Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved. */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/etherdevice.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/in6.h>
#include <linux/tcp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/uaccess.h>
#include <linux/errno.h>
#include <net/ndisc.h>

#include "gdm_lte.h"
#include "netlink_k.h"
#include "hci.h"
#include "hci_packet.h"
#include "gdm_endian.h"

/*
 * Netlink protocol number
 */
#define NETLINK_LTE 30

/*
 * Default MTU Size
 */
#define DEFAULT_MTU_SIZE 1500

#define IP_VERSION_4	4
#define IP_VERSION_6	6

static struct {
	int ref_cnt;
	struct sock *sock;
} lte_event;

static struct device_type wwan_type = {
	.name   = "wwan",
};

static int gdm_lte_open(struct net_device *dev)
{
	netif_start_queue(dev);
	return 0;
}

static int gdm_lte_close(struct net_device *dev)
{
	netif_stop_queue(dev);
	return 0;
}

static int gdm_lte_set_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)
		return -EBUSY;
	return 0;
}

static void tx_complete(void *arg)
{
	struct nic *nic = arg;

	if (netif_queue_stopped(nic->netdev))
		netif_wake_queue(nic->netdev);
}

static int gdm_lte_rx(struct sk_buff *skb, struct nic *nic, int nic_type)
{
	int ret, len;

	len = skb->len + ETH_HLEN;
	ret = netif_rx(skb);
	if (ret == NET_RX_DROP) {
		nic->stats.rx_dropped++;
	} else {
		nic->stats.rx_packets++;
		nic->stats.rx_bytes += len;
	}

	return 0;
}

static int gdm_lte_emulate_arp(struct sk_buff *skb_in, u32 nic_type)
{
	struct nic *nic = netdev_priv(skb_in->dev);
	struct sk_buff *skb_out;
	struct ethhdr eth;
	struct vlan_ethhdr vlan_eth;
	struct arphdr *arp_in;
	struct arphdr *arp_out;
	struct arpdata {
		u8 ar_sha[ETH_ALEN];
		u8 ar_sip[4];
		u8 ar_tha[ETH_ALEN];
		u8 ar_tip[4];
	};
	struct arpdata *arp_data_in;
	struct arpdata *arp_data_out;
	u8 arp_temp[60];
	void *mac_header_data;
	u32 mac_header_len;

	/* Check for skb->len, discard if empty */
	if (skb_in->len == 0)
		return -ENODATA;

	/* Format the mac header so that it can be put to skb */
	if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
		memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
		mac_header_data = &vlan_eth;
		mac_header_len = VLAN_ETH_HLEN;
	} else {
		memcpy(&eth, skb_in->data, sizeof(struct ethhdr));
		mac_header_data = &eth;
		mac_header_len = ETH_HLEN;
	}

	/* Get the pointer of the original request */
	arp_in = (struct arphdr *)(skb_in->data + mac_header_len);
	arp_data_in = (struct arpdata *)(skb_in->data + mac_header_len +
					sizeof(struct arphdr));

	/* Get the pointer of the outgoing response */
	arp_out = (struct arphdr *)arp_temp;
	arp_data_out = (struct arpdata *)(arp_temp + sizeof(struct arphdr));

	/* Copy the arp header */
	memcpy(arp_out, arp_in, sizeof(struct arphdr));
	arp_out->ar_op = htons(ARPOP_REPLY);

	/* Copy the arp payload: based on 2 bytes of mac and fill the IP */
	arp_data_out->ar_sha[0] = arp_data_in->ar_sha[0];
	arp_data_out->ar_sha[1] = arp_data_in->ar_sha[1];
	memcpy(&arp_data_out->ar_sha[2], &arp_data_in->ar_tip[0], 4);
	memcpy(&arp_data_out->ar_sip[0], &arp_data_in->ar_tip[0], 4);
	memcpy(&arp_data_out->ar_tha[0], &arp_data_in->ar_sha[0], 6);
	memcpy(&arp_data_out->ar_tip[0], &arp_data_in->ar_sip[0], 4);

