Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * AMCC SoC PPC4xx Crypto Driver
 *
 * Copyright (c) 2008 Applied Micro Circuits Corporation.
 * All rights reserved. James Hsiao <jhsiao@amcc.com>
 *
 * This file implements AMCC crypto offload Linux device driver for use with
 * Linux CryptoAPI.
 */

#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/spinlock_types.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include <asm/dcr.h>
#include <asm/dcr-regs.h>
#include <asm/cacheflush.h>
#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/ctr.h>
#include <crypto/gcm.h>
#include <crypto/sha1.h>
#include <crypto/rng.h>
#include <crypto/scatterwalk.h>
#include <crypto/skcipher.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/rng.h>
#include <crypto/internal/skcipher.h>
#include "crypto4xx_reg_def.h"
#include "crypto4xx_core.h"
#include "crypto4xx_sa.h"
#include "crypto4xx_trng.h"

#define PPC4XX_SEC_VERSION_STR			"0.5"

/*
 * PPC4xx Crypto Engine Initialization Routine
 */
static void crypto4xx_hw_init(struct crypto4xx_device *dev)
{
	union ce_ring_size ring_size;
	union ce_ring_control ring_ctrl;
	union ce_part_ring_size part_ring_size;
	union ce_io_threshold io_threshold;
	u32 rand_num;
	union ce_pe_dma_cfg pe_dma_cfg;
	u32 device_ctrl;

	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
	/* setup pe dma, include reset sg, pdr and pe, then release reset */
	pe_dma_cfg.w = 0;
	pe_dma_cfg.bf.bo_sgpd_en = 1;
	pe_dma_cfg.bf.bo_data_en = 0;
	pe_dma_cfg.bf.bo_sa_en = 1;
	pe_dma_cfg.bf.bo_pd_en = 1;
	pe_dma_cfg.bf.dynamic_sa_en = 1;
	pe_dma_cfg.bf.reset_sg = 1;
	pe_dma_cfg.bf.reset_pdr = 1;
	pe_dma_cfg.bf.reset_pe = 1;
	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
	/* un reset pe,sg and pdr */
	pe_dma_cfg.bf.pe_mode = 0;
	pe_dma_cfg.bf.reset_sg = 0;
	pe_dma_cfg.bf.reset_pdr = 0;
	pe_dma_cfg.bf.reset_pe = 0;
	pe_dma_cfg.bf.bo_td_en = 0;
	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
	get_random_bytes(&rand_num, sizeof(rand_num));
	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
	get_random_bytes(&rand_num, sizeof(rand_num));
	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
	ring_size.w = 0;
	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
	ring_ctrl.w = 0;
	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
	device_ctrl |= PPC4XX_DC_3DES_EN;
	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
	part_ring_size.w = 0;
	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
	io_threshold.w = 0;
	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
	/* un reset pe,sg and pdr */
	pe_dma_cfg.bf.pe_mode = 1;
	pe_dma_cfg.bf.reset_sg = 0;
	pe_dma_cfg.bf.reset_pdr = 0;
	pe_dma_cfg.bf.reset_pe = 0;
	pe_dma_cfg.bf.bo_td_en = 0;
	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
	/*clear all pending interrupt*/
	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
	if (dev->is_revb) {
		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
		       dev->ce_base + CRYPTO4XX_INT_EN);
	} else {
		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
	}
}

int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
{
	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
	if (ctx->sa_in == NULL)
		return -ENOMEM;

	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
	if (ctx->sa_out == NULL) {
		kfree(ctx->sa_in);
		ctx->sa_in = NULL;
		return -ENOMEM;
	}

	ctx->sa_len = size;

	return 0;
}

void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
{
	kfree(ctx->sa_in);
	ctx->sa_in = NULL;
	kfree(ctx->sa_out);
	ctx->sa_out = NULL;
	ctx->sa_len = 0;
}

/*
 * alloc memory for the gather ring
 * no need to alloc buf for the ring
 * gdr_tail, gdr_head and gdr_count are initialized by this function
 */
static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
{
	int i;
	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
				      &dev->pdr_pa, GFP_KERNEL);
	if (!dev->pdr)
		return -ENOMEM;

	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
				 GFP_KERNEL);
	if (!dev->pdr_uinfo) {
		dma_free_coherent(dev->core_dev->device,
				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
				  dev->pdr,
				  dev->pdr_pa);
		return -ENOMEM;
	}
	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
				   &dev->shadow_sa_pool_pa,
				   GFP_KERNEL);
	if (!dev->shadow_sa_pool)
		return -ENOMEM;

	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
			 &dev->shadow_sr_pool_pa, GFP_KERNEL);
	if (!dev->shadow_sr_pool)
		return -ENOMEM;
	for (i = 0; i < PPC4XX_NUM_PD; i++) {
		struct ce_pd *pd = &dev->pdr[i];
		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];

		pd->sa = dev->shadow_sa_pool_pa +
			sizeof(union shadow_sa_buf) * i;

		/* alloc 256 bytes which is enough for any kind of dynamic sa */
		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;

