Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 | =============================== LIBNVDIMM: Non-Volatile Devices =============================== libnvdimm - kernel / libndctl - userspace helper library nvdimm@lists.linux.dev Version 13 .. contents: Glossary Overview Supporting Documents Git Trees LIBNVDIMM PMEM PMEM-REGIONs, Atomic Sectors, and DAX Example NVDIMM Platform LIBNVDIMM Kernel Device Model and LIBNDCTL Userspace API LIBNDCTL: Context libndctl: instantiate a new library context example LIBNVDIMM/LIBNDCTL: Bus libnvdimm: control class device in /sys/class libnvdimm: bus libndctl: bus enumeration example LIBNVDIMM/LIBNDCTL: DIMM (NMEM) libnvdimm: DIMM (NMEM) libndctl: DIMM enumeration example LIBNVDIMM/LIBNDCTL: Region libnvdimm: region libndctl: region enumeration example Why Not Encode the Region Type into the Region Name? How Do I Determine the Major Type of a Region? LIBNVDIMM/LIBNDCTL: Namespace libnvdimm: namespace libndctl: namespace enumeration example libndctl: namespace creation example Why the Term "namespace"? LIBNVDIMM/LIBNDCTL: Block Translation Table "btt" libnvdimm: btt layout libndctl: btt creation example Summary LIBNDCTL Diagram Glossary ======== PMEM: A system-physical-address range where writes are persistent. A block device composed of PMEM is capable of DAX. A PMEM address range may span an interleave of several DIMMs. DPA: DIMM Physical Address, is a DIMM-relative offset. With one DIMM in the system there would be a 1:1 system-physical-address:DPA association. Once more DIMMs are added a memory controller interleave must be decoded to determine the DPA associated with a given system-physical-address. DAX: File system extensions to bypass the page cache and block layer to mmap persistent memory, from a PMEM block device, directly into a process address space. DSM: Device Specific Method: ACPI method to control specific device - in this case the firmware. DCR: NVDIMM Control Region Structure defined in ACPI 6 Section 5.2.25.5. It defines a vendor-id, device-id, and interface format for a given DIMM. BTT: Block Translation Table: Persistent memory is byte addressable. Existing software may have an expectation that the power-fail-atomicity of writes is at least one sector, 512 bytes. The BTT is an indirection table with atomic update semantics to front a PMEM block device driver and present arbitrary atomic sector sizes. LABEL: Metadata stored on a DIMM device that partitions and identifies (persistently names) capacity allocated to different PMEM namespaces. It also indicates whether an address abstraction like a BTT is applied to the namespace. Note that traditional partition tables, GPT/MBR, are layered on top of a PMEM namespace, or an address abstraction like BTT if present, but partition support is deprecated going forward. Overview ======== The LIBNVDIMM subsystem provides support for PMEM described by platform firmware or a device driver. On ACPI based systems the platform firmware conveys persistent memory resource via the ACPI NFIT "NVDIMM Firmware Interface Table" in ACPI 6. While the LIBNVDIMM subsystem implementation is generic and supports pre-NFIT platforms, it was guided by the superset of capabilities need to support this ACPI 6 definition for NVDIMM resources. The original implementation supported the block-window-aperture capability described in the NFIT, but that support has since been abandoned and never shipped in a product. Supporting Documents -------------------- ACPI 6: https://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf NVDIMM Namespace: https://pmem.io/documents/NVDIMM_Namespace_Spec.pdf DSM Interface Example: https://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf Driver Writer's Guide: https://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf Git Trees --------- LIBNVDIMM: https://git.kernel.org/cgit/linux/kernel/git/nvdimm/nvdimm.git LIBNDCTL: https://github.com/pmem/ndctl.git LIBNVDIMM PMEM ============== Prior to the arrival of the NFIT, non-volatile memory was described to a system in various ad-hoc ways. Usually only the bare minimum was provided, namely, a single system-physical-address range where writes are expected to be durable after a system power loss. Now, the NFIT specification standardizes not only the description of PMEM, but also platform message-passing entry points for control and configuration. PMEM (nd_pmem.ko): Drives a system-physical-address range. This range is contiguous in system memory and may be interleaved (hardware memory controller striped) across multiple DIMMs. When interleaved the platform may optionally provide details of which DIMMs are participating in the interleave. It is worth noting that when the labeling capability is detected (a EFI namespace label index block is found), then no block device is created by default as userspace needs to do at least one allocation of DPA to the PMEM range. In contrast ND_NAMESPACE_IO ranges, once registered, can be immediately attached to nd_pmem. This latter mode is called label-less or "legacy". PMEM-REGIONs, Atomic Sectors, and DAX ------------------------------------- For the cases where an application or filesystem still needs atomic sector update guarantees it can register a BTT on a PMEM device or partition. See LIBNVDIMM/NDCTL: Block Translation Table "btt" Example NVDIMM Platform ======================= For the remainder of this document the following diagram will be referenced for any example sysfs layouts:: (a) (b) DIMM +-------------------+--------+--------+--------+ +------+ | pm0.0 | free | pm1.0 | free | 0 | imc0 +--+- - - region0- - - +--------+ +--------+ +--+---+ | pm0.0 | free | pm1.0 | free | 1 | +-------------------+--------v v--------+ +--+---+ | | | cpu0 | region1 +--+---+ | | | +----------------------------^ ^--------+ +--+---+ | free | pm1.0 | free | 2 | imc1 +--+----------------------------| +--------+ +------+ | free | pm1.0 | free | 3 +----------------------------+--------+--------+ In this platform we have four DIMMs and two memory controllers in one socket. Each PMEM interleave set is identified by a region device with a dynamically assigned id. 1. The first portion of DIMM0 and DIMM1 are interleaved as REGION0. A single PMEM namespace is created in the REGION0-SPA-range that spans most of DIMM0 and DIMM1 with a user-specified name of "pm0.0". Some of that interleaved system-physical-address range is left free for another PMEM namespace to be defined. 2. In the last portion of DIMM0 and DIMM1 we have an interleaved system-physical-address range, REGION1, that spans those two DIMMs as well as DIMM2 and DIMM3. Some of REGION1 is allocated to a PMEM namespace named "pm1.0". This bus is provided by the kernel under the device /sys/devices/platform/nfit_test.0 when the nfit_test.ko module from tools/testing/nvdimm is loaded. This module is a unit test for LIBNVDIMM and the acpi_nfit.ko driver. LIBNVDIMM Kernel Device Model and LIBNDCTL Userspace API ======================================================== What follows is a description of the LIBNVDIMM sysfs layout and a corresponding object hierarchy diagram as viewed through the LIBNDCTL API. The example sysfs paths and diagrams are relative to the Example NVDIMM Platform which is also the LIBNVDIMM bus used in the LIBNDCTL unit test. LIBNDCTL: Context ----------------- Every API call in the LIBNDCTL library requires a context that holds the logging parameters and other library instance state. The library is based on the libabc template: https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.git LIBNDCTL: instantiate a new library context example ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ :: struct ndctl_ctx *ctx; if (ndctl_new(&ctx) == 0) return ctx; else return NULL; LIBNVDIMM/LIBNDCTL: Bus ----------------------- A