	/* Fill the destination mac with source mac of the received packet */
	memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
	/* Fill the source mac with nic's source mac */
	memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);

	/* Alloc skb and reserve align */
	skb_out = dev_alloc_skb(skb_in->len);
	if (!skb_out)
		return -ENOMEM;
	skb_reserve(skb_out, NET_IP_ALIGN);

	skb_put_data(skb_out, mac_header_data, mac_header_len);
	skb_put_data(skb_out, arp_out, sizeof(struct arphdr));
	skb_put_data(skb_out, arp_data_out, sizeof(struct arpdata));

	skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
	skb_out->dev = skb_in->dev;
	skb_reset_mac_header(skb_out);
	skb_pull(skb_out, ETH_HLEN);

	gdm_lte_rx(skb_out, nic, nic_type);

	return 0;
}

static __sum16 icmp6_checksum(struct ipv6hdr *ipv6, u16 *ptr, int len)
{
	unsigned short *w;
	__wsum sum = 0;
	int i;
	u16 pa;

	union {
		struct {
			u8 ph_src[16];
			u8 ph_dst[16];
			u32 ph_len;
			u8 ph_zero[3];
			u8 ph_nxt;
		} ph __packed;
		u16 pa[20];
	} pseudo_header;

	memset(&pseudo_header, 0, sizeof(pseudo_header));
	memcpy(&pseudo_header.ph.ph_src, &ipv6->saddr.in6_u.u6_addr8, 16);
	memcpy(&pseudo_header.ph.ph_dst, &ipv6->daddr.in6_u.u6_addr8, 16);
	pseudo_header.ph.ph_len = be16_to_cpu(ipv6->payload_len);
	pseudo_header.ph.ph_nxt = ipv6->nexthdr;

	for (i = 0; i < ARRAY_SIZE(pseudo_header.pa); i++) {
		pa = pseudo_header.pa[i];
		sum = csum_add(sum, csum_unfold((__force __sum16)pa));
	}

	w = ptr;
	while (len > 1) {
		sum = csum_add(sum, csum_unfold((__force __sum16)*w++));
		len -= 2;
	}

	return csum_fold(sum);
}

static int gdm_lte_emulate_ndp(struct sk_buff *skb_in, u32 nic_type)
{
	struct nic *nic = netdev_priv(skb_in->dev);
	struct sk_buff *skb_out;
	struct ethhdr eth;
	struct vlan_ethhdr vlan_eth;
	struct neighbour_advertisement {
		u8 target_address[16];
		u8 type;
		u8 length;
		u8 link_layer_address[6];
	};
	struct neighbour_advertisement na;
	struct neighbour_solicitation {
		u8 target_address[16];
	};
	struct neighbour_solicitation *ns;
	struct ipv6hdr *ipv6_in;
	struct ipv6hdr ipv6_out;
	struct icmp6hdr *icmp6_in;
	struct icmp6hdr icmp6_out;

	void *mac_header_data;
	u32 mac_header_len;

	/* Format the mac header so that it can be put to skb */
	if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
		memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
		if (ntohs(vlan_eth.h_vlan_encapsulated_proto) != ETH_P_IPV6)
			return -EPROTONOSUPPORT;
		mac_header_data = &vlan_eth;
		mac_header_len = VLAN_ETH_HLEN;
	} else {
		memcpy(&eth, skb_in->data, sizeof(struct ethhdr));
		if (ntohs(eth.h_proto) != ETH_P_IPV6)
			return -EPROTONOSUPPORT;
		mac_header_data = &eth;
		mac_header_len = ETH_HLEN;
	}

	/* Check if this is IPv6 ICMP packet */
	ipv6_in = (struct ipv6hdr *)(skb_in->data + mac_header_len);
	if (ipv6_in->version != 6 || ipv6_in->nexthdr != IPPROTO_ICMPV6)
		return -EPROTONOSUPPORT;

