Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | // SPDX-License-Identifier: GPL-2.0 /* arch/sparc64/kernel/kprobes.c * * Copyright (C) 2004 David S. Miller <davem@davemloft.net> */ #include <linux/kernel.h> #include <linux/kprobes.h> #include <linux/extable.h> #include <linux/kdebug.h> #include <linux/slab.h> #include <linux/context_tracking.h> #include <asm/signal.h> #include <asm/cacheflush.h> #include <linux/uaccess.h> /* We do not have hardware single-stepping on sparc64. * So we implement software single-stepping with breakpoint * traps. The top-level scheme is similar to that used * in the x86 kprobes implementation. * * In the kprobe->ainsn.insn[] array we store the original * instruction at index zero and a break instruction at * index one. * * When we hit a kprobe we: * - Run the pre-handler * - Remember "regs->tnpc" and interrupt level stored in * "regs->tstate" so we can restore them later * - Disable PIL interrupts * - Set regs->tpc to point to kprobe->ainsn.insn[0] * - Set regs->tnpc to point to kprobe->ainsn.insn[1] * - Mark that we are actively in a kprobe * * At this point we wait for the second breakpoint at * kprobe->ainsn.insn[1] to hit. When it does we: * - Run the post-handler * - Set regs->tpc to "remembered" regs->tnpc stored above, * restore the PIL interrupt level in "regs->tstate" as well * - Make any adjustments necessary to regs->tnpc in order * to handle relative branches correctly. See below. * - Mark that we are no longer actively in a kprobe. */ DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; int __kprobes arch_prepare_kprobe(struct kprobe *p) { if ((unsigned long) p->addr & 0x3UL) return -EILSEQ; p->ainsn.insn[0] = *p->addr; flushi(&p->ainsn.insn[0]); p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2; flushi(&p->ainsn.insn[1]); p->opcode = *p->addr; return 0; } void __kprobes arch_arm_kprobe(struct kprobe *p) { *p->addr = BREAKPOINT_INSTRUCTION; flushi(p->addr); } void __kprobes arch_disarm_kprobe(struct kprobe *p) { *p->addr = p->opcode; flushi(p->addr); } static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc; kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil; } static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc; kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil; } static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, p); kcb->kprobe_orig_tnpc = regs->tnpc; kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL); } static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { regs->tstate |= TSTATE_PIL; /*single step inline, if it a breakpoint instruction*/ if (p->opcode == BREAKPOINT_INSTRUCTION) { regs->tpc = (unsigned long) p->addr; regs->tnpc = kcb->kprobe_orig_tnpc; } else { regs->tpc = (unsigned long) &p->ainsn.insn[0]; regs->tnpc = (unsigned long) &p->ainsn.insn[1]; } } static int __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p; void *addr = (void *) regs->tpc; int ret = 0; struct kprobe_ctlblk *kcb; /* * We don't want to be preempted for the entire * duration of kprobe processing */ preempt_disable(); kcb = get_kprobe_ctlblk(); if (kprobe_running()) { p = get_kprobe(addr); if (p) { if (kcb->kprobe_status == KPROBE_HIT_SS) { regs->tstate = ((regs->tstate & ~TSTATE_PIL) | kcb->kprobe_orig_tstate_pil); goto no_kprobe; } /* We have reentered the kprobe_handler(), since * another probe was hit while within the handler. * We here save the original kprobes variables and * just single step on the instruction of the new probe * without calling any user handlers. */ save_previous_kprobe(kcb); set_current_kprobe(p, regs, kcb); kprobes_inc_nmissed_count(p); kcb->kprobe_status = KPROBE_REENTER; prepare_singlestep(p, regs, kcb); return 1; } else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { /* The breakpoint instruction was removed by * another cpu right after we hit, no further * handling of this interrupt is appropriate */ ret = 1; } goto no_kprobe; } p = get_kprobe(addr); if (!p) { if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. */ ret = 1; } /* Not one of ours: let kernel handle it */ goto no_kprobe; } set_current_kprobe(p, regs, kcb); kcb->kprobe_status = KPROBE_HIT_ACTIVE; if (p->pre_handler && p->pre_handler(p, regs)) { reset_current_kprobe(); preempt_enable_no_resched(); return 1; } prepare_singlestep(p, regs, kcb); kcb->kprobe_status = KPROBE_HIT_SS; return 1; no_kprobe: preempt_enable_no_resched(); return ret; } /* If INSN is a relative control transfer instruction, * return the corrected branch destination value. * * regs->tpc and regs->tnpc still hold the values of the * program counters at the time of trap due to the execution * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1] * */ static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p, struct pt_regs *regs) { unsigned long real_pc = (unsigned long) p->addr; /* Branch not taken, no mods necessary. */ if (regs->tnpc == regs->tpc + 0x4UL) return real_pc + 0x8UL; /* The three cases are call, branch w/prediction, * and traditional branch. */ if ((insn & 0xc0000000) == 0x40000000 || (insn & 0xc1c00000) == 0x00400000 || (insn & 0xc1c00000) == 0x00800000) { unsigned long ainsn_addr; ainsn_addr = (unsigned long) &p->ainsn.insn[0]; /* The instruction did all the work for us * already, just apply the offset to the correct * instruction location. */ return (real_pc + (regs->tnpc - ainsn_addr)); } /* It is jmpl or some other absolute PC modification