Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 | // SPDX-License-Identifier: GPL-2.0-or-later /* * SN Platform GRU Driver * * KERNEL SERVICES THAT USE THE GRU * * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/spinlock.h> #include <linux/device.h> #include <linux/miscdevice.h> #include <linux/proc_fs.h> #include <linux/interrupt.h> #include <linux/sync_core.h> #include <linux/uaccess.h> #include <linux/delay.h> #include <linux/export.h> #include <asm/io_apic.h> #include "gru.h" #include "grulib.h" #include "grutables.h" #include "grukservices.h" #include "gru_instructions.h" #include <asm/uv/uv_hub.h> /* * Kernel GRU Usage * * The following is an interim algorithm for management of kernel GRU * resources. This will likely be replaced when we better understand the * kernel/user requirements. * * Blade percpu resources reserved for kernel use. These resources are * reserved whenever the kernel context for the blade is loaded. Note * that the kernel context is not guaranteed to be always available. It is * loaded on demand & can be stolen by a user if the user demand exceeds the * kernel demand. The kernel can always reload the kernel context but * a SLEEP may be required!!!. * * Async Overview: * * Each blade has one "kernel context" that owns GRU kernel resources * located on the blade. Kernel drivers use GRU resources in this context * for sending messages, zeroing memory, etc. * * The kernel context is dynamically loaded on demand. If it is not in * use by the kernel, the kernel context can be unloaded & given to a user. * The kernel context will be reloaded when needed. This may require that * a context be stolen from a user. * NOTE: frequent unloading/reloading of the kernel context is * expensive. We are depending on batch schedulers, cpusets, sane * drivers or some other mechanism to prevent the need for frequent * stealing/reloading. * * The kernel context consists of two parts: * - 1 CB & a few DSRs that are reserved for each cpu on the blade. * Each cpu has it's own private resources & does not share them * with other cpus. These resources are used serially, ie, * locked, used & unlocked on each call to a function in * grukservices. * (Now that we have dynamic loading of kernel contexts, I * may rethink this & allow sharing between cpus....) * * - Additional resources can be reserved long term & used directly * by UV drivers located in the kernel. Drivers using these GRU * resources can use asynchronous GRU instructions that send * interrupts on completion. * - these resources must be explicitly locked/unlocked * - locked resources prevent (obviously) the kernel * context from being unloaded. * - drivers using these resource directly issue their own * GRU instruction and must wait/check completion. * * When these resources are reserved, the caller can optionally * associate a wait_queue with the resources and use asynchronous * GRU instructions. When an async GRU instruction completes, the * driver will do a wakeup on the event. * */ #define ASYNC_HAN_TO_BID(h) ((h) - 1) #define ASYNC_BID_TO_HAN(b) ((b) + 1) #define ASYNC_HAN_TO_BS(h) gru_base[ASYNC_HAN_TO_BID(h)] #define GRU_NUM_KERNEL_CBR 1 #define GRU_NUM_KERNEL_DSR_BYTES 256 #define GRU_NUM_KERNEL_DSR_CL (GRU_NUM_KERNEL_DSR_BYTES / \ GRU_CACHE_LINE_BYTES) /* GRU instruction attributes for all instructions */ #define IMA IMA_CB_DELAY /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */ #define __gru_cacheline_aligned__ \ __attribute__((__aligned__(GRU_CACHE_LINE_BYTES))) #define MAGIC 0x1234567887654321UL /* Default retry count for GRU errors on kernel instructions */ #define EXCEPTION_RETRY_LIMIT 3 /* Status of message queue sections */ #define MQS_EMPTY 0 #define MQS_FULL 1 #define MQS_NOOP 2 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/ /* optimized for x86_64 */ struct message_queue { union gru_mesqhead head __gru_cacheline_aligned__; /* CL 0 */ int qlines; /* DW 1 */ long