		/* alloc state record */
		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
		    sizeof(struct sa_state_record) * i;
	}

	return 0;
}

static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
{
	if (dev->pdr)
		dma_free_coherent(dev->core_dev->device,
				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
				  dev->pdr, dev->pdr_pa);

	if (dev->shadow_sa_pool)
		dma_free_coherent(dev->core_dev->device,
			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);

	if (dev->shadow_sr_pool)
		dma_free_coherent(dev->core_dev->device,
			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);

	kfree(dev->pdr_uinfo);
}

static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
{
	u32 retval;
	u32 tmp;

	retval = dev->pdr_head;
	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;

	if (tmp == dev->pdr_tail)
		return ERING_WAS_FULL;

	dev->pdr_head = tmp;

	return retval;
}

static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
{
	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
	u32 tail;
	unsigned long flags;

	spin_lock_irqsave(&dev->core_dev->lock, flags);
	pd_uinfo->state = PD_ENTRY_FREE;

	if (dev->pdr_tail != PPC4XX_LAST_PD)
		dev->pdr_tail++;
	else
		dev->pdr_tail = 0;
	tail = dev->pdr_tail;
	spin_unlock_irqrestore(&dev->core_dev->lock, flags);

	return tail;
}

/*
 * alloc memory for the gather ring
 * no need to alloc buf for the ring
 * gdr_tail, gdr_head and gdr_count are initialized by this function
 */
static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
{
	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
				      &dev->gdr_pa, GFP_KERNEL);
	if (!dev->gdr)
		return -ENOMEM;

	return 0;
}

static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
{
	if (dev->gdr)
		dma_free_coherent(dev->core_dev->device,
			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
			  dev->gdr, dev->gdr_pa);
}

/*
 * when this function is called.
 * preemption or interrupt must be disabled
 */
static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
{
	u32 retval;
	u32 tmp;

	if (n >= PPC4XX_NUM_GD)
		return ERING_WAS_FULL;

	retval = dev->gdr_head;
	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
	if (dev->gdr_head > dev->gdr_tail) {
		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
			return ERING_WAS_FULL;
	} else if (dev->gdr_head < dev->gdr_tail) {
		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
			return ERING_WAS_FULL;
	}
	dev->gdr_head = tmp;

	return retval;
}

static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
{
	unsigned long flags;

	spin_lock_irqsave(&dev->core_dev->lock, flags);
	if (dev->gdr_tail == dev->gdr_head) {
		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
		return 0;
	}

	if (dev->gdr_tail != PPC4XX_LAST_GD)
		dev->gdr_tail++;
	else
		dev->gdr_tail = 0;

	spin_unlock_irqrestore(&dev->core_dev->lock, flags);

	return 0;
}

static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
					      dma_addr_t *gd_dma, u32 idx)
{
	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;

	return &dev->gdr[idx];
}

/*
 * alloc memory for the scatter ring
 * need to alloc buf for the ring
 * sdr_tail, sdr_head and sdr_count are initialized by this function
 */
static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
{
	int i;

	dev->scatter_buffer_va =
		dma_alloc_coherent(dev->core_dev->device,
			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
			&dev->scatter_buffer_pa, GFP_KERNEL);
	if (!dev->scatter_buffer_va)
		return -ENOMEM;

	/* alloc memory for scatter descriptor ring */
	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
				      &dev->sdr_pa, GFP_KERNEL);
	if (!dev->sdr)
		return -ENOMEM;

	for (i = 0; i < PPC4XX_NUM_SD; i++) {
		dev->sdr[i].ptr = dev->scatter_buffer_pa +
				  PPC4XX_SD_BUFFER_SIZE * i;
	}

	return 0;
}

static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
{
	if (dev->sdr)
		dma_free_coherent(dev->core_dev->device,
				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
				  dev->sdr, dev->sdr_pa);

	if (dev->scatter_buffer_va)
		dma_free_coherent(dev->core_dev->device,
				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
				  dev->scatter_buffer_va,
				  dev->scatter_buffer_pa);
}

/*
 * when this function is called.
 * preemption or interrupt must be disabled
 */
static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
{
	u32 retval;
	u32 tmp;

	if (n >= PPC4XX_NUM_SD)
		return ERING_WAS_FULL;

	retval = dev->sdr_head;
	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
	if (dev->sdr_head > dev->gdr_tail) {
		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
			return ERING_WAS_FULL;
	} else if (dev->sdr_head < dev->sdr_tail) {
		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
			return ERING_WAS_FULL;
	} /* the head = tail, or empty case is already take cared */
	dev->sdr_head = tmp;

	return retval;
}

static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
{
	unsigned long flags;

	spin_lock_irqsave(&dev->core_dev->lock, flags);
	if (dev->sdr_tail == dev->sdr_head) {
		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
		return 0;
	}
	if (dev->sdr_tail != PPC4XX_LAST_SD)
		dev->sdr_tail++;
	else
		dev->sdr_tail = 0;
	spin_unlock_irqrestore(&dev->core_dev->lock, flags);

	return 0;
}

static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
					      dma_addr_t *sd_dma, u32 idx)
{
	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;

	return &dev->sdr[idx];
}

static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
				      struct ce_pd *pd,
				      struct pd_uinfo *pd_uinfo,
				      u32 nbytes,
				      struct scatterlist *dst)
{
	unsigned int first_sd = pd_uinfo->first_sd;
	unsigned int last_sd;
	unsigned int overflow = 0;
	unsigned int to_copy;
	unsigned int dst_start = 0;

