations */
if (req->enable)
val |= BIT_ULL(9);
else
val &= ~BIT_ULL(9);
val |= (u64)nix_sel << 8;
rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
if (sso_pf_func) {
/* Set SSO_PF_FUNC */
val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
val |= (u64)sso_pf_func << 32;
val |= (u64)req->nix_pf_func << 48;
rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
}
if (req->sso_pf_func_ovrd)
/* Set SSO_PF_FUNC_OVRD for inline IPSec */
rvu_write64(rvu, blkaddr, CPT_AF_ECO, 0x1);
/* Configure the X2P Link register with the cpt base channel number and
* range of channels it should propagate to X2P
*/
if (!is_rvu_otx2(rvu)) {
val = (ilog2(NIX_CHAN_CPT_X2P_MASK + 1) << 16);
val |= (u64)rvu->hw->cpt_chan_base;
rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0), val);
rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1), val);
}
return 0;
}
static int cpt_inline_ipsec_cfg_outbound(struct rvu *rvu, int blkaddr, u8 cptlf,
struct cpt_inline_ipsec_cfg_msg *req)
{
u16 nix_pf_func = req->nix_pf_func;
int nix_blkaddr;
u8 nix_sel;
u64 val;
val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
if (req->enable && (val & BIT_ULL(9))) {
/* IPSec inline inbound path is already enabled for a given
* CPT LF, HRM states that inline inbound & outbound paths
* must not be enabled at the same time for a given CPT LF
*/
return CPT_AF_ERR_INLINE_IPSEC_OUT_ENA;
}
/* Check if requested 'CPTLF <=> NIXLF' mapping is valid */
if (nix_pf_func && !is_pffunc_map_valid(rvu, nix_pf_func, BLKTYPE_NIX))
return CPT_AF_ERR_NIX_PF_FUNC_INVALID;
/* Enable CPT LF for IPsec inline outbound operations */
if (req->enable)
val |= BIT_ULL(16);
else
val &= ~BIT_ULL(16);
rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
if (nix_pf_func) {
/* Set NIX_PF_FUNC */
val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
val |= (u64)nix_pf_func << 48;
rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, nix_pf_func);
nix_sel = (nix_blkaddr == BLKADDR_NIX0) ? 0 : 1;
val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
val |= (u64)nix_sel << 8;
rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
}
return 0;
}
int rvu_mbox_handler_cpt_inline_ipsec_cfg(struct rvu *rvu,
struct cpt_inline_ipsec_cfg_msg *req,
struct msg_rsp *rsp)
{
u16 pcifunc = req->hdr.pcifunc;
struct rvu_block *block;
int cptlf, blkaddr, ret;
u16 actual_slot;
blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc,
req->slot, &actual_slot);
if (blkaddr < 0)
return CPT_AF_ERR_LF_INVALID;
block = &rvu->hw->block[blkaddr];
cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot);
if (cptlf < 0)
return CPT_AF_ERR_LF_INVALID;
switch (req->dir) {
case CPT_INLINE_INBOUND:
ret = cpt_inline_ipsec_cfg_inbound(rvu, blkaddr, cptlf, req);
break;
case CPT_INLINE_OUTBOUND:
ret = cpt_inline_ipsec_cfg_outbound(rvu, blkaddr, cptlf, req);
break;
default:
return CPT_AF_ERR_PARAM;
}
return ret;
}
static bool is_valid_offset(struct rvu *rvu, struct cpt_rd_wr_reg_msg *req)
{
u64 offset = req->reg_offset;
int blkaddr, num_lfs, lf;
