Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
/*
 * Copyright (c) 2012 Intel Corporation. All rights reserved.
 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>

#include "qib.h"

/*
 * QLogic_IB "Two Wire Serial Interface" driver.
 * Originally written for a not-quite-i2c serial eeprom, which is
 * still used on some supported boards. Later boards have added a
 * variety of other uses, most board-specific, so the bit-boffing
 * part has been split off to this file, while the other parts
 * have been moved to chip-specific files.
 *
 * We have also dropped all pretense of fully generic (e.g. pretend
 * we don't know whether '1' is the higher voltage) interface, as
 * the restrictions of the generic i2c interface (e.g. no access from
 * driver itself) make it unsuitable for this use.
 */

#define READ_CMD 1
#define WRITE_CMD 0

/**
 * i2c_wait_for_writes - wait for a write
 * @dd: the qlogic_ib device
 *
 * We use this instead of udelay directly, so we can make sure
 * that previous register writes have been flushed all the way
 * to the chip.  Since we are delaying anyway, the cost doesn't
 * hurt, and makes the bit twiddling more regular
 */
static void i2c_wait_for_writes(struct qib_devdata *dd)
{
	/*
	 * implicit read of EXTStatus is as good as explicit
	 * read of scratch, if all we want to do is flush
	 * writes.
	 */
	dd->f_gpio_mod(dd, 0, 0, 0);
	rmb(); /* inlined, so prevent compiler reordering */
}

/*
 * QSFP modules are allowed to hold SCL low for 500uSec. Allow twice that
 * for "almost compliant" modules
 */
#define SCL_WAIT_USEC 1000

/* BUF_WAIT is time bus must be free between STOP or ACK and to next START.
 * Should be 20, but some chips need more.
 */
#define TWSI_BUF_WAIT_USEC 60

static void scl_out(struct qib_devdata *dd, u8 bit)
{
	u32 mask;

	udelay(1);

	mask = 1UL << dd->gpio_scl_num;

	/* SCL is meant to be bare-drain, so never set "OUT", just DIR */
	dd->f_gpio_mod(dd, 0, bit ? 0 : mask, mask);

	/*
	 * Allow for slow slaves by simple
	 * delay for falling edge, sampling on rise.
	 */
	if (!bit)
		udelay(2);
	else {
		int rise_usec;

		for (rise_usec = SCL_WAIT_USEC; rise_usec > 0; rise_usec -= 2) {
			if (mask & dd->f_gpio_mod(dd, 0, 0, 0))
				break;
			udelay(2);
		}
		if (rise_usec <= 0)
			qib_dev_err(dd, "SCL interface stuck low > %d uSec\n",
				    SCL_WAIT_USEC);
	}
	i2c_wait_for_writes(dd);
}

static void sda_out(struct qib_devdata *dd, u8 bit)
{
	u32 mask;

	mask = 1UL << dd->gpio_sda_num;

	/* SDA is meant to be bare-drain, so never set "OUT", just DIR */
	dd->f_gpio_mod(dd, 0, bit ? 0 : mask, mask);

	i2c_wait_for_writes(dd);
	udelay(2);
}

static u8 sda_in(struct qib_devdata *dd, int wait)
{
	int bnum;
	u32 read_val, mask;

	bnum = dd->gpio_sda_num;
	mask = (1UL << bnum);
	/* SDA is meant to be bare-drain, so never set "OUT", just DIR */
	dd->f_gpio_mod(dd, 0, 0, mask);
	read_val = dd->f_gpio_mod(dd, 0, 0, 0);
	if (wait)
		i2c_wait_for_writes(dd);
	return (read_val & mask) >> bnum;
}

/**
 * i2c_ackrcv - see if ack following write is true
 * @dd: the qlogic_ib device
 */
static int i2c_ackrcv(struct qib_devdata *dd)
{
	u8 ack_received;

	/* AT ENTRY SCL = LOW */
	/* change direction, ignore data */
	ack_received = sda_in(dd, 1);
	scl_out(dd, 1);
	ack_received = sda_in(dd, 1) == 0;
	scl_out(dd, 0);
	return ack_received;
}

static void stop_cmd(struct qib_devdata *dd);

/**
 * rd_byte - read a byte, sending STOP on last, else ACK
 * @dd: the qlogic_ib device
 * @last: identifies the last read
 *
 * Returns byte shifted out of device
 */
static int rd_byte(struct qib_devdata *dd, int last)
{
	int bit_cntr, data;

	data = 0;

	for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) {
		data <<= 1;
		scl_out(dd, 1);
		data |= sda_in(dd, 0);
		scl_out(dd, 0);
	}
	if (last) {
		scl_out(dd, 1);
		stop_cmd(dd);
	} else {
		sda_out(dd, 0);
		scl_out(dd, 1);
		scl_out(dd, 0);
		sda_out(dd, 1);
	}
	return data;
}