	/* Check if this is NDP packet */
	icmp6_in = (struct icmp6hdr *)(skb_in->data + mac_header_len +
					sizeof(struct ipv6hdr));
	if (icmp6_in->icmp6_type == NDISC_ROUTER_SOLICITATION) { /* Check RS */
		return -EPROTONOSUPPORT;
	} else if (icmp6_in->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION) {
		/* Check NS */
		u8 icmp_na[sizeof(struct icmp6hdr) +
			sizeof(struct neighbour_advertisement)];
		u8 zero_addr8[16] = {0,};

		if (memcmp(ipv6_in->saddr.in6_u.u6_addr8, zero_addr8, 16) == 0)
			/* Duplicate Address Detection: Source IP is all zero */
			return 0;

		icmp6_out.icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT;
		icmp6_out.icmp6_code = 0;
		icmp6_out.icmp6_cksum = 0;
		/* R=0, S=1, O=1 */
		icmp6_out.icmp6_dataun.un_data32[0] = htonl(0x60000000);

		ns = (struct neighbour_solicitation *)
			(skb_in->data + mac_header_len +
			 sizeof(struct ipv6hdr) + sizeof(struct icmp6hdr));
		memcpy(&na.target_address, ns->target_address, 16);
		na.type = 0x02;
		na.length = 1;
		na.link_layer_address[0] = 0x00;
		na.link_layer_address[1] = 0x0a;
		na.link_layer_address[2] = 0x3b;
		na.link_layer_address[3] = 0xaf;
		na.link_layer_address[4] = 0x63;
		na.link_layer_address[5] = 0xc7;

		memcpy(&ipv6_out, ipv6_in, sizeof(struct ipv6hdr));
		memcpy(ipv6_out.saddr.in6_u.u6_addr8, &na.target_address, 16);
		memcpy(ipv6_out.daddr.in6_u.u6_addr8,
		       ipv6_in->saddr.in6_u.u6_addr8, 16);
		ipv6_out.payload_len = htons(sizeof(struct icmp6hdr) +
				sizeof(struct neighbour_advertisement));

		memcpy(icmp_na, &icmp6_out, sizeof(struct icmp6hdr));
		memcpy(icmp_na + sizeof(struct icmp6hdr), &na,
		       sizeof(struct neighbour_advertisement));

		icmp6_out.icmp6_cksum = icmp6_checksum(&ipv6_out,
						       (u16 *)icmp_na,
						       sizeof(icmp_na));
	} else {
		return -EINVAL;
	}

	/* Fill the destination mac with source mac of the received packet */
	memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
	/* Fill the source mac with nic's source mac */
	memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);

	/* Alloc skb and reserve align */
	skb_out = dev_alloc_skb(skb_in->len);
	if (!skb_out)
		return -ENOMEM;
	skb_reserve(skb_out, NET_IP_ALIGN);

	skb_put_data(skb_out, mac_header_data, mac_header_len);
	skb_put_data(skb_out, &ipv6_out, sizeof(struct ipv6hdr));
	skb_put_data(skb_out, &icmp6_out, sizeof(struct icmp6hdr));
	skb_put_data(skb_out, &na, sizeof(struct neighbour_advertisement));

	skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
	skb_out->dev = skb_in->dev;
	skb_reset_mac_header(skb_out);
	skb_pull(skb_out, ETH_HLEN);

	gdm_lte_rx(skb_out, nic, nic_type);

	return 0;
}

static s32 gdm_lte_tx_nic_type(struct net_device *dev, struct sk_buff *skb)
{
	struct nic *nic = netdev_priv(dev);
	struct ethhdr *eth;
	struct vlan_ethhdr *vlan_eth;
	struct iphdr *ip;
	struct ipv6hdr *ipv6;
	int mac_proto;
	void *network_data;
	u32 nic_type;

	/* NIC TYPE is based on the nic_id of this net_device */
	nic_type = 0x00000010 | nic->nic_id;