struct rvu_block *block;
struct rvu_pfvf *pfvf;
blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
if (blkaddr < 0)
return false;
/* Registers that can be accessed from PF/VF */
if ((offset & 0xFF000) == CPT_AF_LFX_CTL(0) ||
(offset & 0xFF000) == CPT_AF_LFX_CTL2(0)) {
if (offset & 7)
return false;
lf = (offset & 0xFFF) >> 3;
block = &rvu->hw->block[blkaddr];
pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
if (lf >= num_lfs)
/* Slot is not valid for that PF/VF */
return false;
/* Translate local LF used by VFs to global CPT LF */
lf = rvu_get_lf(rvu, &rvu->hw->block[blkaddr],
req->hdr.pcifunc, lf);
if (lf < 0)
return false;
return true;
} else if (!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK)) {
/* Registers that can be accessed from PF */
switch (offset) {
case CPT_AF_DIAG:
case CPT_AF_CTL:
case CPT_AF_PF_FUNC:
case CPT_AF_BLK_RST:
case CPT_AF_CONSTANTS1:
case CPT_AF_CTX_FLUSH_TIMER:
return true;
}
switch (offset & 0xFF000) {
case CPT_AF_EXEX_STS(0):
case CPT_AF_EXEX_CTL(0):
case CPT_AF_EXEX_CTL2(0):
case CPT_AF_EXEX_UCODE_BASE(0):
if (offset & 7)
return false;
break;
default:
return false;
}
return true;
}
return false;
}
int rvu_mbox_handler_cpt_rd_wr_register(struct rvu *rvu,
struct cpt_rd_wr_reg_msg *req,
struct cpt_rd_wr_reg_msg *rsp)
{
int blkaddr;
blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
if (blkaddr < 0)
return blkaddr;
/* This message is accepted only if sent from CPT PF/VF */
if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
!is_cpt_vf(rvu, req->hdr.pcifunc))
return CPT_AF_ERR_ACCESS_DENIED;
rsp->reg_offset = req->reg_offset;
rsp->ret_val = req->ret_val;
rsp->is_write = req->is_write;
if (!is_valid_offset(rvu, req))
return CPT_AF_ERR_ACCESS_DENIED;
if (req->is_write)
rvu_write64(rvu, blkaddr, req->reg_offset, req->val);
else
rsp->val = rvu_read64(rvu, blkaddr, req->reg_offset);
return 0;
}
static void get_ctx_pc(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr)
{
if (is_rvu_otx2(rvu))
return;
rsp->ctx_mis_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_MIS_PC);
rsp->ctx_hit_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_HIT_PC);
rsp->ctx_aop_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_AOP_PC);
rsp->ctx_aop_lat_pc = rvu_read64(rvu, blkaddr,
CPT_AF_CTX_AOP_LATENCY_PC);
rsp->ctx_ifetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_IFETCH_PC);
rsp->ctx_ifetch_lat_pc = rvu_read64(rvu, blkaddr,
CPT_AF_CTX_IFETCH_LATENCY_PC);
rsp->ctx_ffetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
rsp->ctx_ffetch_lat_pc = rvu_read64(rvu, blkaddr,
CPT_AF_CTX_FFETCH_LATENCY_PC);
rsp->ctx_wback_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
rsp->ctx_wback_lat_pc = rvu_read64(rvu, blkaddr,
CPT_AF_CTX_FFETCH_LATENCY_PC);
rsp->ctx_psh_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
rsp->ctx_psh_lat_pc = rvu_read64(rvu, blkaddr,
CPT_AF_CTX_FFETCH_LATENCY_PC);
rsp->ctx_err = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ERR);
rsp->ctx_enc_id = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ENC_ID);