/**
 * wr_byte - write a byte, one bit at a time
 * @dd: the qlogic_ib device
 * @data: the byte to write
 *
 * Returns 0 if we got the following ack, otherwise 1
 */
static int wr_byte(struct qib_devdata *dd, u8 data)
{
	int bit_cntr;
	u8 bit;

	for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
		bit = (data >> bit_cntr) & 1;
		sda_out(dd, bit);
		scl_out(dd, 1);
		scl_out(dd, 0);
	}
	return (!i2c_ackrcv(dd)) ? 1 : 0;
}

/*
 * issue TWSI start sequence:
 * (both clock/data high, clock high, data low while clock is high)
 */
static void start_seq(struct qib_devdata *dd)
{
	sda_out(dd, 1);
	scl_out(dd, 1);
	sda_out(dd, 0);
	udelay(1);
	scl_out(dd, 0);
}

/**
 * stop_seq - transmit the stop sequence
 * @dd: the qlogic_ib device
 *
 * (both clock/data low, clock high, data high while clock is high)
 */
static void stop_seq(struct qib_devdata *dd)
{
	scl_out(dd, 0);
	sda_out(dd, 0);
	scl_out(dd, 1);
	sda_out(dd, 1);
}

/**
 * stop_cmd - transmit the stop condition
 * @dd: the qlogic_ib device
 *
 * (both clock/data low, clock high, data high while clock is high)
 */
static void stop_cmd(struct qib_devdata *dd)
{
	stop_seq(dd);
	udelay(TWSI_BUF_WAIT_USEC);
}

/**
 * qib_twsi_reset - reset I2C communication
 * @dd: the qlogic_ib device
 */

int qib_twsi_reset(struct qib_devdata *dd)
{
	int clock_cycles_left = 9;
	int was_high = 0;
	u32 pins, mask;

	/* Both SCL and SDA should be high. If not, there
	 * is something wrong.
	 */
	mask = (1UL << dd->gpio_scl_num) | (1UL << dd->gpio_sda_num);

	/*
	 * Force pins to desired innocuous state.
	 * This is the default power-on state with out=0 and dir=0,
	 * So tri-stated and should be floating high (barring HW problems)
	 */
	dd->f_gpio_mod(dd, 0, 0, mask);

	/*
	 * Clock nine times to get all listeners into a sane state.
	 * If SDA does not go high at any point, we are wedged.
	 * One vendor recommends then issuing START followed by STOP.
	 * we cannot use our "normal" functions to do that, because
	 * if SCL drops between them, another vendor's part will
	 * wedge, dropping SDA and keeping it low forever, at the end of
	 * the next transaction (even if it was not the device addressed).
	 * So our START and STOP take place with SCL held high.
	 */
	while (clock_cycles_left--) {
		scl_out(dd, 0);
		scl_out(dd, 1);
		/* Note if SDA is high, but keep clocking to sync slave */
		was_high |= sda_in(dd, 0);
	}

	if (was_high) {
		/*
		 * We saw a high, which we hope means the slave is sync'd.
		 * Issue START, STOP, pause for T_BUF.
		 */

		pins = dd->f_gpio_mod(dd, 0, 0, 0);
		if ((pins & mask) != mask)
			qib_dev_err(dd, "GPIO pins not at rest: %d\n",
				    pins & mask);
		/* Drop SDA to issue START */
		udelay(1); /* Guarantee .6 uSec setup */
		sda_out(dd, 0);
		udelay(1); /* Guarantee .6 uSec hold */
		/* At this point, SCL is high, SDA low. Raise SDA for STOP */
		sda_out(dd, 1);
		udelay(TWSI_BUF_WAIT_USEC);
	}

	return !was_high;
}

#define QIB_TWSI_START 0x100
#define QIB_TWSI_STOP 0x200

/* Write byte to TWSI, optionally prefixed with START or suffixed with
 * STOP.
 * returns 0 if OK (ACK received), else != 0
 */
static int qib_twsi_wr(struct qib_devdata *dd, int data, int flags)
{
	int ret = 1;

	if (flags & QIB_TWSI_START)
		start_seq(dd);

	ret = wr_byte(dd, data); /* Leaves SCL low (from i2c_ackrcv()) */

	if (flags & QIB_TWSI_STOP)
		stop_cmd(dd);
	return ret;
}

/* Added functionality for IBA7220-based cards */
#define QIB_TEMP_DEV 0x98

/*
 * qib_twsi_blk_rd
 * Formerly called qib_eeprom_internal_read, and only used for eeprom,
 * but now the general interface for data transfer from twsi devices.
 * One vestige of its former role is that it recognizes a device
 * QIB_TWSI_NO_DEV and does the correct operation for the legacy part,
 * which responded to all TWSI device codes, interpreting them as
 * address within device. On all other devices found on board handled by
 * this driver, the device is followed by a one-byte "address" which selects
 * the "register" or "offset" within the device from which data should
 * be read.
 */
int qib_twsi_blk_rd(struct qib_devdata *dd, int dev, int addr,
		    void *buffer, int len)
{
	int ret;
	u8 *bp = buffer;