hstatus[2]; void *next __gru_cacheline_aligned__;/* CL 1 */ void *limit; void *start; void *start2; char data ____cacheline_aligned; /* CL 2 */ }; /* First word in every message - used by mesq interface */ struct message_header { char present; char present2; char lines; char fill; }; #define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h])) /* * Reload the blade's kernel context into a GRU chiplet. Called holding * the bs_kgts_sema for READ. Will steal user contexts if necessary. */ static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id) { struct gru_state *gru; struct gru_thread_state *kgts; void *vaddr; int ctxnum, ncpus; up_read(&bs->bs_kgts_sema); down_write(&bs->bs_kgts_sema); if (!bs->bs_kgts) { do { bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0); if (!IS_ERR(bs->bs_kgts)) break; msleep(1); } while (true); bs->bs_kgts->ts_user_blade_id = blade_id; } kgts = bs->bs_kgts; if (!kgts->ts_gru) { STAT(load_kernel_context); ncpus = uv_blade_nr_possible_cpus(blade_id); kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU( GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs); kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU( GRU_NUM_KERNEL_DSR_BYTES * ncpus + bs->bs_async_dsr_bytes); while (!gru_assign_gru_context(kgts)) { msleep(1); gru_steal_context(kgts); } gru_load_context(kgts); gru = bs->bs_kgts->ts_gru; vaddr = gru->gs_gru_base_vaddr; ctxnum = kgts->ts_ctxnum; bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0); bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0); } downgrade_write(&bs->bs_kgts_sema); } /* * Free all kernel contexts that are not currently in use. * Returns 0 if all freed, else number of inuse context. */ static int gru_free_kernel_contexts(void) { struct gru_blade_state *bs; struct gru_thread_state *kgts; int bid, ret = 0; for (bid = 0; bid < GRU_MAX_BLADES; bid++) { bs = gru_base[bid]; if (!bs) continue; /* Ignore busy contexts. Don't want to block here. */ if (down_write_trylock(&bs->bs_kgts_sema)) { kgts = bs->bs_kgts; if (kgts && kgts->ts_gru) gru_unload_context(kgts, 0); bs->bs_kgts = NULL; up_write(&bs->bs_kgts_sema); kfree(kgts); } else { ret++; } } return ret; } /* * Lock & load the kernel context for the specified blade. */ static struct gru_blade_state *gru_lock_kernel_context(int blade_id) { struct gru_blade_state *bs; int bid; STAT(lock_kernel_context); again: bid = blade_id < 0 ? uv_numa_blade_id() : blade_id; bs = gru_base[bid]; /* Handle the case where migration occurred while waiting for the sema */ down_read(&bs->bs_kgts_sema); if (blade_id < 0 && bid != uv_numa_blade_id()) { up_read(&bs->bs_kgts_sema); goto again; } if (!bs->bs_kgts || !bs->bs_kgts->ts_gru) gru_load_kernel_context(bs, bid); return bs; } /* * Unlock the kernel context for the specified blade. Context is not * unloaded but may be stolen before next use. */ static void gru_unlock_kernel_context(int blade_id) { struct gru_blade_state *bs; bs = gru_base[blade_id]; up_read(&bs->bs_kgts_sema); STAT(unlock_kernel_context); } /* * Reserve & get pointers to the DSR/CBRs reserved for the current cpu. * - returns with preemption disabled */ static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr) { struct gru_blade_state *bs; int lcpu; BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES); preempt_disable(); bs = gru_lock_kernel_context(-1); lcpu = uv_blade_processor_id(); *cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE; *dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES; return 0; } /* * Free the current cpus reserved DSR/CBR resources. */ static void gru_free_cpu_resources(void *cb, void *dsr) { gru_unlock_kernel_context(uv_numa_blade_id()); preempt_enable(); } /* * Reserve GRU resources to be used asynchronously. * Note: currently supports only 1 reservation per blade. * * input: * blade_id - blade on which resources should be reserved * cbrs - number of CBRs * dsr_bytes - number of DSR bytes needed * output: * handle to identify resource * (0 = async resources already reserved) */ unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes, struct completion *cmp) { struct gru_blade_state *bs; struct gru_thread_state *kgts; int ret = 0; bs = gru_base[blade_id]; down_write(&bs->bs_kgts_sema); /* Verify no resources already reserved */ if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs) goto done; bs->bs_async_dsr_bytes = dsr_bytes; bs->bs_async_cbrs = cbrs; bs->bs_async_wq = cmp; kgts = bs->bs_kgts; /* Resources changed. Unload context if already loaded */ if (kgts && kgts->ts_gru) gru_unload_context(kgts, 0); ret = ASYNC_BID_TO_HAN(blade_id); done: up_write(&bs->bs_kgts_sema); return ret; } /* * Release async resources previously reserved. * * input: * han - handle to identify resources */ void gru_release_async_resources(unsigned long han) { struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); down_write(&bs->bs_kgts_sema); bs->bs_async_dsr_bytes = 0; bs->bs_async_cbrs = 0; bs->bs_async_wq = NULL; up_write(&bs->bs_kgts_sema); } /* * Wait for async GRU instructions to complete. * * input: * han - handle to identify resources */ void gru_wait_async_cbr(unsigned long han) { struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); wait_for_completion(bs->bs_async_wq); mb(); } /* * Lock previous reserved async GRU resources * * input: * han - handle to identify resources * output: * cb - pointer to first CBR * dsr - pointer to first DSR */ void gru_lock_async_resource(unsigned long han, void **cb, void **dsr) { struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); int blade_id = ASYNC_HAN_TO_BID(han); int ncpus; gru_lock_kernel_context(blade_id); ncpus = uv_blade_nr_possible_cpus(blade_id); if (cb) *cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE; if (dsr) *dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES; } /* * Unlock previous reserved async GRU resources * * input: * han - handle to identify resources */ void gru_unlock_async_resource(unsigned long han) { int blade_id = ASYNC_HAN_TO_BID(han); gru_unlock_kernel_context(blade_id); } /*----------------------------------------------------------------------*/ int gru_get_cb_exception_detail(void *cb, struct control_block_extended_exc_detail *excdet) { struct gru_control_block_extended *cbe; struct gru_thread_state *kgts = NULL; unsigned long off; int cbrnum, bid; /* * Locate kgts for cb. This algorithm is SLOW but * this function is rarely called (ie., almost never). * Performance does not matter. */ for_each_possible_blade(bid) { if (!gru_base[bid]) break; kgts = gru_base[bid]->bs_kgts; if (!kgts || !kgts->ts_gru) continue; off = cb - kgts->ts_gru->gs_gru_base_vaddr; if (off < GRU_SIZE) break; kgts = NULL; } BUG_ON(!kgts); cbrnum = thread_cbr_number(kgts, get_cb_number(cb)); cbe = get_cbe(GRUBASE(cb), cbrnum); gru_flush_cache(cbe); /* CBE not coherent */ sync_core(); excdet->opc = cbe->opccpy; excdet->exopc = cbe->exopccpy; excdet->ecause = cbe->ecause; excdet->exceptdet0 = cbe->idef1upd; excdet->exceptdet1 = cbe->idef3upd; gru_flush_cache(cbe); return 0; } static char *gru_get_cb_exception_detail_str(int ret, void *cb, char *buf, int size) { struct gru_control_block_status *gen = cb; struct control_block_extended_exc_detail excdet; if (ret > 0 && gen->istatus == CBS_EXCEPTION) { gru_get_cb_exception_detail(cb, &excdet); snprintf(buf, size, "GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x," "excdet0 0x%lx, excdet1 0x%x", smp_processor_id(), gen, excdet.opc, excdet.exopc, excdet.ecause, excdet.exceptdet0, excdet.exceptdet1); } else { snprintf(buf, size, "No exception"); } return buf; } static int gru_wait_idle_or_exception(struct gru_control_block_status *gen) { while (gen->istatus >= CBS_ACTIVE) { cpu_relax(); barrier(); } return gen->istatus; } static int gru_retry_exception(void *cb) { struct gru_control_block_status *gen = cb; struct control_block_extended_exc_detail