	/* Get ethernet protocol */
	eth = (struct ethhdr *)skb->data;
	if (ntohs(eth->h_proto) == ETH_P_8021Q) {
		vlan_eth = skb_vlan_eth_hdr(skb);
		mac_proto = ntohs(vlan_eth->h_vlan_encapsulated_proto);
		network_data = skb->data + VLAN_ETH_HLEN;
		nic_type |= NIC_TYPE_F_VLAN;
	} else {
		mac_proto = ntohs(eth->h_proto);
		network_data = skb->data + ETH_HLEN;
	}

	/* Process packet for nic type */
	switch (mac_proto) {
	case ETH_P_ARP:
		nic_type |= NIC_TYPE_ARP;
		break;
	case ETH_P_IP:
		nic_type |= NIC_TYPE_F_IPV4;
		ip = network_data;

		/* Check DHCPv4 */
		if (ip->protocol == IPPROTO_UDP) {
			struct udphdr *udp =
					network_data + sizeof(struct iphdr);
			if (ntohs(udp->dest) == 67 || ntohs(udp->dest) == 68)
				nic_type |= NIC_TYPE_F_DHCP;
		}
		break;
	case ETH_P_IPV6:
		nic_type |= NIC_TYPE_F_IPV6;
		ipv6 = network_data;

		if (ipv6->nexthdr == IPPROTO_ICMPV6) /* Check NDP request */ {
			struct icmp6hdr *icmp6 =
					network_data + sizeof(struct ipv6hdr);
			if (icmp6->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION)
				nic_type |= NIC_TYPE_ICMPV6;
		} else if (ipv6->nexthdr == IPPROTO_UDP) /* Check DHCPv6 */ {
			struct udphdr *udp =
					network_data + sizeof(struct ipv6hdr);
			if (ntohs(udp->dest) == 546 || ntohs(udp->dest) == 547)
				nic_type |= NIC_TYPE_F_DHCP;
		}
		break;
	default:
		break;
	}

	return nic_type;
}

static netdev_tx_t gdm_lte_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct nic *nic = netdev_priv(dev);
	u32 nic_type;
	void *data_buf;
	int data_len;
	int idx;
	int ret = 0;

	nic_type = gdm_lte_tx_nic_type(dev, skb);
	if (nic_type == 0) {
		netdev_err(dev, "tx - invalid nic_type\n");
		return -EMEDIUMTYPE;
	}

	if (nic_type & NIC_TYPE_ARP) {
		if (gdm_lte_emulate_arp(skb, nic_type) == 0) {
			dev_kfree_skb(skb);
			return 0;
		}
	}

	if (nic_type & NIC_TYPE_ICMPV6) {
		if (gdm_lte_emulate_ndp(skb, nic_type) == 0) {
			dev_kfree_skb(skb);
			return 0;
		}
	}

	/*
	 * Need byte shift (that is, remove VLAN tag) if there is one
	 * For the case of ARP, this breaks the offset as vlan_ethhdr+4
	 * is treated as ethhdr	However, it shouldn't be a problem as
	 * the response starts from arp_hdr and ethhdr is created by this
	 * driver based on the NIC mac
	 */
	if (nic_type & NIC_TYPE_F_VLAN) {
		struct vlan_ethhdr *vlan_eth = skb_vlan_eth_hdr(skb);

		nic->vlan_id = ntohs(vlan_eth->h_vlan_TCI) & VLAN_VID_MASK;
		data_buf = skb->data + (VLAN_ETH_HLEN - ETH_HLEN);
		data_len = skb->len - (VLAN_ETH_HLEN - ETH_HLEN);
	} else {
		nic->vlan_id = 0;
		data_buf = skb->data;
		data_len = skb->len;
	}

	/* If it is a ICMPV6 packet, clear all the other bits :
	 * for backward compatibility with the firmware
	 */
	if (nic_type & NIC_TYPE_ICMPV6)
		nic_type = NIC_TYPE_ICMPV6;