bus has a 1:1 relationship with an NFIT. The current expectation for ACPI based systems is that there is only ever one platform-global NFIT. That said, it is trivial to register multiple NFITs, the specification does not preclude it. The infrastructure supports multiple busses and we use this capability to test multiple NFIT configurations in the unit test. LIBNVDIMM: control class device in /sys/class --------------------------------------------- This character device accepts DSM messages to be passed to DIMM identified by its NFIT handle:: /sys/class/nd/ndctl0 |-- dev |-- device -> ../../../ndbus0 |-- subsystem -> ../../../../../../../class/nd LIBNVDIMM: bus -------------- :: struct nvdimm_bus *nvdimm_bus_register(struct device *parent, struct nvdimm_bus_descriptor *nfit_desc); :: /sys/devices/platform/nfit_test.0/ndbus0 |-- commands |-- nd |-- nfit |-- nmem0 |-- nmem1 |-- nmem2 |-- nmem3 |-- power |-- provider |-- region0 |-- region1 |-- region2 |-- region3 |-- region4 |-- region5 |-- uevent `-- wait_probe LIBNDCTL: bus enumeration example ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Find the bus handle that describes the bus from Example NVDIMM Platform:: static struct ndctl_bus *get_bus_by_provider(struct ndctl_ctx *ctx, const char *provider) { struct ndctl_bus *bus; ndctl_bus_foreach(ctx, bus) if (strcmp(provider, ndctl_bus_get_provider(bus)) == 0) return bus; return NULL; } bus = get_bus_by_provider(ctx, "nfit_test.0"); LIBNVDIMM/LIBNDCTL: DIMM (NMEM) ------------------------------- The DIMM device provides a character device for sending commands to hardware, and it is a container for LABELs. If the DIMM is defined by NFIT then an optional 'nfit' attribute sub-directory is available to add NFIT-specifics. Note that the kernel device name for "DIMMs" is "nmemX". The NFIT describes these devices via "Memory Device to System Physical Address Range Mapping Structure", and there is no requirement that they actually be physical DIMMs, so we use a more generic name. LIBNVDIMM: DIMM (NMEM) ^^^^^^^^^^^^^^^^^^^^^^ :: struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data, const struct attribute_group **groups, unsigned long flags, unsigned long *dsm_mask); :: /sys/devices/platform/nfit_test.0/ndbus0 |-- nmem0 | |-- available_slots | |-- commands | |-- dev | |-- devtype | |-- driver -> ../../../../../bus/nd/drivers/nvdimm | |-- modalias | |-- nfit | | |-- device | | |-- format | | |-- handle | | |-- phys_id | | |-- rev_id | | |-- serial | | `-- vendor | |-- state | |-- subsystem -> ../../../../../bus/nd | `-- uevent |-- nmem1 [..] LIBNDCTL: DIMM enumeration example ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Note, in this example we are assuming NFIT-defined DIMMs which are identified by an "nfit_handle" a 32-bit value where: - Bit 3:0 DIMM number within the memory channel - Bit 7:4 memory channel number - Bit 11:8 memory controller ID - Bit 15:12 socket ID (within scope of a Node controller if node controller is present) - Bit 27:16 Node Controller ID - Bit 31:28 Reserved :: static struct ndctl_dimm *get_dimm_by_handle(struct ndctl_bus *bus, unsigned int handle) { struct ndctl_dimm *dimm; ndctl_dimm_foreach(bus, dimm) if (ndctl_dimm_get_handle(dimm) == handle) return dimm; return NULL; } #define DIMM_HANDLE(n, s, i, c, d) \ (((n & 0xfff) << 16) | ((s & 0xf) << 12) | ((i & 0xf) << 8) \ | ((c & 0xf) << 4) | (d & 0xf)) dimm = get_dimm_by_handle(bus, DIMM_HANDLE(0, 0, 0, 0, 0)); LIBNVDIMM/LIBNDCTL: Region -------------------------- A generic REGION device is registered for each PMEM interleave-set / range. Per the example there are 2 PMEM regions on the "nfit_test.0" bus. The primary role of regions are to be a container of "mappings". A mapping is a tuple of <DIMM, DPA-start-offset, length>. LIBNVDIMM provides a built-in driver for REGION devices. This driver is responsible for all parsing LABELs, if present, and then