Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 | // SPDX-License-Identifier: GPL-2.0 #include <test_progs.h> #define MAX_INSNS 512 #define MAX_MATCHES 24 struct bpf_reg_match { unsigned int line; const char *reg; const char *match; }; struct bpf_align_test { const char *descr; struct bpf_insn insns[MAX_INSNS]; enum { UNDEF, ACCEPT, REJECT } result; enum bpf_prog_type prog_type; /* Matches must be in order of increasing line */ struct bpf_reg_match matches[MAX_MATCHES]; }; static struct bpf_align_test tests[] = { /* Four tests of known constants. These aren't staggeringly * interesting since we track exact values now. */ { .descr = "mov", .insns = { BPF_MOV64_IMM(BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_3, 4), BPF_MOV64_IMM(BPF_REG_3, 8), BPF_MOV64_IMM(BPF_REG_3, 16), BPF_MOV64_IMM(BPF_REG_3, 32), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {0, "R1", "ctx(off=0,imm=0)"}, {0, "R10", "fp0"}, {0, "R3_w", "2"}, {1, "R3_w", "4"}, {2, "R3_w", "8"}, {3, "R3_w", "16"}, {4, "R3_w", "32"}, }, }, { .descr = "shift", .insns = { BPF_MOV64_IMM(BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_3, 4), BPF_MOV64_IMM(BPF_REG_4, 32), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {0, "R1", "ctx(off=0,imm=0)"}, {0, "R10", "fp0"}, {0, "R3_w", "1"}, {1, "R3_w", "2"}, {2, "R3_w", "4"}, {3, "R3_w", "8"}, {4, "R3_w", "16"}, {5, "R3_w", "1"}, {6, "R4_w", "32"}, {7, "R4_w", "16"}, {8, "R4_w", "8"}, {9, "R4_w", "4"}, {10, "R4_w", "2"}, }, }, { .descr = "addsub", .insns = { BPF_MOV64_IMM(BPF_REG_3, 4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {0, "R1", "ctx(off=0,imm=0)"}, {0, "R10", "fp0"}, {0, "R3_w", "4"}, {1, "R3_w", "8"}, {2, "R3_w", "10"}, {3, "R4_w", "8"}, {4, "R4_w", "12"}, {5, "R4_w", "14"}, }, }, { .descr = "mul", .insns = { BPF_MOV64_IMM(BPF_REG_3, 7), BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 2), BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {0, "R1", "ctx(off=0,imm=0)"}, {0, "R10", "fp0"}, {0, "R3_w", "7"}, {1, "R3_w", "7"}, {2, "R3_w", "14"}, {3, "R3_w", "56"}, }, }, /* Tests using unknown values */ #define PREP_PKT_POINTERS \ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ offsetof(struct __sk_buff, data)), \ BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ offsetof(struct __sk_buff, data_end)) #define LOAD_UNKNOWN(DST_REG) \ PREP_PKT_POINTERS, \ BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), \ BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), \ BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 1), \ BPF_EXIT_INSN(), \ BPF_LDX_MEM(BPF_B, DST_REG, BPF_REG_2, 0) { .descr = "unknown shift", .insns = { LOAD_UNKNOWN(BPF_REG_3), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), LOAD_UNKNOWN(BPF_REG_4), BPF_ALU64_IMM(BPF_LSH, BPF_REG_4, 5), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {6, "R0_w", "pkt(off=8,r=8,imm=0)"}, {6, "R3_w", "var_off=(0x0; 0xff)"}, {7, "R3_w", "var_off=(0x0; 0x1fe)"}, {8, "R3_w", "var_off=(0x0; 0x3fc)"}, {9, "R3_w", "var_off=(0x0; 0x7f8)"}, {10, "R3_w", "var_off=(0x0; 0xff0)"}, {12, "R3_w", "pkt_end(off=0,imm=0)"}, {17, "R4_w", "var_off=(0x0; 0xff)"}, {18, "R4_w", "var_off=(0x0; 0x1fe0)"}, {19, "R4_w", "var_off=(0x0; 0xff0)"}, {20, "R4_w", "var_off=(0x0; 0x7f8)"}, {21, "R4_w", "var_off=(0x0; 0x3fc)"}, {22, "R4_w", "var_off=(0x0; 0x1fe)"}, }, }, { .descr = "unknown mul", .insns = { LOAD_UNKNOWN(BPF_REG_3), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 1), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 4), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 8), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {6, "R3_w", "var_off=(0x0; 0xff)"}, {7, "R4_w", "var_off=(0x0; 0xff)"}, {8, "R4_w", "var_off=(0x0; 0xff)"}, {9, "R4_w", "var_off=(0x0; 0xff)"}, {10, "R4_w", "var_off=(0x0; 0x1fe)"}, {11, "R4_w", "var_off=(0x0; 0xff)"}, {12, "R4_w", "var_off=(0x0; 0x3fc)"}, {13, "R4_w", "var_off=(0x0; 