rsp->ctx_flush_timer = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FLUSH_TIMER);
rsp->rxc_time = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME);
rsp->rxc_time_cfg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG);
rsp->rxc_active_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS);
rsp->rxc_zombie_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS);
rsp->rxc_dfrg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG);
rsp->x2p_link_cfg0 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0));
rsp->x2p_link_cfg1 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1));
}
static void get_eng_sts(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr)
{
u16 max_ses, max_ies, max_aes;
u32 e_min = 0, e_max = 0;
u64 reg;
reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS1);
max_ses = reg & 0xffff;
max_ies = (reg >> 16) & 0xffff;
max_aes = (reg >> 32) & 0xffff;
/* Get AE status */
e_min = max_ses + max_ies;
e_max = max_ses + max_ies + max_aes;
cpt_get_eng_sts(e_min, e_max, rsp, ae);
/* Get SE status */
e_min = 0;
e_max = max_ses;
cpt_get_eng_sts(e_min, e_max, rsp, se);
/* Get IE status */
e_min = max_ses;
e_max = max_ses + max_ies;
cpt_get_eng_sts(e_min, e_max, rsp, ie);
}
int rvu_mbox_handler_cpt_sts(struct rvu *rvu, struct cpt_sts_req *req,
struct cpt_sts_rsp *rsp)
{
int blkaddr;
blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
if (blkaddr < 0)
return blkaddr;
/* This message is accepted only if sent from CPT PF/VF */
if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
!is_cpt_vf(rvu, req->hdr.pcifunc))
return CPT_AF_ERR_ACCESS_DENIED;
get_ctx_pc(rvu, rsp, blkaddr);
/* Get CPT engines status */
get_eng_sts(rvu, rsp, blkaddr);
/* Read CPT instruction PC registers */
rsp->inst_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_REQ_PC);
rsp->inst_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_LATENCY_PC);
rsp->rd_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_REQ_PC);
rsp->rd_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_LATENCY_PC);
rsp->rd_uc_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_UC_PC);
rsp->active_cycles_pc = rvu_read64(rvu, blkaddr,
CPT_AF_ACTIVE_CYCLES_PC);
rsp->exe_err_info = rvu_read64(rvu, blkaddr, CPT_AF_EXE_ERR_INFO);
rsp->cptclk_cnt = rvu_read64(rvu, blkaddr, CPT_AF_CPTCLK_CNT);
rsp->diag = rvu_read64(rvu, blkaddr, CPT_AF_DIAG);
return 0;
}
#define RXC_ZOMBIE_THRES GENMASK_ULL(59, 48)
#define RXC_ZOMBIE_LIMIT GENMASK_ULL(43, 32)
#define RXC_ACTIVE_THRES GENMASK_ULL(27, 16)
#define RXC_ACTIVE_LIMIT GENMASK_ULL(11, 0)
#define RXC_ACTIVE_COUNT GENMASK_ULL(60, 48)
#define RXC_ZOMBIE_COUNT GENMASK_ULL(60, 48)
static void cpt_rxc_time_cfg(struct rvu *rvu, struct cpt_rxc_time_cfg_req *req,
int blkaddr, struct cpt_rxc_time_cfg_req *save)
{
u64 dfrg_reg;
if (save) {
/* Save older config */
dfrg_reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG);
save->zombie_thres = FIELD_GET(RXC_ZOMBIE_THRES, dfrg_reg);