	/* If it is not a dhcp packet, clear all the flag bits :
	 * original NIC, otherwise the special flag (IPVX | DHCP)
	 */
	if (!(nic_type & NIC_TYPE_F_DHCP))
		nic_type &= NIC_TYPE_MASK;

	ret = sscanf(dev->name, "lte%d", &idx);
	if (ret != 1) {
		dev_kfree_skb(skb);
		return -EINVAL;
	}

	ret = nic->phy_dev->send_sdu_func(nic->phy_dev->priv_dev,
					  data_buf, data_len,
					  nic->pdn_table.dft_eps_id, 0,
					  tx_complete, nic, idx,
					  nic_type);

	if (ret == TX_NO_BUFFER || ret == TX_NO_SPC) {
		netif_stop_queue(dev);
		if (ret == TX_NO_BUFFER)
			ret = 0;
		else
			ret = -ENOSPC;
	} else if (ret == TX_NO_DEV) {
		ret = -ENODEV;
	}

	/* Updates tx stats */
	if (ret) {
		nic->stats.tx_dropped++;
	} else {
		nic->stats.tx_packets++;
		nic->stats.tx_bytes += data_len;
	}
	dev_kfree_skb(skb);

	return 0;
}

static struct net_device_stats *gdm_lte_stats(struct net_device *dev)
{
	struct nic *nic = netdev_priv(dev);

	return &nic->stats;
}

static int gdm_lte_event_send(struct net_device *dev, char *buf, int len)
{
	struct phy_dev *phy_dev = ((struct nic *)netdev_priv(dev))->phy_dev;
	struct hci_packet *hci = (struct hci_packet *)buf;
	int length;
	int idx;
	int ret;

	ret = sscanf(dev->name, "lte%d", &idx);
	if (ret != 1)
		return -EINVAL;

	length = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev),
				  hci->len) + HCI_HEADER_SIZE;
	return netlink_send(lte_event.sock, idx, 0, buf, length, dev);
}

static void gdm_lte_event_rcv(struct net_device *dev, u16 type,
			      void *msg, int len)
{
	struct nic *nic = netdev_priv(dev);

	nic->phy_dev->send_hci_func(nic->phy_dev->priv_dev, msg, len, NULL,
				    NULL);
}

int gdm_lte_event_init(void)
{
	if (lte_event.ref_cnt == 0)
		lte_event.sock = netlink_init(NETLINK_LTE, gdm_lte_event_rcv);

	if (lte_event.sock) {
		lte_event.ref_cnt++;
		return 0;
	}

	pr_err("event init failed\n");
	return -ENODATA;
}

void gdm_lte_event_exit(void)
{
	if (lte_event.sock && --lte_event.ref_cnt == 0) {
		sock_release(lte_event.sock->sk_socket);
		lte_event.sock = NULL;
	}
}

static int find_dev_index(u32 nic_type)
{
	u8 index;

	index = (u8)(nic_type & 0x0000000f);
	if (index >= MAX_NIC_TYPE)
		return -EINVAL;

	return index;
}

static void gdm_lte_netif_rx(struct net_device *dev, char *buf,
			     int len, int flagged_nic_type)
{
	u32 nic_type;
	struct nic *nic;
	struct sk_buff *skb;
	struct ethhdr eth;
	struct vlan_ethhdr vlan_eth;
	void *mac_header_data;
	u32 mac_header_len;
	char ip_version = 0;

	nic_type = flagged_nic_type & NIC_TYPE_MASK;
	nic = netdev_priv(dev);