	/*
	 * Because the scatter buffers are all neatly organized in one
	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
	 * be instructed to copy a range of buffers in one go.
	 */

	last_sd = (first_sd + pd_uinfo->num_sd);
	if (last_sd > PPC4XX_LAST_SD) {
		last_sd = PPC4XX_LAST_SD;
		overflow = last_sd % PPC4XX_NUM_SD;
	}

	while (nbytes) {
		void *buf = dev->scatter_buffer_va +
			first_sd * PPC4XX_SD_BUFFER_SIZE;

		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
				      (1 + last_sd - first_sd));
		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
		nbytes -= to_copy;

		if (overflow) {
			first_sd = 0;
			last_sd = overflow;
			dst_start += to_copy;
			overflow = 0;
		}
	}
}

static void crypto4xx_copy_digest_to_dst(void *dst,
					struct pd_uinfo *pd_uinfo,
					struct crypto4xx_ctx *ctx)
{
	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;

	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
		memcpy(dst, pd_uinfo->sr_va->save_digest,
		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
	}
}

static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
				  struct pd_uinfo *pd_uinfo)
{
	int i;
	if (pd_uinfo->num_gd) {
		for (i = 0; i < pd_uinfo->num_gd; i++)
			crypto4xx_put_gd_to_gdr(dev);
		pd_uinfo->first_gd = 0xffffffff;
		pd_uinfo->num_gd = 0;
	}
	if (pd_uinfo->num_sd) {
		for (i = 0; i < pd_uinfo->num_sd; i++)
			crypto4xx_put_sd_to_sdr(dev);

		pd_uinfo->first_sd = 0xffffffff;
		pd_uinfo->num_sd = 0;
	}
}

static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
				     struct pd_uinfo *pd_uinfo,
				     struct ce_pd *pd)
{
	struct skcipher_request *req;
	struct scatterlist *dst;

	req = skcipher_request_cast(pd_uinfo->async_req);

	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
					  req->cryptlen, req->dst);
	} else {
		dst = pd_uinfo->dest_va;
		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
			       DMA_FROM_DEVICE);
	}

	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);

		crypto4xx_memcpy_from_le32((u32 *)req->iv,
			pd_uinfo->sr_va->save_iv,
			crypto_skcipher_ivsize(skcipher));
	}

	crypto4xx_ret_sg_desc(dev, pd_uinfo);

	if (pd_uinfo->state & PD_ENTRY_BUSY)
		skcipher_request_complete(req, -EINPROGRESS);
	skcipher_request_complete(req, 0);
}

static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
				struct pd_uinfo *pd_uinfo)
{
	struct crypto4xx_ctx *ctx;
	struct ahash_request *ahash_req;

	ahash_req = ahash_request_cast(pd_uinfo->async_req);
	ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req));

	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx);
	crypto4xx_ret_sg_desc(dev, pd_uinfo);

	if (pd_uinfo->state & PD_ENTRY_BUSY)
		ahash_request_complete(ahash_req, -EINPROGRESS);
	ahash_request_complete(ahash_req, 0);
}

static void crypto4xx_aead_done(struct crypto4xx_device *dev,
				struct pd_uinfo *pd_uinfo,
				struct ce_pd *pd)
{
	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
		struct aead_request, base);
	struct scatterlist *dst = pd_uinfo->dest_va;
	size_t cp_len = crypto_aead_authsize(
		crypto_aead_reqtfm(aead_req));
	u32 icv[AES_BLOCK_SIZE];
	int err = 0;

	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
					  pd->pd_ctl_len.bf.pkt_len,
					  dst);
	} else {
		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
				DMA_FROM_DEVICE);
	}

	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
		/* append icv at the end */
		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
					   sizeof(icv));

		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
					 cp_len, 1);
	} else {
		/* check icv at the end */
		scatterwalk_map_and_copy(icv, aead_req->src,
			aead_req->assoclen + aead_req->cryptlen -
			cp_len, cp_len, 0);

		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));

		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
			err = -EBADMSG;
	}

	crypto4xx_ret_sg_desc(dev, pd_uinfo);

	if (pd->pd_ctl.bf.status & 0xff) {
		if (!__ratelimit(&dev->aead_ratelimit)) {
			if (pd->pd_ctl.bf.status & 2)
				pr_err("pad fail error\n");
			if (pd->pd_ctl.bf.status & 4)
				pr_err("seqnum fail\n");
			if (pd->pd_ctl.bf.status & 8)
				pr_err("error _notify\n");
			pr_err("aead return err status = 0x%02x\n",
				pd->pd_ctl.bf.status & 0xff);
			pr_err("pd pad_ctl = 0x%08x\n",
				pd->pd_ctl.bf.pd_pad_ctl);
		}
		err = -EINVAL;
	}

	if (pd_uinfo->state & PD_ENTRY_BUSY)
		aead_request_complete(aead_req, -EINPROGRESS);

	aead_request_complete(aead_req, err);
}

static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
{
	struct ce_pd *pd = &dev->pdr[idx];
	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];