save->zombie_limit = FIELD_GET(RXC_ZOMBIE_LIMIT, dfrg_reg);
save->active_thres = FIELD_GET(RXC_ACTIVE_THRES, dfrg_reg);
save->active_limit = FIELD_GET(RXC_ACTIVE_LIMIT, dfrg_reg);
save->step = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG);
}
dfrg_reg = FIELD_PREP(RXC_ZOMBIE_THRES, req->zombie_thres);
dfrg_reg |= FIELD_PREP(RXC_ZOMBIE_LIMIT, req->zombie_limit);
dfrg_reg |= FIELD_PREP(RXC_ACTIVE_THRES, req->active_thres);
dfrg_reg |= FIELD_PREP(RXC_ACTIVE_LIMIT, req->active_limit);
rvu_write64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG, req->step);
rvu_write64(rvu, blkaddr, CPT_AF_RXC_DFRG, dfrg_reg);
}
int rvu_mbox_handler_cpt_rxc_time_cfg(struct rvu *rvu,
struct cpt_rxc_time_cfg_req *req,
struct msg_rsp *rsp)
{
int blkaddr;
blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
if (blkaddr < 0)
return blkaddr;
/* This message is accepted only if sent from CPT PF/VF */
if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
!is_cpt_vf(rvu, req->hdr.pcifunc))
return CPT_AF_ERR_ACCESS_DENIED;
cpt_rxc_time_cfg(rvu, req, blkaddr, NULL);
return 0;
}
int rvu_mbox_handler_cpt_ctx_cache_sync(struct rvu *rvu, struct msg_req *req,
struct msg_rsp *rsp)
{
return rvu_cpt_ctx_flush(rvu, req->hdr.pcifunc);
}
int rvu_mbox_handler_cpt_lf_reset(struct rvu *rvu, struct cpt_lf_rst_req *req,
struct msg_rsp *rsp)
{
u16 pcifunc = req->hdr.pcifunc;
struct rvu_block *block;
int cptlf, blkaddr, ret;
u16 actual_slot;
u64 ctl, ctl2;
blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc,
req->slot, &actual_slot);
if (blkaddr < 0)
return CPT_AF_ERR_LF_INVALID;
block = &rvu->hw->block[blkaddr];
cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot);
if (cptlf < 0)
return CPT_AF_ERR_LF_INVALID;
ctl = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
ctl2 = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
ret = rvu_lf_reset(rvu, block, cptlf);
if (ret)
dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
block->addr, cptlf);
rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), ctl);
rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), ctl2);
return 0;
}
int rvu_mbox_handler_cpt_flt_eng_info(struct rvu *rvu, struct cpt_flt_eng_info_req *req,
struct cpt_flt_eng_info_rsp *rsp)
{
struct rvu_block *block;
unsigned long flags;
int blkaddr, vec;
blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
if (blkaddr < 0)
return blkaddr;
block = &rvu->hw->block[blkaddr];
for (vec = 0; vec < CPT_10K_AF_INT_VEC_RVU; vec++) {
spin_lock_irqsave(&rvu->cpt_intr_lock, flags);
rsp->flt_eng_map[vec] = block->cpt_flt_eng_map[vec];
rsp->rcvrd_eng_map[vec] = block->cpt_rcvrd_eng_map[vec];
if (req->reset) {
block->cpt_flt_eng_map[vec] = 0x0;
block->cpt_rcvrd_eng_map[vec] = 0x0;
}
spin_unlock_irqrestore(&rvu->cpt_intr_lock, flags);
}
return 0;
}
static void cpt_rxc_teardown(struct rvu *rvu, int blkaddr)
{
struct cpt_rxc_time_cfg_req req, prev;
int timeout = 2000;
u64 reg;
if (is_rvu_otx2(rvu))
return;
/* Set time limit to minimum values, so that rxc entries will be
* flushed out quickly.