emitting NAMESPACE devices for the nd_pmem driver to consume. In addition to the generic attributes of "mapping"s, "interleave_ways" and "size" the REGION device also exports some convenience attributes. "nstype" indicates the integer type of namespace-device this region emits, "devtype" duplicates the DEVTYPE variable stored by udev at the 'add' event, "modalias" duplicates the MODALIAS variable stored by udev at the 'add' event, and finally, the optional "spa_index" is provided in the case where the region is defined by a SPA. LIBNVDIMM: region:: struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, struct nd_region_desc *ndr_desc); :: /sys/devices/platform/nfit_test.0/ndbus0 |-- region0 | |-- available_size | |-- btt0 | |-- btt_seed | |-- devtype | |-- driver -> ../../../../../bus/nd/drivers/nd_region | |-- init_namespaces | |-- mapping0 | |-- mapping1 | |-- mappings | |-- modalias | |-- namespace0.0 | |-- namespace_seed | |-- numa_node | |-- nfit | | `-- spa_index | |-- nstype | |-- set_cookie | |-- size | |-- subsystem -> ../../../../../bus/nd | `-- uevent |-- region1 [..] LIBNDCTL: region enumeration example ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Sample region retrieval routines based on NFIT-unique data like "spa_index" (interleave set id). :: static struct ndctl_region *get_pmem_region_by_spa_index(struct ndctl_bus *bus, unsigned int spa_index) { struct ndctl_region *region; ndctl_region_foreach(bus, region) { if (ndctl_region_get_type(region) != ND_DEVICE_REGION_PMEM) continue; if (ndctl_region_get_spa_index(region) == spa_index) return region; } return NULL; } LIBNVDIMM/LIBNDCTL: Namespace ----------------------------- A REGION, after resolving DPA aliasing and LABEL specified boundaries, surfaces one or more "namespace" devices. The arrival of a "namespace" device currently triggers the nd_pmem driver to load and register a disk/block device. LIBNVDIMM: namespace ^^^^^^^^^^^^^^^^^^^^ Here is a sample layout from the 2 major types of NAMESPACE where namespace0.0 represents DIMM-info-backed PMEM (note that it has a 'uuid' attribute), and namespace1.0 represents an anonymous PMEM namespace (note that has no 'uuid' attribute due to not support a LABEL) :: /sys/devices/platform/nfit_test.0/ndbus0/region0/namespace0.0 |-- alt_name |-- devtype |-- dpa_extents |-- force_raw |-- modalias |-- numa_node |-- resource |-- size |-- subsystem -> ../../../../../../bus/nd |-- type |-- uevent `-- uuid /sys/devices/platform/nfit_test.1/ndbus1/region1/namespace1.0 |-- block | `-- pmem0 |-- devtype |-- driver -> ../../../../../../bus/nd/drivers/pmem |-- force_raw |-- modalias |-- numa_node |-- resource |-- size |-- subsystem -> ../../../../../../bus/nd |-- type `-- uevent LIBNDCTL: namespace enumeration example ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Namespaces are indexed relative to their parent region, example below. These indexes are mostly static from boot to boot, but subsystem makes no guarantees in this regard. For a static namespace identifier use its 'uuid' attribute. :: static struct ndctl_namespace *get_namespace_by_id(struct ndctl_region *region, unsigned int id) { struct ndctl_namespace *ndns; ndctl_namespace_foreach(region, ndns) if (ndctl_namespace_get_id(ndns) == id) return ndns; return NULL; } LIBNDCTL: namespace creation example ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Idle namespaces are automatically created by the kernel if a given region has enough available capacity to create a new namespace. Namespace instantiation involves finding an idle namespace and configuring it. For the most part the setting of namespace attributes can occur in any order, the only constraint is that 'uuid' must be set before 'size'. This enables the kernel to track DPA allocations internally with a static identifier:: static int configure_namespace(struct ndctl_region *region, struct ndctl_namespace *ndns, struct namespace_parameters *parameters) { char devname[50]; snprintf(devname, sizeof(devname), "namespace%d.