	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
	case CRYPTO_ALG_TYPE_SKCIPHER:
		crypto4xx_cipher_done(dev, pd_uinfo, pd);
		break;
	case CRYPTO_ALG_TYPE_AEAD:
		crypto4xx_aead_done(dev, pd_uinfo, pd);
		break;
	case CRYPTO_ALG_TYPE_AHASH:
		crypto4xx_ahash_done(dev, pd_uinfo);
		break;
	}
}

static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
{
	crypto4xx_destroy_pdr(core_dev->dev);
	crypto4xx_destroy_gdr(core_dev->dev);
	crypto4xx_destroy_sdr(core_dev->dev);
	iounmap(core_dev->dev->ce_base);
	kfree(core_dev->dev);
	kfree(core_dev);
}

static u32 get_next_gd(u32 current)
{
	if (current != PPC4XX_LAST_GD)
		return current + 1;
	else
		return 0;
}

static u32 get_next_sd(u32 current)
{
	if (current != PPC4XX_LAST_SD)
		return current + 1;
	else
		return 0;
}

int crypto4xx_build_pd(struct crypto_async_request *req,
		       struct crypto4xx_ctx *ctx,
		       struct scatterlist *src,
		       struct scatterlist *dst,
		       const unsigned int datalen,
		       const __le32 *iv, const u32 iv_len,
		       const struct dynamic_sa_ctl *req_sa,
		       const unsigned int sa_len,
		       const unsigned int assoclen,
		       struct scatterlist *_dst)
{
	struct crypto4xx_device *dev = ctx->dev;
	struct dynamic_sa_ctl *sa;
	struct ce_gd *gd;
	struct ce_pd *pd;
	u32 num_gd, num_sd;
	u32 fst_gd = 0xffffffff;
	u32 fst_sd = 0xffffffff;
	u32 pd_entry;
	unsigned long flags;
	struct pd_uinfo *pd_uinfo;
	unsigned int nbytes = datalen;
	size_t offset_to_sr_ptr;
	u32 gd_idx = 0;
	int tmp;
	bool is_busy, force_sd;

	/*
	 * There's a very subtile/disguised "bug" in the hardware that
	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
	 * of the hardware spec:
	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
	 * operation modes for >>> "Block ciphers" <<<.
	 *
	 * To workaround this issue and stop the hardware from causing
	 * "overran dst buffer" on crypttexts that are not a multiple
	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
	 * scatter buffers.
	 */
	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
		&& (datalen % AES_BLOCK_SIZE);

	/* figure how many gd are needed */
	tmp = sg_nents_for_len(src, assoclen + datalen);
	if (tmp < 0) {
		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
		return tmp;
	}
	if (tmp == 1)
		tmp = 0;
	num_gd = tmp;

	if (assoclen) {
		nbytes += assoclen;
		dst = scatterwalk_ffwd(_dst, dst, assoclen);
	}

	/* figure how many sd are needed */
	if (sg_is_last(dst) && force_sd == false) {
		num_sd = 0;
	} else {
		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
			if (datalen % PPC4XX_SD_BUFFER_SIZE)
				num_sd++;
		} else {
			num_sd = 1;
		}
	}

	/*
	 * The follow section of code needs to be protected
	 * The gather ring and scatter ring needs to be consecutive
	 * In case of run out of any kind of descriptor, the descriptor
	 * already got must be return the original place.
	 */
	spin_lock_irqsave(&dev->core_dev->lock, flags);
	/*
	 * Let the caller know to slow down, once more than 13/16ths = 81%
	 * of the available data contexts are being used simultaneously.
	 *
	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
	 * 31 more contexts. Before new requests have to be rejected.
	 */
	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
			((PPC4XX_NUM_PD * 13) / 16);
	} else {
		/*
		 * To fix contention issues between ipsec (no blacklog) and
		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
		 * data contexts.
		 */
		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
			((PPC4XX_NUM_PD * 15) / 16);

		if (is_busy) {
			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
			return -EBUSY;
		}
	}

	if (num_gd) {
		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
		if (fst_gd == ERING_WAS_FULL) {
			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
			return -EAGAIN;
		}
	}
	if (num_sd) {
		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
		if (fst_sd == ERING_WAS_FULL) {
			if (num_gd)
				dev->gdr_head = fst_gd;
			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
			return -EAGAIN;
		}
	}
	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
	if (pd_entry == ERING_WAS_FULL) {
		if (num_gd)
			dev->gdr_head = fst_gd;
		if (num_sd)
			dev->sdr_head = fst_sd;
		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
		return -EAGAIN;
	}
	spin_unlock_irqrestore(&dev->core_dev->lock, flags);

	pd = &dev->pdr[pd_entry];
	pd->sa_len = sa_len;

	pd_uinfo = &dev->pdr_uinfo[pd_entry];
	pd_uinfo->num_gd = num_gd;
	pd_uinfo->num_sd = num_sd;
	pd_uinfo->dest_va = dst;
	pd_uinfo->async_req = req;

	if (iv_len)
		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);

	sa = pd_uinfo->sa_va;
	memcpy(sa, req_sa, sa_len * 4);