*/
req.step = 1;
req.zombie_thres = 1;
req.zombie_limit = 1;
req.active_thres = 1;
req.active_limit = 1;
cpt_rxc_time_cfg(rvu, &req, blkaddr, &prev);
do {
reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS);
udelay(1);
if (FIELD_GET(RXC_ACTIVE_COUNT, reg))
timeout--;
else
break;
} while (timeout);
if (timeout == 0)
dev_warn(rvu->dev, "Poll for RXC active count hits hard loop counter\n");
timeout = 2000;
do {
reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS);
udelay(1);
if (FIELD_GET(RXC_ZOMBIE_COUNT, reg))
timeout--;
else
break;
} while (timeout);
if (timeout == 0)
dev_warn(rvu->dev, "Poll for RXC zombie count hits hard loop counter\n");
/* Restore config */
cpt_rxc_time_cfg(rvu, &prev, blkaddr, NULL);
}
#define INFLIGHT GENMASK_ULL(8, 0)
#define GRB_CNT GENMASK_ULL(39, 32)
#define GWB_CNT GENMASK_ULL(47, 40)
#define XQ_XOR GENMASK_ULL(63, 63)
#define DQPTR GENMASK_ULL(19, 0)
#define NQPTR GENMASK_ULL(51, 32)
static void cpt_lf_disable_iqueue(struct rvu *rvu, int blkaddr, int slot)
{
int timeout = 1000000;
u64 inprog, inst_ptr;
u64 qsize, pending;
int i = 0;
/* Disable instructions enqueuing */
rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTL), 0x0);
inprog = rvu_read64(rvu, blkaddr,
CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
inprog |= BIT_ULL(16);
rvu_write64(rvu, blkaddr,
CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG), inprog);
qsize = rvu_read64(rvu, blkaddr,
CPT_AF_BAR2_ALIASX(slot, CPT_LF_Q_SIZE)) & 0x7FFF;
do {
inst_ptr = rvu_read64(rvu, blkaddr,
CPT_AF_BAR2_ALIASX(slot, CPT_LF_Q_INST_PTR));
pending = (FIELD_GET(XQ_XOR, inst_ptr) * qsize * 40) +
FIELD_GET(NQPTR, inst_ptr) -
FIELD_GET(DQPTR, inst_ptr);
udelay(1);
timeout--;
} while ((pending != 0) && (timeout != 0));
if (timeout == 0)
dev_warn(rvu->dev, "TIMEOUT: CPT poll on pending instructions\n");
timeout = 1000000;
/* Wait for CPT queue to become execution-quiescent */
do {
inprog = rvu_read64(rvu, blkaddr,
CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
if ((FIELD_GET(INFLIGHT, inprog) == 0) &&
(FIELD_GET(GRB_CNT, inprog) == 0)) {
i++;
} else {
i = 0;
timeout--;
}
} while ((timeout != 0) && (i < 10));
if (timeout == 0)
dev_warn(rvu->dev, "TIMEOUT: CPT poll on inflight count\n");
/* Wait for 2 us to flush all queue writes to memory */
udelay(2);
}
int rvu_cpt_lf_teardown(struct rvu *rvu, u16 pcifunc, int blkaddr, int lf, int slot)
{
u64 reg;
if (is_cpt_pf(rvu, pcifunc) || is_cpt_vf(rvu, pcifunc))
cpt_rxc_teardown(rvu, blkaddr);
mutex_lock(&rvu->alias_lock);
/* Enable BAR2 ALIAS for this pcifunc. */
reg = BIT_ULL(16) | pcifunc;
rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg);
cpt_lf_disable_iqueue(rvu, blkaddr, slot);
rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0);
mutex_unlock(&rvu->alias_lock);
return 0;
}
#define CPT_RES_LEN 16
#define CPT_SE_IE_EGRP 1ULL
static int cpt_inline_inb_lf_cmd_send(struct rvu *rvu, int blkaddr,
int nix_blkaddr)
{
int cpt_pf_num = rvu->cpt_pf_num;
struct cpt_inst_lmtst_req *req;
dma_addr_t res_daddr;
int timeout = 3000;
u8 cpt_idx;
u64 *inst;
u16 *res;
int rc;
res = kzalloc(CPT_RES_LEN, GFP_KERNEL);
if (!res)
return -ENOMEM;
res_daddr = dma_map_single(rvu->dev, res, CPT_RES_LEN,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(rvu->dev, res_daddr)) {
dev_err(rvu->dev, "DMA mapping failed for CPT result\n");
rc = -EFAULT;
goto res_free;
}
*res = 0xFFFF;
/* Send mbox message to CPT PF */
req = (struct cpt_inst_lmtst_req *)
otx2_mbox_alloc_msg_rsp(&rvu->afpf_wq_info.mbox_up,
cpt_pf_num, sizeof(*req),
sizeof(struct msg_rsp));
if (!req) {
rc = -ENOMEM;
goto res_daddr_unmap;
}
req->hdr.sig = OTX2_MBOX_REQ_SIG;
req->hdr.id = MBOX_MSG_CPT_INST_LMTST;
inst = req->inst;
/* Prepare CPT_INST_S */
inst[0] = 0;
inst[1] = res_daddr;
/* AF PF FUNC */
inst[2] = 0;
/* Set QORD */
inst[3] = 1;
inst[4] = 0;
inst[5] = 0;
inst[6] = 0;
/* Set EGRP */
inst[7] = CPT_SE_IE_EGRP << 61;
/* Subtract 1 from the NIX-CPT credit count to preserve
* credit counts.