instruction, * leave NPC as-is. */ return regs->tnpc; } /* If INSN is an instruction which writes it's PC location * into a destination register, fix that up. */ static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn, unsigned long real_pc) { unsigned long *slot = NULL; /* Simplest case is 'call', which always uses %o7 */ if ((insn & 0xc0000000) == 0x40000000) { slot = ®s->u_regs[UREG_I7]; } /* 'jmpl' encodes the register inside of the opcode */ if ((insn & 0xc1f80000) == 0x81c00000) { unsigned long rd = ((insn >> 25) & 0x1f); if (rd <= 15) { slot = ®s->u_regs[rd]; } else { /* Hard case, it goes onto the stack. */ flushw_all(); rd -= 16; slot = (unsigned long *) (regs->u_regs[UREG_FP] + STACK_BIAS); slot += rd; } } if (slot != NULL) *slot = real_pc; } /* * Called after single-stepping. p->addr is the address of the * instruction which has been replaced by the breakpoint * instruction. To avoid the SMP problems that can occur when we * temporarily put back the original opcode to single-step, we * single-stepped a copy of the instruction. The address of this * copy is &p->ainsn.insn[0]. * * This function prepares to return from the post-single-step * breakpoint trap. */ static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { u32 insn = p->ainsn.insn[0]; regs->tnpc = relbranch_fixup(insn, p, regs); /* This assignment must occur after relbranch_fixup() */ regs->tpc = kcb->kprobe_orig_tnpc; retpc_fixup(regs, insn, (unsigned long) p->addr); regs->tstate = ((regs->tstate & ~TSTATE_PIL) | kcb->kprobe_orig_tstate_pil); } static int __kprobes post_kprobe_handler(struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (!cur) return 0; if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } resume_execution(cur, regs, kcb); /*Restore back the original saved kprobes variables and continue. */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); goto out; } reset_current_kprobe(); out: preempt_enable_no_resched(); return 1; } int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); const struct exception_table_entry *entry; switch(kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the tpc points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ regs->tpc = (unsigned long)cur->addr; regs->tnpc = kcb->kprobe_orig_tnpc; regs->tstate = ((regs->tstate & ~TSTATE_PIL) | kcb->kprobe_orig_tstate_pil); if (kcb->kprobe_status == KPROBE_REENTER) restore_previous_kprobe(kcb); else reset_current_kprobe(); preempt_enable_no_resched(); break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * In case the user-specified fault handler returned * zero, try to fix up. */ entry = search_exception_tables(regs->tpc); if (entry) { regs->tpc = entry->fixup; regs->tnpc = regs->tpc + 4; return 1; } /* * fixup_exception() could not handle it, * Let do_page_fault() fix it. */ break; default: break; } return 0; } /* * Wrapper routine to for handling exceptions. */ int __kprobes kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = (struct die_args *)data; int ret = NOTIFY_DONE; if (args->regs && user_mode(args->regs)) return ret; switch (val) { case DIE_DEBUG: if (kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_DEBUG_2: if (post_kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; default: break; } return ret; } asmlinkage void __kprobes kprobe_trap(unsigned long trap_level, struct pt_regs *regs) { enum ctx_state prev_state = exception_enter(); BUG_ON(trap_level != 0x170 && trap_level != 0x171); if (user_mode(regs)) { local_irq_enable(); bad_trap(regs, trap_level); goto out; } /* trap_level == 0x170 --> ta 0x70 * trap_level == 0x171 --> ta 0x71 */ if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2, (trap_level == 0x170) ? "debug" : "debug_2", regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) bad_trap(regs, trap_level); out: exception_exit(prev_state); } /* The value stored in the return address register is actually 2 * instructions before where the callee will return to. * Sequences usually look something like this * * call some_function <--- return register points here * nop <--- call delay slot * whatever <--- where callee returns to * * To keep trampoline_probe_handler logic simpler, we normalize the * value kept in ri->ret_addr so we don't need to keep adjusting it * back and forth. */ void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8); ri->fp = NULL; /* Replace the return addr with trampoline addr */ regs->u_regs[UREG_RETPC] = ((unsigned long)__kretprobe_trampoline) - 8; } /* * Called when the probe at kretprobe trampoline is hit */ static int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) { unsigned long orig_ret_address = 0; orig_ret_address = __kretprobe_trampoline_handler(regs, NULL); regs->tpc = orig_ret_address; regs->tnpc = orig_ret_address + 4; /* * By returning a non-zero value, we are telling * kprobe_handler() that we don't want the post_handler * to run (and have re-enabled preemption) */ return 1; } static void __used kretprobe_trampoline_holder(void) { asm volatile(".global __kretprobe_trampoline\n" "__kretprobe_trampoline:\n" "\tnop\n" "\tnop\n"); } static struct kprobe trampoline_p = { .addr = (kprobe_opcode_t *) &__kretprobe_trampoline, .pre_handler = trampoline_probe_handler }; int __init arch_init_kprobes(void) { return register_kprobe(&trampoline_p); } int __kprobes arch_trampoline_kprobe(struct kprobe *p) { if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline) return 1; return 0; } |