	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;

	if (num_gd) {
		dma_addr_t gd_dma;
		struct scatterlist *sg;

		/* get first gd we are going to use */
		gd_idx = fst_gd;
		pd_uinfo->first_gd = fst_gd;
		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
		pd->src = gd_dma;
		/* enable gather */
		sa->sa_command_0.bf.gather = 1;
		/* walk the sg, and setup gather array */

		sg = src;
		while (nbytes) {
			size_t len;

			len = min(sg->length, nbytes);
			gd->ptr = dma_map_page(dev->core_dev->device,
				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
			gd->ctl_len.len = len;
			gd->ctl_len.done = 0;
			gd->ctl_len.ready = 1;
			if (len >= nbytes)
				break;

			nbytes -= sg->length;
			gd_idx = get_next_gd(gd_idx);
			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
			sg = sg_next(sg);
		}
	} else {
		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
				src->offset, min(nbytes, src->length),
				DMA_TO_DEVICE);
		/*
		 * Disable gather in sa command
		 */
		sa->sa_command_0.bf.gather = 0;
		/*
		 * Indicate gather array is not used
		 */
		pd_uinfo->first_gd = 0xffffffff;
	}
	if (!num_sd) {
		/*
		 * we know application give us dst a whole piece of memory
		 * no need to use scatter ring.
		 */
		pd_uinfo->first_sd = 0xffffffff;
		sa->sa_command_0.bf.scatter = 0;
		pd->dest = (u32)dma_map_page(dev->core_dev->device,
					     sg_page(dst), dst->offset,
					     min(datalen, dst->length),
					     DMA_TO_DEVICE);
	} else {
		dma_addr_t sd_dma;
		struct ce_sd *sd = NULL;

		u32 sd_idx = fst_sd;
		nbytes = datalen;
		sa->sa_command_0.bf.scatter = 1;
		pd_uinfo->first_sd = fst_sd;
		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
		pd->dest = sd_dma;
		/* setup scatter descriptor */
		sd->ctl.done = 0;
		sd->ctl.rdy = 1;
		/* sd->ptr should be setup by sd_init routine*/
		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
			nbytes -= PPC4XX_SD_BUFFER_SIZE;
		else
			nbytes = 0;
		while (nbytes) {
			sd_idx = get_next_sd(sd_idx);
			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
			/* setup scatter descriptor */
			sd->ctl.done = 0;
			sd->ctl.rdy = 1;
			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
				nbytes -= PPC4XX_SD_BUFFER_SIZE;
			} else {
				/*
				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
				 * which is more than nbytes, so done.
				 */
				nbytes = 0;
			}
		}
	}

	pd->pd_ctl.w = PD_CTL_HOST_READY |
		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
			PD_CTL_HASH_FINAL : 0);
	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);

	wmb();
	/* write any value to push engine to read a pd */
	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
	return is_busy ? -EBUSY : -EINPROGRESS;
}

/*
 * Algorithm Registration Functions
 */
static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
			       struct crypto4xx_ctx *ctx)
{
	ctx->dev = amcc_alg->dev;
	ctx->sa_in = NULL;
	ctx->sa_out = NULL;
	ctx->sa_len = 0;
}

static int crypto4xx_sk_init(struct crypto_skcipher *sk)
{
	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
	struct crypto4xx_alg *amcc_alg;
	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);

	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
		ctx->sw_cipher.cipher =
			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
					      CRYPTO_ALG_NEED_FALLBACK);
		if (IS_ERR(ctx->sw_cipher.cipher))
			return PTR_ERR(ctx->sw_cipher.cipher);
	}

	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
	crypto4xx_ctx_init(amcc_alg, ctx);
	return 0;
}

static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
{
	crypto4xx_free_sa(ctx);
}

static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
{
	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);

	crypto4xx_common_exit(ctx);
	if (ctx->sw_cipher.cipher)
		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
}

static int crypto4xx_aead_init(struct crypto_aead *tfm)
{
	struct aead_alg *alg = crypto_aead_alg(tfm);
	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
	struct crypto4xx_alg *amcc_alg;

	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
						CRYPTO_ALG_NEED_FALLBACK |
						CRYPTO_ALG_ASYNC);
	if (IS_ERR(ctx->sw_cipher.aead))
		return PTR_ERR(ctx->sw_cipher.aead);