%d", ndctl_region_get_id(region), paramaters->id); ndctl_namespace_set_alt_name(ndns, devname); /* 'uuid' must be set prior to setting size! */ ndctl_namespace_set_uuid(ndns, paramaters->uuid); ndctl_namespace_set_size(ndns, paramaters->size); /* unlike pmem namespaces, blk namespaces have a sector size */ if (parameters->lbasize) ndctl_namespace_set_sector_size(ndns, parameters->lbasize); ndctl_namespace_enable(ndns); } Why the Term "namespace"? ^^^^^^^^^^^^^^^^^^^^^^^^^ 1. Why not "volume" for instance? "volume" ran the risk of confusing ND (libnvdimm subsystem) to a volume manager like device-mapper. 2. The term originated to describe the sub-devices that can be created within a NVME controller (see the nvme specification: https://www.nvmexpress.org/specifications/), and NFIT namespaces are meant to parallel the capabilities and configurability of NVME-namespaces. LIBNVDIMM/LIBNDCTL: Block Translation Table "btt" ------------------------------------------------- A BTT (design document: https://pmem.io/2014/09/23/btt.html) is a personality driver for a namespace that fronts entire namespace as an 'address abstraction'. LIBNVDIMM: btt layout ^^^^^^^^^^^^^^^^^^^^^ Every region will start out with at least one BTT device which is the seed device. To activate it set the "namespace", "uuid", and "sector_size" attributes and then bind the device to the nd_pmem or nd_blk driver depending on the region type:: /sys/devices/platform/nfit_test.1/ndbus0/region0/btt0/ |-- namespace |-- delete |-- devtype |-- modalias |-- numa_node |-- sector_size |-- subsystem -> ../../../../../bus/nd |-- uevent `-- uuid LIBNDCTL: btt creation example ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Similar to namespaces an idle BTT device is automatically created per region. Each time this "seed" btt device is configured and enabled a new seed is created. Creating a BTT configuration involves two steps of finding and idle BTT and assigning it to consume a namespace. :: static struct ndctl_btt *get_idle_btt(struct ndctl_region *region) { struct ndctl_btt *btt; ndctl_btt_foreach(region, btt) if (!ndctl_btt_is_enabled(btt) && !ndctl_btt_is_configured(btt)) return btt; return NULL; } static int configure_btt(struct ndctl_region *region, struct btt_parameters *parameters) { btt = get_idle_btt(region); ndctl_btt_set_uuid(btt, parameters->uuid); ndctl_btt_set_sector_size(btt, parameters->sector_size); ndctl_btt_set_namespace(btt, parameters->ndns); /* turn off raw mode device */ ndctl_namespace_disable(parameters->ndns); /* turn on btt access */ ndctl_btt_enable(btt); } Once instantiated a new inactive btt seed device will appear underneath the region. Once a "namespace" is removed from a BTT that instance of the BTT device will be deleted or otherwise reset to default values. This deletion is only at the device model level. In order to destroy a BTT the "info block" needs to be destroyed. Note, that to destroy a BTT the media needs to be written in raw mode. By default, the kernel will autodetect the presence of a BTT and disable raw mode. This autodetect behavior can be suppressed by enabling raw mode for the namespace via the ndctl_namespace_set_raw_mode() API. Summary LIBNDCTL Diagram ------------------------ For the given example above, here is the view of the objects as seen by the LIBNDCTL API:: +---+ |CTX| +-+-+ | +-------+ | | DIMM0 <-+ | +---------+ +--------------+ +---------------+ +-------+ | | +-> REGION0 +---> NAMESPACE0.0 +--> PMEM8 "pm0.0" | | DIMM1 <-+ +-v--+ | +---------+ +--------------+ +---------------+ +-------+ +-+BUS0+-| +---------+ +--------------+ +----------------------+ | DIMM2 <-+ +----+ +-> REGION1 +---> NAMESPACE1.0 +--> PMEM6 "pm1.0" | BTT1 | +-------+ | | +---------+ +--------------+ +---------------+------+ | DIMM3 <-+ +-------+ |