	if (flagged_nic_type & NIC_TYPE_F_DHCP) {
		/* Change the destination mac address
		 * with the one requested the IP
		 */
		if (flagged_nic_type & NIC_TYPE_F_IPV4) {
			struct dhcp_packet {
				u8 op;      /* BOOTREQUEST or BOOTREPLY */
				u8 htype;   /* hardware address type.
					     * 1 = 10mb ethernet
					     */
				u8 hlen;    /* hardware address length */
				u8 hops;    /* used by relay agents only */
				u32 xid;    /* unique id */
				u16 secs;   /* elapsed since client began
					     * acquisition/renewal
					     */
				u16 flags;  /* only one flag so far: */
				#define BROADCAST_FLAG 0x8000
				/* "I need broadcast replies" */
				u32 ciaddr; /* client IP (if client is in
					     * BOUND, RENEW or REBINDING state)
					     */
				u32 yiaddr; /* 'your' (client) IP address */
				/* IP address of next server to use in
				 * bootstrap, returned in DHCPOFFER,
				 * DHCPACK by server
				 */
				u32 siaddr_nip;
				u32 gateway_nip; /* relay agent IP address */
				u8 chaddr[16];   /* link-layer client hardware
						  * address (MAC)
						  */
				u8 sname[64];    /* server host name (ASCIZ) */
				u8 file[128];    /* boot file name (ASCIZ) */
				u32 cookie;      /* fixed first four option
						  * bytes (99,130,83,99 dec)
						  */
			} __packed;
			int offset = sizeof(struct iphdr) +
				     sizeof(struct udphdr) +
				     offsetof(struct dhcp_packet, chaddr);
			if (offset + ETH_ALEN > len)
				return;
			ether_addr_copy(nic->dest_mac_addr, buf + offset);
		}
	}

	if (nic->vlan_id > 0) {
		mac_header_data = (void *)&vlan_eth;
		mac_header_len = VLAN_ETH_HLEN;
	} else {
		mac_header_data = (void *)&eth;
		mac_header_len = ETH_HLEN;
	}

	/* Format the data so that it can be put to skb */
	ether_addr_copy(mac_header_data, nic->dest_mac_addr);
	memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);

	vlan_eth.h_vlan_TCI = htons(nic->vlan_id);
	vlan_eth.h_vlan_proto = htons(ETH_P_8021Q);

	if (nic_type == NIC_TYPE_ARP) {
		/* Should be response: Only happens because
		 * there was a request from the host
		 */
		eth.h_proto = htons(ETH_P_ARP);
		vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_ARP);
	} else {
		ip_version = buf[0] >> 4;
		if (ip_version == IP_VERSION_4) {
			eth.h_proto = htons(ETH_P_IP);
			vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IP);
		} else if (ip_version == IP_VERSION_6) {
			eth.h_proto = htons(ETH_P_IPV6);
			vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IPV6);
		} else {
			netdev_err(dev, "Unknown IP version %d\n", ip_version);
			return;
		}
	}

	/* Alloc skb and reserve align */
	skb = dev_alloc_skb(len + mac_header_len + NET_IP_ALIGN);
	if (!skb)
		return;
	skb_reserve(skb, NET_IP_ALIGN);

	skb_put_data(skb, mac_header_data, mac_header_len);
	skb_put_data(skb, buf, len);

	skb->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
	skb->dev = dev;
	skb_reset_mac_header(skb);
	skb_pull(skb, ETH_HLEN);

	gdm_lte_rx(skb, nic, nic_type);
}

static void gdm_lte_multi_sdu_pkt(struct phy_dev *phy_dev, char *buf, int len)
{
	struct net_device *dev;
	struct multi_sdu *multi_sdu = (struct multi_sdu *)buf;
	struct sdu *sdu = NULL;
	u8 endian = phy_dev->get_endian(phy_dev->priv_dev);
	u8 *data = (u8 *)multi_sdu->data;
	int copied;
	u16 i = 0;
	u16 num_packet;
	u16 hci_len;
	u16 cmd_evt;
	u32 nic_type;
	int index;

	num_packet = gdm_dev16_to_cpu(endian, multi_sdu->num_packet);

	for (i = 0; i < num_packet; i++) {
		copied = data - multi_sdu->data;
		if (len < copied + sizeof(*sdu)) {
			pr_err("rx prevent buffer overflow");
			return;
		}