	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
	crypto4xx_ctx_init(amcc_alg, ctx);
	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
				crypto_aead_reqsize(ctx->sw_cipher.aead),
				sizeof(struct crypto4xx_aead_reqctx)));
	return 0;
}

static void crypto4xx_aead_exit(struct crypto_aead *tfm)
{
	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);

	crypto4xx_common_exit(ctx);
	crypto_free_aead(ctx->sw_cipher.aead);
}

static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
				  struct crypto4xx_alg_common *crypto_alg,
				  int array_size)
{
	struct crypto4xx_alg *alg;
	int i;
	int rc = 0;

	for (i = 0; i < array_size; i++) {
		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
		if (!alg)
			return -ENOMEM;

		alg->alg = crypto_alg[i];
		alg->dev = sec_dev;

		switch (alg->alg.type) {
		case CRYPTO_ALG_TYPE_AEAD:
			rc = crypto_register_aead(&alg->alg.u.aead);
			break;

		case CRYPTO_ALG_TYPE_AHASH:
			rc = crypto_register_ahash(&alg->alg.u.hash);
			break;

		case CRYPTO_ALG_TYPE_RNG:
			rc = crypto_register_rng(&alg->alg.u.rng);
			break;

		default:
			rc = crypto_register_skcipher(&alg->alg.u.cipher);
			break;
		}

		if (rc)
			kfree(alg);
		else
			list_add_tail(&alg->entry, &sec_dev->alg_list);
	}

	return 0;
}

static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
{
	struct crypto4xx_alg *alg, *tmp;

	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
		list_del(&alg->entry);
		switch (alg->alg.type) {
		case CRYPTO_ALG_TYPE_AHASH:
			crypto_unregister_ahash(&alg->alg.u.hash);
			break;

		case CRYPTO_ALG_TYPE_AEAD:
			crypto_unregister_aead(&alg->alg.u.aead);
			break;

		case CRYPTO_ALG_TYPE_RNG:
			crypto_unregister_rng(&alg->alg.u.rng);
			break;

		default:
			crypto_unregister_skcipher(&alg->alg.u.cipher);
		}
		kfree(alg);
	}
}

static void crypto4xx_bh_tasklet_cb(unsigned long data)
{
	struct device *dev = (struct device *)data;
	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
	struct pd_uinfo *pd_uinfo;
	struct ce_pd *pd;
	u32 tail = core_dev->dev->pdr_tail;
	u32 head = core_dev->dev->pdr_head;

	do {
		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
		pd = &core_dev->dev->pdr[tail];
		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
		     ((READ_ONCE(pd->pd_ctl.w) &
		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
		       PD_CTL_PE_DONE)) {
			crypto4xx_pd_done(core_dev->dev, tail);
			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
		} else {
			/* if tail not done, break */
			break;
		}
	} while (head != tail);
}

/*
 * Top Half of isr.
 */
static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
						      u32 clr_val)
{
	struct device *dev = data;
	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);

	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
	tasklet_schedule(&core_dev->tasklet);

	return IRQ_HANDLED;
}

static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
{
	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
}

static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
{
	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
		PPC4XX_TMO_ERR_INT);
}

static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
				 u8 *data, unsigned int max)
{
	unsigned int i, curr = 0;
	u32 val[2];

	do {
		/* trigger PRN generation */
		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);

		for (i = 0; i < 1024; i++) {
			/* usually 19 iterations are enough */
			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
			     CRYPTO4XX_PRNG_STAT_BUSY))
				continue;

			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
			break;
		}
		if (i == 1024)
			return -ETIMEDOUT;

		if ((max - curr) >= 8) {
			memcpy(data, &val, 8);
			data += 8;
			curr += 8;
		} else {
			/* copy only remaining bytes */
			memcpy(data, &val, max - curr);
			break;
		}
	} while (curr < max);

	return curr;
}

static int crypto4xx_prng_generate(struct crypto_rng *tfm,
				   const u8 *src, unsigned int slen,
				   u8 *dstn, unsigned int dlen)
{
	struct rng_alg *alg = crypto_rng_alg(tfm);
	struct crypto4xx_alg *amcc_alg;
	struct crypto4xx_device *dev;
	int ret;

	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
	dev = amcc_alg->dev;

	mutex_lock(&dev->core_dev->rng_lock);
	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
	mutex_unlock(&dev->core_dev->rng_lock);
	return ret;
}


static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
			unsigned int slen)
{
	return 0;
}