0xff)"}, {14, "R4_w", "var_off=(0x0; 0x7f8)"}, {15, "R4_w", "var_off=(0x0; 0xff0)"}, }, }, { .descr = "packet const offset", .insns = { PREP_PKT_POINTERS, BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_MOV64_IMM(BPF_REG_0, 0), /* Skip over ethernet header. */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 0), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 1), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 2), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 3), BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 0), BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 2), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {2, "R5_w", "pkt(off=0,r=0,imm=0)"}, {4, "R5_w", "pkt(off=14,r=0,imm=0)"}, {5, "R4_w", "pkt(off=14,r=0,imm=0)"}, {9, "R2", "pkt(off=0,r=18,imm=0)"}, {10, "R5", "pkt(off=14,r=18,imm=0)"}, {10, "R4_w", "var_off=(0x0; 0xff)"}, {13, "R4_w", "var_off=(0x0; 0xffff)"}, {14, "R4_w", "var_off=(0x0; 0xffff)"}, }, }, { .descr = "packet variable offset", .insns = { LOAD_UNKNOWN(BPF_REG_6), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), /* First, add a constant to the R5 packet pointer, * then a variable with a known alignment. */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), /* Now, test in the other direction. Adding first * the variable offset to R5, then the constant. */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), /* Test multiple accumulations of unknown values * into a packet pointer. */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {6, "R2_w", "pkt(off=0,r=8,imm=0)"}, {7, "R6_w", "var_off=(0x0; 0x3fc)"}, /* Offset is added to packet pointer R5, resulting in * known fixed offset, and variable offset from R6. */ {11, "R5_w", "pkt(id=1,off=14,"}, /* At the time the word size load is performed from R5, * it's total offset is NET_IP_ALIGN + reg->off (0) + * reg->aux_off (14) which is 16. Then the variable * offset is considered using reg->aux_off_align which * is 4 and meets the load's requirements. */ {15, "R4", "var_off=(0x0; 0x3fc)"}, {15, "R5", "var_off=(0x0; 0x3fc)"}, /* Variable offset is added to R5 packet pointer, * resulting in auxiliary alignment of 4. To avoid BPF * verifier's precision backtracking logging * interfering we also have a no-op R4 = R5 * instruction to validate R5 state. We also check * that R4 is what it should be in such case. */ {18, "R4_w", "var_off=(0x0; 0x3fc)"}, {18, "R5_w", "var_off=(0x0; 0x3fc)"}, /* Constant offset is added to R5, resulting in * reg->off of 14. */ {19, "R5_w", "pkt(id=2,off=14,"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off * (14) which is 16. Then the variable offset is 4-byte * aligned, so the total offset is 4-byte aligned and * meets the load's requirements. */ {24, "R4", "var_off=(0x0; 0x3fc)"}, {24, "R5", "var_off=(0x0; 0x3fc)"}, /* Constant offset is added to R5 packet pointer, * resulting in reg->off value of 14. */ {26, "R5_w", "pkt(off=14,r=8,"}, /* Variable offset is added to R5, resulting in a * variable offset of (4n). See comment for insn #18 * for R4 = R5 trick. */ {28, "R4_w", "var_off=(0x0; 0x3fc)"}, {28, "R5_w", "var_off=(0x0; 0x3fc)"}, /* Constant is added to R5 again, setting reg->off to 18. */ {29, "R5_w", "pkt(id=3,off=18,"}, /* And once more we add a variable; resulting var_off * is still (4n), fixed offset is not changed. * Also, we create a new reg->id. */ {31, "R4_w", "var_off=(0x0; 0x7fc)"}, {31, "R5_w", "var_off=(0x0; 0x7fc)"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (18) * which is 20. Then the variable offset is (4n), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {35, "R4", "var_off=(0x0; 0x7fc)"}, {35, "R5", "var_off=(0x0; 0x7fc)"}, }, }, { .descr = "packet variable offset 2", .insns = { /* Create an unknown offset, (4n+2)-aligned */ LOAD_UNKNOWN(BPF_REG_6), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14), /* Add