		sdu = (struct sdu *)data;

		cmd_evt  = gdm_dev16_to_cpu(endian, sdu->cmd_evt);
		hci_len  = gdm_dev16_to_cpu(endian, sdu->len);
		nic_type = gdm_dev32_to_cpu(endian, sdu->nic_type);

		if (cmd_evt != LTE_RX_SDU) {
			pr_err("rx sdu wrong hci %04x\n", cmd_evt);
			return;
		}
		if (hci_len < 12 ||
		    len < copied + sizeof(*sdu) + (hci_len - 12)) {
			pr_err("rx sdu invalid len %d\n", hci_len);
			return;
		}

		index = find_dev_index(nic_type);
		if (index < 0) {
			pr_err("rx sdu invalid nic_type :%x\n", nic_type);
			return;
		}
		dev = phy_dev->dev[index];
		gdm_lte_netif_rx(dev, (char *)sdu->data,
				 (int)(hci_len - 12), nic_type);

		data += ((hci_len + 3) & 0xfffc) + HCI_HEADER_SIZE;
	}
}

static void gdm_lte_pdn_table(struct net_device *dev, char *buf, int len)
{
	struct nic *nic = netdev_priv(dev);
	struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
	u8 ed = nic->phy_dev->get_endian(nic->phy_dev->priv_dev);

	if (!pdn_table->activate) {
		memset(&nic->pdn_table, 0x00, sizeof(struct pdn_table));
		netdev_info(dev, "pdn deactivated\n");

		return;
	}

	nic->pdn_table.activate = pdn_table->activate;
	nic->pdn_table.dft_eps_id = gdm_dev32_to_cpu(ed, pdn_table->dft_eps_id);
	nic->pdn_table.nic_type = gdm_dev32_to_cpu(ed, pdn_table->nic_type);

	netdev_info(dev, "pdn activated, nic_type=0x%x\n",
		    nic->pdn_table.nic_type);
}

static int gdm_lte_receive_pkt(struct phy_dev *phy_dev, char *buf, int len)
{
	struct hci_packet *hci = (struct hci_packet *)buf;
	struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
	struct sdu *sdu;
	struct net_device *dev;
	u8 endian = phy_dev->get_endian(phy_dev->priv_dev);
	int ret = 0;
	u16 cmd_evt;
	u32 nic_type;
	int index;

	if (!len)
		return ret;

	cmd_evt = gdm_dev16_to_cpu(endian, hci->cmd_evt);

	dev = phy_dev->dev[0];
	if (!dev)
		return 0;

	switch (cmd_evt) {
	case LTE_RX_SDU:
		sdu = (struct sdu *)hci->data;
		nic_type = gdm_dev32_to_cpu(endian, sdu->nic_type);
		index = find_dev_index(nic_type);
		if (index < 0)
			return index;
		dev = phy_dev->dev[index];
		gdm_lte_netif_rx(dev, hci->data, len, nic_type);
		break;
	case LTE_RX_MULTI_SDU:
		gdm_lte_multi_sdu_pkt(phy_dev, buf, len);
		break;
	case LTE_LINK_ON_OFF_INDICATION:
		netdev_info(dev, "link %s\n",
			    ((struct hci_connect_ind *)buf)->connect
			    ? "on" : "off");
		break;
	case LTE_PDN_TABLE_IND:
		pdn_table = (struct hci_pdn_table_ind *)buf;
		nic_type = gdm_dev32_to_cpu(endian, pdn_table->nic_type);
		index = find_dev_index(nic_type);
		if (index < 0)
			return index;
		dev = phy_dev->dev[index];
		gdm_lte_pdn_table(dev, buf, len);
		fallthrough;
	default:
		ret = gdm_lte_event_send(dev, buf, len);
		break;
	}

	return ret;
}

static int rx_complete(void *arg, void *data, int len, int context)
{
	struct phy_dev *phy_dev = arg;