/*
 * Supported Crypto Algorithms
 */
static struct crypto4xx_alg_common crypto4xx_alg[] = {
	/* Crypto AES modes */
	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
		.base = {
			.cra_name = "cbc(aes)",
			.cra_driver_name = "cbc-aes-ppc4xx",
			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
			.cra_flags = CRYPTO_ALG_ASYNC |
				CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
			.cra_module = THIS_MODULE,
		},
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.ivsize	= AES_IV_SIZE,
		.setkey = crypto4xx_setkey_aes_cbc,
		.encrypt = crypto4xx_encrypt_iv_block,
		.decrypt = crypto4xx_decrypt_iv_block,
		.init = crypto4xx_sk_init,
		.exit = crypto4xx_sk_exit,
	} },
	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
		.base = {
			.cra_name = "cfb(aes)",
			.cra_driver_name = "cfb-aes-ppc4xx",
			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
			.cra_flags = CRYPTO_ALG_ASYNC |
				CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = 1,
			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
			.cra_module = THIS_MODULE,
		},
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.ivsize	= AES_IV_SIZE,
		.setkey	= crypto4xx_setkey_aes_cfb,
		.encrypt = crypto4xx_encrypt_iv_stream,
		.decrypt = crypto4xx_decrypt_iv_stream,
		.init = crypto4xx_sk_init,
		.exit = crypto4xx_sk_exit,
	} },
	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
		.base = {
			.cra_name = "ctr(aes)",
			.cra_driver_name = "ctr-aes-ppc4xx",
			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
				CRYPTO_ALG_ASYNC |
				CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = 1,
			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
			.cra_module = THIS_MODULE,
		},
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.ivsize	= AES_IV_SIZE,
		.setkey	= crypto4xx_setkey_aes_ctr,
		.encrypt = crypto4xx_encrypt_ctr,
		.decrypt = crypto4xx_decrypt_ctr,
		.init = crypto4xx_sk_init,
		.exit = crypto4xx_sk_exit,
	} },
	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
		.base = {
			.cra_name = "rfc3686(ctr(aes))",
			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
			.cra_flags = CRYPTO_ALG_ASYNC |
				CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = 1,
			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
			.cra_module = THIS_MODULE,
		},
		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
		.ivsize	= CTR_RFC3686_IV_SIZE,
		.setkey = crypto4xx_setkey_rfc3686,
		.encrypt = crypto4xx_rfc3686_encrypt,
		.decrypt = crypto4xx_rfc3686_decrypt,
		.init = crypto4xx_sk_init,
		.exit = crypto4xx_sk_exit,
	} },
	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
		.base = {
			.cra_name = "ecb(aes)",
			.cra_driver_name = "ecb-aes-ppc4xx",
			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
			.cra_flags = CRYPTO_ALG_ASYNC |
				CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
			.cra_module = THIS_MODULE,
		},
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.setkey	= crypto4xx_setkey_aes_ecb,
		.encrypt = crypto4xx_encrypt_noiv_block,
		.decrypt = crypto4xx_decrypt_noiv_block,
		.init = crypto4xx_sk_init,
		.exit = crypto4xx_sk_exit,
	} },
	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
		.base = {
			.cra_name = "ofb(aes)",
			.cra_driver_name = "ofb-aes-ppc4xx",
			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
			.cra_flags = CRYPTO_ALG_ASYNC |
				CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = 1,
			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
			.cra_module = THIS_MODULE,
		},
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.ivsize	= AES_IV_SIZE,
		.setkey	= crypto4xx_setkey_aes_ofb,
		.encrypt = crypto4xx_encrypt_iv_stream,
		.decrypt = crypto4xx_decrypt_iv_stream,
		.init = crypto4xx_sk_init,
		.exit = crypto4xx_sk_exit,
	} },

	/* AEAD */
	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
		.setkey		= crypto4xx_setkey_aes_ccm,
		.setauthsize	= crypto4xx_setauthsize_aead,
		.encrypt	= crypto4xx_encrypt_aes_ccm,
		.decrypt	= crypto4xx_decrypt_aes_ccm,
		.init		= crypto4xx_aead_init,
		.exit		= crypto4xx_aead_exit,
		.ivsize		= AES_BLOCK_SIZE,
		.maxauthsize    = 16,
		.base = {
			.cra_name	= "ccm(aes)",
			.cra_driver_name = "ccm-aes-ppc4xx",
			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
			.cra_flags	= CRYPTO_ALG_ASYNC |
					  CRYPTO_ALG_NEED_FALLBACK |
					  CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize	= 1,
			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
			.cra_module	= THIS_MODULE,
		},
	} },
	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
		.setkey		= crypto4xx_setkey_aes_gcm,
		.setauthsize	= crypto4xx_setauthsize_aead,
		.encrypt	= crypto4xx_encrypt_aes_gcm,
		.decrypt	= crypto4xx_decrypt_aes_gcm,
		.init		= crypto4xx_aead_init,
		.exit		= crypto4xx_aead_exit,
		.ivsize		= GCM_AES_IV_SIZE,
		.maxauthsize	= 16,
		.base = {
			.cra_name	= "gcm(aes)",
			.cra_driver_name = "gcm-aes-ppc4xx",
			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
			.cra_flags	= CRYPTO_ALG_ASYNC |
					  CRYPTO_ALG_NEED_FALLBACK |
					  CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize	= 1,
			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
			.cra_module	= THIS_MODULE,
		},
	} },
	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
		.base = {
			.cra_name		= "stdrng",
			.cra_driver_name        = "crypto4xx_rng",
			.cra_priority		= 300,
			.cra_ctxsize		= 0,
			.cra_module		= THIS_MODULE,
		},
		.generate               = crypto4xx_prng_generate,
		.seed                   = crypto4xx_prng_seed,
		.seedsize               = 0,
	} },
};