	ret = 1;

	if (dev == QIB_TWSI_NO_DEV) {
		/* legacy not-really-I2C */
		addr = (addr << 1) | READ_CMD;
		ret = qib_twsi_wr(dd, addr, QIB_TWSI_START);
	} else {
		/* Actual I2C */
		ret = qib_twsi_wr(dd, dev | WRITE_CMD, QIB_TWSI_START);
		if (ret) {
			stop_cmd(dd);
			ret = 1;
			goto bail;
		}
		/*
		 * SFF spec claims we do _not_ stop after the addr
		 * but simply issue a start with the "read" dev-addr.
		 * Since we are implicitely waiting for ACK here,
		 * we need t_buf (nominally 20uSec) before that start,
		 * and cannot rely on the delay built in to the STOP
		 */
		ret = qib_twsi_wr(dd, addr, 0);
		udelay(TWSI_BUF_WAIT_USEC);

		if (ret) {
			qib_dev_err(dd,
				"Failed to write interface read addr %02X\n",
				addr);
			ret = 1;
			goto bail;
		}
		ret = qib_twsi_wr(dd, dev | READ_CMD, QIB_TWSI_START);
	}
	if (ret) {
		stop_cmd(dd);
		ret = 1;
		goto bail;
	}

	/*
	 * block devices keeps clocking data out as long as we ack,
	 * automatically incrementing the address. Some have "pages"
	 * whose boundaries will not be crossed, but the handling
	 * of these is left to the caller, who is in a better
	 * position to know.
	 */
	while (len-- > 0) {
		/*
		 * Get and store data, sending ACK if length remaining,
		 * else STOP
		 */
		*bp++ = rd_byte(dd, !len);
	}

	ret = 0;

bail:
	return ret;
}

/*
 * qib_twsi_blk_wr
 * Formerly called qib_eeprom_internal_write, and only used for eeprom,
 * but now the general interface for data transfer to twsi devices.
 * One vestige of its former role is that it recognizes a device
 * QIB_TWSI_NO_DEV and does the correct operation for the legacy part,
 * which responded to all TWSI device codes, interpreting them as
 * address within device. On all other devices found on board handled by
 * this driver, the device is followed by a one-byte "address" which selects
 * the "register" or "offset" within the device to which data should
 * be written.
 */
int qib_twsi_blk_wr(struct qib_devdata *dd, int dev, int addr,
		    const void *buffer, int len)
{
	int sub_len;
	const u8 *bp = buffer;
	int max_wait_time, i;
	int ret = 1;

	while (len > 0) {
		if (dev == QIB_TWSI_NO_DEV) {
			if (qib_twsi_wr(dd, (addr << 1) | WRITE_CMD,
					QIB_TWSI_START)) {
				goto failed_write;
			}
		} else {
			/* Real I2C */
			if (qib_twsi_wr(dd, dev | WRITE_CMD, QIB_TWSI_START))
				goto failed_write;
			ret = qib_twsi_wr(dd, addr, 0);
			if (ret) {
				qib_dev_err(dd,
					"Failed to write interface write addr %02X\n",
					addr);
				goto failed_write;
			}
		}

		sub_len = min(len, 4);
		addr += sub_len;
		len -= sub_len;

		for (i = 0; i < sub_len; i++)
			if (qib_twsi_wr(dd, *bp++, 0))
				goto failed_write;

		stop_cmd(dd);

		/*
		 * Wait for write complete by waiting for a successful
		 * read (the chip replies with a zero after the write
		 * cmd completes, and before it writes to the eeprom.
		 * The startcmd for the read will fail the ack until
		 * the writes have completed.   We do this inline to avoid
		 * the debug prints that are in the real read routine
		 * if the startcmd fails.
		 * We also use the proper device address, so it doesn't matter
		 * whether we have real eeprom_dev. Legacy likes any address.
		 */
		max_wait_time = 100;
		while (qib_twsi_wr(dd, dev | READ_CMD, QIB_TWSI_START)) {
			stop_cmd(dd);
			if (!--max_wait_time)
				goto failed_write;
		}
		/* now read (and ignore) the resulting byte */
		rd_byte(dd, 1);
	}

	ret = 0;
	goto bail;

failed_write:
	stop_cmd(dd);
	ret = 1;

bail:
	return ret;
}