	return gdm_lte_receive_pkt(phy_dev, data, len);
}

void start_rx_proc(struct phy_dev *phy_dev)
{
	int i;

	for (i = 0; i < MAX_RX_SUBMIT_COUNT; i++)
		phy_dev->rcv_func(phy_dev->priv_dev,
				rx_complete, phy_dev, USB_COMPLETE);
}

static const struct net_device_ops gdm_netdev_ops = {
	.ndo_open			= gdm_lte_open,
	.ndo_stop			= gdm_lte_close,
	.ndo_set_config			= gdm_lte_set_config,
	.ndo_start_xmit			= gdm_lte_tx,
	.ndo_get_stats			= gdm_lte_stats,
};

static u8 gdm_lte_macaddr[ETH_ALEN] = {0x00, 0x0a, 0x3b, 0x00, 0x00, 0x00};

static void form_mac_address(u8 *dev_addr, u8 *nic_src, u8 *nic_dest,
			     u8 *mac_address, u8 index)
{
	/* Form the dev_addr */
	if (!mac_address)
		ether_addr_copy(dev_addr, gdm_lte_macaddr);
	else
		ether_addr_copy(dev_addr, mac_address);

	/* The last byte of the mac address
	 * should be less than or equal to 0xFC
	 */
	dev_addr[ETH_ALEN - 1] += index;

	/* Create random nic src and copy the first
	 * 3 bytes to be the same as dev_addr
	 */
	eth_random_addr(nic_src);
	memcpy(nic_src, dev_addr, 3);

	/* Copy the nic_dest from dev_addr*/
	ether_addr_copy(nic_dest, dev_addr);
}

static void validate_mac_address(u8 *mac_address)
{
	/* if zero address or multicast bit set, restore the default value */
	if (is_zero_ether_addr(mac_address) || (mac_address[0] & 0x01)) {
		pr_err("MAC invalid, restoring default\n");
		memcpy(mac_address, gdm_lte_macaddr, 6);
	}
}

int register_lte_device(struct phy_dev *phy_dev,
			struct device *dev, u8 *mac_address)
{
	struct nic *nic;
	struct net_device *net;
	char pdn_dev_name[16];
	u8 addr[ETH_ALEN];
	int ret = 0;
	u8 index;

	validate_mac_address(mac_address);

	for (index = 0; index < MAX_NIC_TYPE; index++) {
		/* Create device name lteXpdnX */
		sprintf(pdn_dev_name, "lte%%dpdn%d", index);

		/* Allocate netdev */
		net = alloc_netdev(sizeof(struct nic), pdn_dev_name,
				   NET_NAME_UNKNOWN, ether_setup);
		if (!net) {
			ret = -ENOMEM;
			goto err;
		}
		net->netdev_ops = &gdm_netdev_ops;
		net->flags &= ~IFF_MULTICAST;
		net->mtu = DEFAULT_MTU_SIZE;

		nic = netdev_priv(net);
		memset(nic, 0, sizeof(struct nic));
		nic->netdev = net;
		nic->phy_dev = phy_dev;
		nic->nic_id = index;

		form_mac_address(addr,
				 nic->src_mac_addr,
				 nic->dest_mac_addr,
				 mac_address,
				 index);
		eth_hw_addr_set(net, addr);

		SET_NETDEV_DEV(net, dev);
		SET_NETDEV_DEVTYPE(net, &wwan_type);

		ret = register_netdev(net);
		if (ret)
			goto err;

		netif_carrier_on(net);

		phy_dev->dev[index] = net;
	}

	return 0;

err:
	unregister_lte_device(phy_dev);

	return ret;
}

void unregister_lte_device(struct phy_dev *phy_dev)
{
	struct net_device *net;
	int index;

	for (index = 0; index < MAX_NIC_TYPE; index++) {
		net = phy_dev->dev[index];
		if (!net)
			continue;

		unregister_netdev(net);
		free_netdev(net);
	}
}