/*
 * Module Initialization Routine
 */
static int crypto4xx_probe(struct platform_device *ofdev)
{
	int rc;
	struct resource res;
	struct device *dev = &ofdev->dev;
	struct crypto4xx_core_device *core_dev;
	struct device_node *np;
	u32 pvr;
	bool is_revb = true;

	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
	if (rc)
		return -ENODEV;

	np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto");
	if (np) {
		mtdcri(SDR0, PPC460EX_SDR0_SRST,
		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
		mtdcri(SDR0, PPC460EX_SDR0_SRST,
		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
	} else {
		np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto");
		if (np) {
			mtdcri(SDR0, PPC405EX_SDR0_SRST,
				   mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
			mtdcri(SDR0, PPC405EX_SDR0_SRST,
				   mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
			is_revb = false;
		} else {
			np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto");
			if (np) {
				mtdcri(SDR0, PPC460SX_SDR0_SRST,
					mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
				mtdcri(SDR0, PPC460SX_SDR0_SRST,
					mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
			} else {
				printk(KERN_ERR "Crypto Function Not supported!\n");
				return -EINVAL;
			}
		}
	}

	of_node_put(np);

	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
	if (!core_dev)
		return -ENOMEM;

	dev_set_drvdata(dev, core_dev);
	core_dev->ofdev = ofdev;
	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
	rc = -ENOMEM;
	if (!core_dev->dev)
		goto err_alloc_dev;

	/*
	 * Older version of 460EX/GT have a hardware bug.
	 * Hence they do not support H/W based security intr coalescing
	 */
	pvr = mfspr(SPRN_PVR);
	if (is_revb && ((pvr >> 4) == 0x130218A)) {
		u32 min = PVR_MIN(pvr);

		if (min < 4) {
			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
			is_revb = false;
		}
	}

	core_dev->dev->core_dev = core_dev;
	core_dev->dev->is_revb = is_revb;
	core_dev->device = dev;
	mutex_init(&core_dev->rng_lock);
	spin_lock_init(&core_dev->lock);
	INIT_LIST_HEAD(&core_dev->dev->alg_list);
	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
	rc = crypto4xx_build_sdr(core_dev->dev);
	if (rc)
		goto err_build_sdr;
	rc = crypto4xx_build_pdr(core_dev->dev);
	if (rc)
		goto err_build_sdr;

	rc = crypto4xx_build_gdr(core_dev->dev);
	if (rc)
		goto err_build_sdr;

	/* Init tasklet for bottom half processing */
	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
		     (unsigned long) dev);

	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
	if (!core_dev->dev->ce_base) {
		dev_err(dev, "failed to of_iomap\n");
		rc = -ENOMEM;
		goto err_iomap;
	}

	/* Register for Crypto isr, Crypto Engine IRQ */
	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
	rc = request_irq(core_dev->irq, is_revb ?
			 crypto4xx_ce_interrupt_handler_revb :
			 crypto4xx_ce_interrupt_handler, 0,
			 KBUILD_MODNAME, dev);
	if (rc)
		goto err_request_irq;

	/* need to setup pdr, rdr, gdr and sdr before this */
	crypto4xx_hw_init(core_dev->dev);

	/* Register security algorithms with Linux CryptoAPI */
	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
			       ARRAY_SIZE(crypto4xx_alg));
	if (rc)
		goto err_start_dev;

	ppc4xx_trng_probe(core_dev);
	return 0;

err_start_dev:
	free_irq(core_dev->irq, dev);
err_request_irq:
	irq_dispose_mapping(core_dev->irq);
	iounmap(core_dev->dev->ce_base);
err_iomap:
	tasklet_kill(&core_dev->tasklet);
err_build_sdr:
	crypto4xx_destroy_sdr(core_dev->dev);
	crypto4xx_destroy_gdr(core_dev->dev);
	crypto4xx_destroy_pdr(core_dev->dev);
	kfree(core_dev->dev);
err_alloc_dev:
	kfree(core_dev);

	return rc;
}

static void crypto4xx_remove(struct platform_device *ofdev)
{
	struct device *dev = &ofdev->dev;
	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);

	ppc4xx_trng_remove(core_dev);

	free_irq(core_dev->irq, dev);
	irq_dispose_mapping(core_dev->irq);

	tasklet_kill(&core_dev->tasklet);
	/* Un-register with Linux CryptoAPI */
	crypto4xx_unregister_alg(core_dev->dev);
	mutex_destroy(&core_dev->rng_lock);
	/* Free all allocated memory */
	crypto4xx_stop_all(core_dev);
}

static const struct of_device_id crypto4xx_match[] = {
	{ .compatible      = "amcc,ppc4xx-crypto",},
	{ },
};
MODULE_DEVICE_TABLE(of, crypto4xx_match);

static struct platform_driver crypto4xx_driver = {
	.driver = {
		.name = KBUILD_MODNAME,
		.of_match_table = crypto4xx_match,
	},
	.probe		= crypto4xx_probe,
	.remove_new	= crypto4xx_remove,
};

module_platform_driver(crypto4xx_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");