Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | // SPDX-License-Identifier: GPL-2.0 /* * Implementation of the hash table type. * * Author : Stephen Smalley, <stephen.smalley.work@gmail.com> */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/errno.h> #include "hashtab.h" #include "security.h" static struct kmem_cache *hashtab_node_cachep __ro_after_init; /* * Here we simply round the number of elements up to the nearest power of two. * I tried also other options like rounding down or rounding to the closest * power of two (up or down based on which is closer), but I was unable to * find any significant difference in lookup/insert performance that would * justify switching to a different (less intuitive) formula. It could be that * a different formula is actually more optimal, but any future changes here * should be supported with performance/memory usage data. * * The total memory used by the htable arrays (only) with Fedora policy loaded * is approximately 163 KB at the time of writing. */ static u32 hashtab_compute_size(u32 nel) { return nel == 0 ? 0 : roundup_pow_of_two(nel); } int hashtab_init(struct hashtab *h, u32 nel_hint) { u32 size = hashtab_compute_size(nel_hint); /* should already be zeroed, but better be safe */ h->nel = 0; h->size = 0; h->htable = NULL; if (size) { h->htable = kcalloc(size, sizeof(*h->htable), GFP_KERNEL); if (!h->htable) return -ENOMEM; h->size = size; } return 0; } int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst, void *key, void *datum) { struct hashtab_node *newnode; newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL); if (!newnode) return -ENOMEM; newnode->key = key; newnode->datum = datum; newnode->next = *dst; *dst = newnode; h->nel++; return 0; } void hashtab_destroy(struct hashtab *h) { u32 i; struct hashtab_node *cur, *temp; for (i = 0; i < h->size; i++) { cur = h->htable[i]; while (cur) { temp = cur; cur = cur->next; kmem_cache_free(hashtab_node_cachep, temp); } h->htable[i] = NULL; } kfree(h->htable); h->htable = NULL; } int hashtab_map(struct hashtab *h, int (*apply)(void *k, void *d, void *args), void *args) { u32 i; int ret; struct hashtab_node *cur; for (i = 0; i < h->size; i++) { cur = h->htable[i]; while (cur) { ret = apply(cur->key, cur->datum, args); if (ret) return ret; cur = cur->next; } } return 0; } #ifdef CONFIG_SECURITY_SELINUX_DEBUG void hashtab_stat(struct hashtab *h, struct hashtab_info *info) { u32 i, chain_len, slots_used, max_chain_len; u64 chain2_len_sum; struct hashtab_node *cur; slots_used = 0; max_chain_len = 0; chain2_len_sum = 0; for (i = 0; i < h->size; i++) { cur = h->htable[i]; if (cur) { slots_used++; chain_len = 0; while (cur) { chain_len++; cur = cur->next; } if (chain_len > max_chain_len) max_chain_len = chain_len; chain2_len_sum += (u64)chain_len * chain_len; } } info->slots_used = slots_used; info->max_chain_len = max_chain_len; info->chain2_len_sum = chain2_len_sum; } #endif /* CONFIG_SECURITY_SELINUX_DEBUG */ int hashtab_duplicate(struct hashtab *new, struct hashtab *orig, int (*copy)(struct hashtab_node *new, struct hashtab_node *orig, void *args), int (*destroy)(void *k, void *d, void *args), void *args) { struct hashtab_node *cur, *tmp, *tail; u32 i; int rc; memset(new, 0, sizeof(*new)); new->htable = kcalloc(orig->size, sizeof(*new->htable), GFP_KERNEL); if (!new->htable) return -ENOMEM; new->size = orig->size; for (i = 0; i < orig->size; i++) { tail = NULL; for (cur = orig->htable[i]; cur; cur = cur->next) { tmp = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL); if (!tmp) goto error; rc = copy(tmp, cur, args); if (rc) { kmem_cache_free(hashtab_node_cachep, tmp); goto error; } tmp->next = NULL; if (!tail) new->htable[i] = tmp; else tail->next = tmp; tail = tmp; new->nel++; } } return 0; error: for (i = 0; i < new->size; i++) { for (cur = new->htable[i]; cur; cur = tmp) { tmp = cur->next; destroy(cur->key, cur->datum, args); kmem_cache_free(hashtab_node_cachep, cur); } } kfree(new->htable); memset(new, 0, sizeof(*new)); return -ENOMEM; } void __init hashtab_cache_init(void) { hashtab_node_cachep = kmem_cache_create("hashtab_node", sizeof(struct hashtab_node), 0, SLAB_PANIC, NULL); } |