excdet; int retry = EXCEPTION_RETRY_LIMIT; while (1) { if (gru_wait_idle_or_exception(gen) == CBS_IDLE) return CBS_IDLE; if (gru_get_cb_message_queue_substatus(cb)) return CBS_EXCEPTION; gru_get_cb_exception_detail(cb, &excdet); if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) || (excdet.cbrexecstatus & CBR_EXS_ABORT_OCC)) break; if (retry-- == 0) break; gen->icmd = 1; gru_flush_cache(gen); } return CBS_EXCEPTION; } int gru_check_status_proc(void *cb) { struct gru_control_block_status *gen = cb; int ret; ret = gen->istatus; if (ret == CBS_EXCEPTION) ret = gru_retry_exception(cb); rmb(); return ret; } int gru_wait_proc(void *cb) { struct gru_control_block_status *gen = cb; int ret; ret = gru_wait_idle_or_exception(gen); if (ret == CBS_EXCEPTION) ret = gru_retry_exception(cb); rmb(); return ret; } static void gru_abort(int ret, void *cb, char *str) { char buf[GRU_EXC_STR_SIZE]; panic("GRU FATAL ERROR: %s - %s\n", str, gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf))); } void gru_wait_abort_proc(void *cb) { int ret; ret = gru_wait_proc(cb); if (ret) gru_abort(ret, cb, "gru_wait_abort"); } /*------------------------------ MESSAGE QUEUES -----------------------------*/ /* Internal status . These are NOT returned to the user. */ #define MQIE_AGAIN -1 /* try again */ /* * Save/restore the "present" flag that is in the second line of 2-line * messages */ static inline int get_present2(void *p) { struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES; return mhdr->present; } static inline void restore_present2(void *p, int val) { struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES; mhdr->present = val; } /* * Create a message queue. * qlines - message queue size in cache lines. Includes 2-line header. */ int gru_create_message_queue(struct gru_message_queue_desc *mqd, void *p, unsigned int bytes, int nasid, int vector, int apicid) { struct message_queue *mq = p; unsigned int qlines; qlines = bytes / GRU_CACHE_LINE_BYTES - 2; memset(mq, 0, bytes); mq->start = &mq->data; mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES; mq->next = &mq->data; mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES; mq->qlines = qlines; mq->hstatus[0] = 0; mq->hstatus[1] = 1; mq->head = gru_mesq_head(2, qlines / 2 + 1); mqd->mq = mq; mqd->mq_gpa = uv_gpa(mq); mqd->qlines = qlines; mqd->interrupt_pnode = nasid >> 1; mqd->interrupt_vector = vector; mqd->interrupt_apicid = apicid; return 0; } EXPORT_SYMBOL_GPL(gru_create_message_queue); /* * Send a NOOP message to a message queue * Returns: * 0 - if queue is full after the send. This is the normal case * but various races can change this. * -1 - if mesq sent successfully but queue not full * >0 - unexpected error. MQE_xxx returned */ static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd, void *mesg) { const struct message_header noop_header = { .present = MQS_NOOP, .lines = 1}; unsigned long m; int substatus, ret; struct message_header save_mhdr, *mhdr = mesg; STAT(mesq_noop); save_mhdr = *mhdr; *mhdr = noop_header; gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA); ret = gru_wait(cb); if (ret) { substatus = gru_get_cb_message_queue_substatus(cb); switch (substatus) { case CBSS_NO_ERROR: STAT(mesq_noop_unexpected_error); ret = MQE_UNEXPECTED_CB_ERR; break; case CBSS_LB_OVERFLOWED: STAT(mesq_noop_lb_overflow); ret = MQE_CONGESTION; break; case CBSS_QLIMIT_REACHED: STAT(mesq_noop_qlimit_reached); ret = 0; break; case CBSS_AMO_NACKED: STAT(mesq_noop_amo_nacked); ret = MQE_CONGESTION; break; case CBSS_PUT_NACKED: STAT(mesq_noop_put_nacked); m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6); gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1, IMA); if (gru_wait(cb) == CBS_IDLE) ret = MQIE_AGAIN; else ret = MQE_UNEXPECTED_CB_ERR; break; case CBSS_PAGE_OVERFLOW: STAT(mesq_noop_page_overflow); fallthrough; default: BUG(); } } *mhdr = save_mhdr; return ret; } /* * Handle a gru_mesq full. */ static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd, void *mesg, int lines) { union gru_mesqhead mqh; unsigned int limit, head; unsigned long avalue; int half, qlines; /* Determine if switching to first/second half of q */ avalue = gru_get_amo_value(cb); head = gru_get_amo_value_head(cb); limit = gru_get_amo_value_limit(cb); qlines = mqd->qlines; half = (limit != qlines); if (half) mqh = gru_mesq_head(qlines / 2 + 1, qlines); else mqh = gru_mesq_head(2, qlines / 2 + 1); /* Try to get lock for switching head pointer */ gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA); if (gru_wait(cb) != CBS_IDLE) goto cberr; if (!gru_get_amo_value(cb)) { STAT(mesq_qf_locked); return MQE_QUEUE_FULL; } /* Got the lock. Send optional NOP if queue not full, */ if (head != limit) { if (send_noop_message(cb, mqd, mesg)) { gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA); if (gru_wait(cb) != CBS_IDLE) goto cberr; STAT(mesq_qf_noop_not_full); return MQIE_AGAIN; } avalue++; } /* Then flip queuehead to other half of queue. */ gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue, IMA); if (gru_wait(cb) != CBS_IDLE) goto cberr; /* If not successfully in swapping queue head, clear the hstatus lock */ if (gru_get_amo_value(cb) != avalue) { STAT(mesq_qf_switch_head_failed); gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA); if (gru_wait(cb) != CBS_IDLE) goto cberr; } return MQIE_AGAIN; cberr: STAT(mesq_qf_unexpected_error); return MQE_UNEXPECTED_CB_ERR; } /* * Handle a PUT failure. Note: if message was a 2-line message, one of the * lines might have successfully have been written. Before sending the * message, "present" must be cleared in BOTH lines to prevent the receiver * from prematurely seeing the full message. */ static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd, void *mesg, int lines) { unsigned long m; int ret, loops = 200; /* experimentally determined */ m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6); if (lines == 2) { gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA); if (gru_wait(cb) != CBS_IDLE) return MQE_UNEXPECTED_CB_ERR; } gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA); if (gru_wait(cb) != CBS_IDLE) return MQE_UNEXPECTED_CB_ERR; if (!mqd->interrupt_vector) return MQE_OK; /* * Send a noop message in order to deliver a cross-partition interrupt * to the SSI that contains the target message queue. Normally, the * interrupt is automatically delivered by hardware following mesq * operations, but some error conditions require explicit delivery. * The noop message will trigger delivery. Otherwise partition failures * could cause unrecovered errors. */ do { ret = send_noop_message(cb, mqd, mesg); } while ((ret == MQIE_AGAIN || ret == MQE_CONGESTION) && (loops-- > 0)); if (ret == MQIE_AGAIN || ret == MQE_CONGESTION) { /* * Don't indicate to the app to resend the message, as it's * already been successfully sent. We simply send an OK * (rather than fail the send with MQE_UNEXPECTED_CB_ERR), * assuming that the other side is receiving enough * interrupts to get this message processed anyway. */ ret = MQE_OK; } return ret; } /* * Handle a gru_mesq failure. Some of these failures are software recoverable * or retryable. */ static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd, void *mesg, int lines) { int substatus, ret = 0; substatus = gru_get_cb_message_queue_substatus(cb); switch (substatus) { case CBSS_NO_ERROR: STAT(mesq_send_unexpected_error); ret = MQE_UNEXPECTED_CB_ERR; break; case CBSS_LB_OVERFLOWED: STAT(mesq_send_lb_overflow); ret = MQE_CONGESTION; break; case CBSS_QLIMIT_REACHED: STAT(mesq_send_qlimit_reached); ret = send_message_queue_full(cb, mqd, mesg, lines); break; case CBSS_AMO_NACKED: STAT(mesq_send_amo_nacked); ret = MQE_CONGESTION; break; case CBSS_PUT_NACKED: STAT(mesq_send_put_nacked); ret = send_message_put_nacked(cb, mqd, mesg, lines); break; case CBSS_PAGE_OVERFLOW: STAT(mesq_page_overflow); fallthrough; default: BUG(); } return ret; } /* * Send a message to a message queue * mqd message queue descriptor * mesg message. ust be vaddr within a GSEG * bytes message size (<= 2 CL) */ int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg, unsigned int bytes) { struct message_header *mhdr; void *cb; void *dsr; int istatus, clines, ret; STAT(mesq_send); BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES); clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES); if (gru_get_cpu_resources(bytes, &cb, &dsr)) return MQE_BUG_NO_RESOURCES; memcpy(dsr, mesg, bytes); mhdr = dsr; mhdr->present = MQS_FULL; mhdr->lines = clines; if (clines == 2) { mhdr->present2 = get_present2(mhdr); restore_present2(mhdr, MQS_FULL); } do { ret = MQE_OK; gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA); istatus = gru_wait(cb); if (istatus != CBS_IDLE) ret = send_message_failure(cb, mqd, dsr, clines); } while (ret == MQIE_AGAIN); gru_free_cpu_resources(cb, dsr); if (ret) STAT(mesq_send_failed); return ret; } EXPORT_SYMBOL_GPL(gru_send_message_gpa); /* * Advance the receive pointer for the queue to the next message. */ void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg) { struct message_queue *mq = mqd->mq; struct message_header *mhdr = mq->next; void *next, *pnext; int half = -1; int lines = mhdr->lines; if (lines == 2) restore_present2(mhdr, MQS_EMPTY); mhdr->present = MQS_EMPTY; pnext = mq->next; next = pnext + GRU_CACHE_LINE_BYTES * lines; if (next == mq->limit) { next = mq->start; half = 1; } else if (pnext < mq->start2 && next >= mq->start2) { half = 0; } if (half >= 0) mq->hstatus[half] = 1; mq->next = next; } EXPORT_SYMBOL_GPL(gru_free_message); /* * Get next message from message queue. Return NULL if no message * present. User must call next_message() to move to next message. * rmq message queue */ void *gru_get_next_message(struct gru_message_queue_desc *mqd) { struct message_queue *mq = mqd->mq; struct message_header *mhdr = mq->next; int present = mhdr->present; /* skip NOOP messages */ while (present == MQS_NOOP) { gru_free_message(mqd, mhdr); mhdr = mq->next; present = mhdr->present; } /* Wait for both halves of 2 line messages */ if (present == MQS_FULL && mhdr->lines == 2 && get_present2(mhdr) == MQS_EMPTY) present = MQS_EMPTY; if (!present) { STAT(mesq_receive_none); return NULL; } if (mhdr->lines == 2) restore_present2(mhdr, mhdr->present2); STAT(mesq_receive); return mhdr; } EXPORT_SYMBOL_GPL(gru_get_next_message); /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/ /* * Load a DW from a global GPA. The GPA can be a memory or MMR address. */ int gru_read_gpa(unsigned long *value, unsigned long gpa) { void *cb; void *dsr; int ret, iaa; STAT(read_gpa); if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr)) return MQE_BUG_NO_RESOURCES; iaa = gpa >> 62; gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA); ret = gru_wait(cb); if (ret == CBS_IDLE) *value = *(unsigned long *)dsr; gru_free_cpu_resources(cb, dsr); return ret; } EXPORT_SYMBOL_GPL(gru_read_gpa); /* * Copy a block of data using the GRU resources */ int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa, unsigned int bytes) { void *cb; void *dsr; int ret; STAT(copy_gpa); if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr)) return MQE_BUG_NO_RESOURCES; gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr), XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA); ret = gru_wait(cb); gru_free_cpu_resources(cb, dsr); return ret; } EXPORT_SYMBOL_GPL(gru_copy_gpa); /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/ /* Temp - will delete after we gain confidence in the GRU */ static int quicktest0(unsigned long arg) { unsigned long word0; unsigned long word1; void *cb; void *dsr; unsigned long *p; int ret = -EIO; if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr)) return MQE_BUG_NO_RESOURCES; p = dsr; word0 = MAGIC; word1 = 0; gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA); if (gru_wait(cb) != CBS_IDLE) { printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id()); goto done; } if (*p != MAGIC) { printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p); goto done; } gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA); if (gru_wait(cb) != CBS_IDLE) { printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id()); goto done; } if (word0 != word1 || word1 != MAGIC) { printk(KERN_DEBUG "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n", smp_processor_id(), word1, MAGIC); goto done; } ret = 0; done: gru_free_cpu_resources(cb, dsr); return ret; } #define ALIGNUP(p, q) ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1))) static int quicktest1(unsigned long arg) { struct gru_message_queue_desc mqd; void *p, *mq; int i, ret = -EIO; char mes[GRU_CACHE_LINE_BYTES], *m; /* Need 1K cacheline aligned that does not cross page boundary */ p = kmalloc(4096, 0); if (p == NULL) return -ENOMEM; mq = ALIGNUP(p, 1024); memset(mes, 0xee, sizeof(mes)); gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0); for (i = 0; i < 6; i++) { mes[8] = i; do { ret = gru_send_message_gpa(&mqd, mes, sizeof(mes)); } while (ret == MQE_CONGESTION); if (ret) break; } if (ret != MQE_QUEUE_FULL || i != 4) { printk(KERN_DEBUG "GRU:%d quicktest1: unexpected status %d, i %d\n", smp_processor_id(), ret, i); goto done; } for (i = 0; i < 6; i++) { m = gru_get_next_message(&mqd); if (!m || m[8] != i) break; gru_free_message(&mqd, m); } if (i != 4) { printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n", smp_processor_id(), i, m, m ? m[8] : -1); goto done; } ret = 0; done: kfree(p); return ret; } static int quicktest2(unsigned long arg) { static DECLARE_COMPLETION(cmp); unsigned long han; int blade_id = 0; int numcb = 4; int ret = 0; unsigned long *buf; void *cb0, *cb; struct gru_control_block_status *gen; int i, k, istatus, bytes; bytes = numcb * 4 * 8; buf = kmalloc(bytes, GFP_KERNEL); if (!buf) return -ENOMEM; ret = -EBUSY; han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp); if (!han) goto done; gru_lock_async_resource(han, &cb0, NULL); memset(buf, 0xee, bytes); for (i = 0; i < numcb; i++) gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0, XTYPE_DW, 4, 1, IMA_INTERRUPT); ret = 0; k = numcb; do { gru_wait_async_cbr(han); for (i = 0; i < numcb; i++) { cb = cb0 + i * GRU_HANDLE_STRIDE; istatus = gru_check_status(cb); if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS) break; } if (i == numcb) continue; if (istatus != CBS_IDLE) { printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i); ret = -EFAULT; } else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] || buf[4 * i + 3]) { printk(KERN_DEBUG "GRU:%d quicktest2:cb %d, buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n", smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]); ret = -EIO; } k--; gen = cb; gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */ } while (k); BUG_ON(cmp.done); gru_unlock_async_resource(han); gru_release_async_resources(han); done: kfree(buf); return ret; } #define BUFSIZE 200 static int quicktest3(unsigned long arg) { char buf1[BUFSIZE], buf2[BUFSIZE]; int ret = 0; memset(buf2, 0, sizeof(buf2)); memset(buf1, get_cycles() & 255, sizeof(buf1)); gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE); if (memcmp(buf1, buf2, BUFSIZE)) { printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id()); ret = -EIO; } return ret; } /* * Debugging only. User hook for various kernel tests * of driver & gru. */ int gru_ktest(unsigned long arg) { int ret = -EINVAL; switch (arg & 0xff) { case 0: ret = quicktest0(arg); break; case 1: ret = quicktest1(arg); break; case 2: ret = quicktest2(arg); break; case 3: ret = quicktest3(arg); break; case 99: ret = gru_free_kernel_contexts(); break; } return ret; } int gru_kservices_init(void) { return 0; } void gru_kservices_exit(void) { if (gru_free_kernel_contexts()) BUG(); } |