*/
cpt_idx = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
rvu_write64(rvu, nix_blkaddr, NIX_AF_RX_CPTX_CREDIT(cpt_idx),
BIT_ULL(22) - 1);
otx2_mbox_msg_send(&rvu->afpf_wq_info.mbox_up, cpt_pf_num);
rc = otx2_mbox_wait_for_rsp(&rvu->afpf_wq_info.mbox_up, cpt_pf_num);
if (rc)
dev_warn(rvu->dev, "notification to pf %d failed\n",
cpt_pf_num);
/* Wait for CPT instruction to be completed */
do {
mdelay(1);
if (*res == 0xFFFF)
timeout--;
else
break;
} while (timeout);
if (timeout == 0)
dev_warn(rvu->dev, "Poll for result hits hard loop counter\n");
res_daddr_unmap:
dma_unmap_single(rvu->dev, res_daddr, CPT_RES_LEN, DMA_BIDIRECTIONAL);
res_free:
kfree(res);
return 0;
}
#define CTX_CAM_PF_FUNC GENMASK_ULL(61, 46)
#define CTX_CAM_CPTR GENMASK_ULL(45, 0)
int rvu_cpt_ctx_flush(struct rvu *rvu, u16 pcifunc)
{
int nix_blkaddr, blkaddr;
u16 max_ctx_entries, i;
int slot = 0, num_lfs;
u64 reg, cam_data;
int rc;
nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
if (nix_blkaddr < 0)
return -EINVAL;
if (is_rvu_otx2(rvu))
return 0;
blkaddr = (nix_blkaddr == BLKADDR_NIX1) ? BLKADDR_CPT1 : BLKADDR_CPT0;
/* Submit CPT_INST_S to track when all packets have been
* flushed through for the NIX PF FUNC in inline inbound case.
*/
rc = cpt_inline_inb_lf_cmd_send(rvu, blkaddr, nix_blkaddr);
if (rc)
return rc;
/* Wait for rxc entries to be flushed out */
cpt_rxc_teardown(rvu, blkaddr);
reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
max_ctx_entries = (reg >> 48) & 0xFFF;
mutex_lock(&rvu->rsrc_lock);
num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
blkaddr);
if (num_lfs == 0) {
dev_warn(rvu->dev, "CPT LF is not configured\n");
goto unlock;
}
/* Enable BAR2 ALIAS for this pcifunc. */
reg = BIT_ULL(16) | pcifunc;
rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg);
for (i = 0; i < max_ctx_entries; i++) {
cam_data = rvu_read64(rvu, blkaddr, CPT_AF_CTX_CAM_DATA(i));
if ((FIELD_GET(CTX_CAM_PF_FUNC, cam_data) == pcifunc) &&
FIELD_GET(CTX_CAM_CPTR, cam_data)) {
reg = BIT_ULL(46) | FIELD_GET(CTX_CAM_CPTR, cam_data);
rvu_write64(rvu, blkaddr,
CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTX_FLUSH),
reg);
}
}
rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0);
unlock:
mutex_unlock(&rvu->rsrc_lock);
return 0;
}
int rvu_cpt_init(struct rvu *rvu)
{
/* Retrieve CPT PF number */
rvu->cpt_pf_num = get_cpt_pf_num(rvu);
spin_lock_init(&rvu->cpt_intr_lock);
return 0;
}