it to the packet pointer */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), /* Make a (4n) offset from the value we just read */ BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 0xff), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), /* Add it to the packet pointer */ BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {6, "R2_w", "pkt(off=0,r=8,imm=0)"}, {7, "R6_w", "var_off=(0x0; 0x3fc)"}, /* Adding 14 makes R6 be (4n+2) */ {8, "R6_w", "var_off=(0x2; 0x7fc)"}, /* Packet pointer has (4n+2) offset */ {11, "R5_w", "var_off=(0x2; 0x7fc)"}, {12, "R4", "var_off=(0x2; 0x7fc)"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {15, "R5", "var_off=(0x2; 0x7fc)"}, /* Newly read value in R6 was shifted left by 2, so has * known alignment of 4. */ {17, "R6_w", "var_off=(0x0; 0x3fc)"}, /* Added (4n) to packet pointer's (4n+2) var_off, giving * another (4n+2). */ {19, "R5_w", "var_off=(0x2; 0xffc)"}, {20, "R4", "var_off=(0x2; 0xffc)"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {23, "R5", "var_off=(0x2; 0xffc)"}, }, }, { .descr = "dubious pointer arithmetic", .insns = { PREP_PKT_POINTERS, BPF_MOV64_IMM(BPF_REG_0, 0), /* (ptr - ptr) << 2 */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_REG(BPF_SUB, BPF_REG_5, BPF_REG_2), BPF_ALU64_IMM(BPF_LSH, BPF_REG_5, 2), /* We have a (4n) value. Let's make a packet offset * out of it. First add 14, to make it a (4n+2) */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), /* Then make sure it's nonnegative */ BPF_JMP_IMM(BPF_JSGE, BPF_REG_5, 0, 1), BPF_EXIT_INSN(), /* Add it to packet pointer */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = REJECT, .matches = { {3, "R5_w", "pkt_end(off=0,imm=0)"}, /* (ptr - ptr) << 2 == unknown, (4n) */ {5, "R5_w", "var_off=(0x0; 0xfffffffffffffffc)"}, /* (4n) + 14 == (4n+2). We blow our bounds, because * the add could overflow. */ {6, "R5_w", "var_off=(0x2; 0xfffffffffffffffc)"}, /* Checked s>=0 */ {9, "R5", "var_off=(0x2; 0x7ffffffffffffffc)"}, /* packet pointer + nonnegative (4n+2) */ {11, "R6_w", "var_off=(0x2; 0x7ffffffffffffffc)"}, {12, "R4_w", "var_off=(0x2; 0x7ffffffffffffffc)"}, /* NET_IP_ALIGN + (4n+2) == (4n), alignment is fine. * We checked the bounds, but it might have been able * to overflow if the packet pointer started in the * upper half of the address space. * So we did not get a 'range' on R6, and the access * attempt will fail. */ {15, "R6_w", "var_off=(0x2; 0x7ffffffffffffffc)"}, } }, { .descr = "variable subtraction", .insns = { /* Create an unknown offset, (4n+2)-aligned */ LOAD_UNKNOWN(BPF_REG_6), BPF_MOV64_REG(BPF_REG_7, BPF_REG_6), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14), /* Create another unknown, (4n)-aligned, and subtract * it from the first one */ BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 2), BPF_ALU64_REG(BPF_SUB, BPF_REG_6, BPF_REG_7), /* Bounds-check the result */ BPF_JMP_IMM(BPF_JSGE, BPF_REG_6, 0, 1), BPF_EXIT_INSN(), /* Add it to the packet pointer */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {6, "R2_w", "pkt(off=0,r=8,imm=0)"}, {8, "R6_w", "var_off=(0x0; 0x3fc)"}, /* Adding 14 makes R6 be (4n+2) */ {9, "R6_w", "var_off=(0x2; 0x7fc)"}, /* New unknown value in R7 is (4n) */ {10, "R7_w", "var_off=(0x0; 0x3fc)"}, /* Subtracting it from R6 blows our unsigned bounds */ {11, "R6", "var_off=(0x2; 0xfffffffffffffffc)"}, /* Checked s>= 0 */ {14, "R6", "var_off=(0x2; 0x7fc)"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {20, "R5", "var_off=(0x2; 0x7fc)"}, }, }, { .descr = "pointer variable subtraction", .insns = { /* Create an unknown offset, (4n+2)-aligned and bounded * to [14,74] */ LOAD_UNKNOWN(BPF_REG_6), BPF_MOV64_REG(BPF_REG_7, BPF_REG_6), BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 0xf), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14), /* Subtract it from the packet pointer */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_SUB, BPF_REG_5, BPF_REG_6), /* Create another unknown, (4n)-aligned and >= 74. * That in fact means >= 76, since 74 % 4 == 2 */ BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, 76), /* Add it to the packet pointer */ BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_7), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {6, "R2_w", "pkt(off=0,r=8,imm=0)"}, {9, "R6_w", "var_off=(0x0; 0x3c)"}, /* Adding 14 makes R6 be (4n+2) */ {10, "R6_w", "var_off=(0x2; 0x7c)"}, /* Subtracting from packet pointer overflows ubounds */ {13, "R5_w", "var_off=(0xffffffffffffff82; 0x7c)"}, /* New unknown value in R7 is (4n), >= 76 */ {14, "R7_w", "var_off=(0x0; 0x7fc)"}, /* Adding it to packet pointer gives nice bounds again */ {16, "R5_w", "var_off=(0x2; 0x7fc)"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {20, "R5", "var_off=(0x2; 0x7fc)"}, }, }, }; static int probe_filter_length(const struct bpf_insn *fp) { int len; for (len = MAX_INSNS - 1; len > 0; --len) if (fp[len].code != 0 || fp[len].imm != 0) break; return len + 1; } static char bpf_vlog[32768]; static int do_test_single(struct bpf_align_test *test) { struct bpf_insn *prog = test->insns; int prog_type = test->prog_type; char bpf_vlog_copy[32768]; LIBBPF_OPTS(bpf_prog_load_opts, opts, .prog_flags = BPF_F_STRICT_ALIGNMENT, .log_buf = bpf_vlog, .log_size = sizeof(bpf_vlog), .log_level = 2, ); const char *line_ptr; int cur_line = -1; int prog_len, i; int fd_prog; int ret; prog_len = probe_filter_length(prog); fd_prog = bpf_prog_load(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", prog, prog_len, &opts); if (fd_prog < 0 && test->result != REJECT) { printf("Failed to load program.\n"); printf("%s", bpf_vlog); ret = 1; } else if (fd_prog >= 0 && test->result == REJECT) { printf("Unexpected success to load!\n"); printf("%s", bpf_vlog); ret = 1; close(fd_prog); } else { ret = 0; /* We make a local copy so that we can strtok() it */ strncpy(bpf_vlog_copy, bpf_vlog, sizeof(bpf_vlog_copy)); line_ptr = strtok(bpf_vlog_copy, "\n"); for (i = 0; i < MAX_MATCHES; i++) { struct bpf_reg_match m = test->matches[i]; const char *p; int tmp; if (!m.match) break; while (line_ptr) { cur_line = -1; sscanf(line_ptr, "%u: ", &cur_line); if (cur_line == -1) sscanf(line_ptr, "from %u to %u: ", &tmp, &cur_line); if (cur_line == m.line) break; line_ptr = strtok(NULL, "\n"); } if (!line_ptr) { printf("Failed to find line %u for match: %s=%s\n", m.line, m.reg, m.match); ret = 1; printf("%s", bpf_vlog); break; } /* Check the next line as well in case the previous line * did not have a corresponding bpf insn. Example: * func#0 @0 * 0: R1=ctx(off=0,imm=0) R10=fp0 * 0: (b7) r3 = 2 ; R3_w=2 * * Sometimes it's actually two lines below, e.g. when * searching for "6: R3_w=scalar(umax=255,var_off=(0x0; 0xff))": * from 4 to 6: R0_w=pkt(off=8,r=8,imm=0) R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=8,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0 * 6: R0_w=pkt(off=8,r=8,imm=0) R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=8,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0 * 6: (71) r3 = *(u8 *)(r2 +0) ; R2_w=pkt(off=0,r=8,imm=0) R3_w=scalar(umax=255,var_off=(0x0; 0xff)) */ while (!(p = strstr(line_ptr, m.reg)) || !strstr(p, m.match)) { cur_line = -1; line_ptr = strtok(NULL, "\n"); sscanf(line_ptr ?: "", "%u: ", &cur_line); if (!line_ptr || cur_line != m.line) break; } if (cur_line != m.line || !line_ptr || !(p = strstr(line_ptr, m.reg)) || !strstr(p, m.match)) { printf("Failed to find match %u: %s=%s\n", m.line, m.reg, m.match); ret = 1; printf("%s", bpf_vlog); break; } } if (fd_prog >= 0) close(fd_prog); } return ret; } void test_align(void) { unsigned int i; for (i = 0; i < ARRAY_SIZE(tests); i++) { struct bpf_align_test *test = &tests[i]; if (!test__start_subtest(test->descr)) continue; ASSERT_OK(do_test_single(test), test->descr); } } |