// SPDX-License-Identifier: GPL-2.0-or-later
/* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
* Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
* Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
* Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
* Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
* Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
* Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
* <http://rt2x00.serialmonkey.com>
*/
/* Module: rt2800mmio
* Abstract: rt2800 MMIO device routines.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/export.h>
#include "rt2x00.h"
#include "rt2x00mmio.h"
#include "rt2800.h"
#include "rt2800lib.h"
#include "rt2800mmio.h"
unsigned int rt2800mmio_get_dma_done(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
struct queue_entry *entry;
int idx, qid;
switch (queue->qid) {
case QID_AC_VO:
case QID_AC_VI:
case QID_AC_BE:
case QID_AC_BK:
qid = queue->qid;
idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(qid));
break;
case QID_MGMT:
idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(5));
break;
case QID_RX:
entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
idx = entry->entry_idx;
break;
default:
WARN_ON_ONCE(1);
idx = 0;
break;
}
return idx;
}
EXPORT_SYMBOL_GPL(rt2800mmio_get_dma_done);
/*
* TX descriptor initialization
*/
__le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
{
return (__le32 *) entry->skb->data;
}
EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
void rt2800mmio_write_tx_desc(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
__le32 *txd = entry_priv->desc;
u32 word;
const unsigned int txwi_size = entry->queue->winfo_size;
/*
* The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
* must contains a TXWI structure + 802.11 header + padding + 802.11
* data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
* SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
* data. It means that LAST_SEC0 is always 0.
*/
/*
* Initialize TX descriptor
*/
word = 0;
rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
rt2x00_desc_write(txd, 0, word);
word = 0;
rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
!test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W1_BURST,
test_bit(ENTRY_TXD_BURST, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
rt2x00_desc_write(txd, 1, word);
word = 0;
rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
skbdesc->skb_dma + txwi_size);
rt2x00_desc_write(txd, 2, word);
word = 0;
rt2x00_set_field32(&word, TXD_W3_WIV,
!test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
rt2x00_desc_write(txd, 3, word);
/*
* Register descriptor details in skb frame descriptor.
*/
skbdesc->desc = txd;
skbdesc->desc_len = TXD_DESC_SIZE;
}
EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
/*
* RX control handlers
*/
void rt2800mmio_fill_rxdone(struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc)
{
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
__le32 *rxd = entry_priv->desc;
u32 word;
word = rt2x00_desc_read(rxd, 3);
if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
/*
* Unfortunately we don't know the cipher type used during
* decryption. This prevents us from correct providing
* correct statistics through debugfs.
*/
rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
/*
* Hardware has stripped IV/EIV data from 802.11 frame during
* decryption. Unfortunately the descriptor doesn't contain
* any fields with the EIV/IV data either, so they can't
* be restored by rt2x00lib.
*/
rxdesc->flags |= RX_FLAG_IV_STRIPPED;
/*
* The hardware has already checked the Michael Mic and has
* stripped it from the frame. Signal this to mac80211.
*/
rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
rxdesc->flags |= RX_FLAG_DECRYPTED;
} else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
/*
* In order to check the Michael Mic, the packet must have
* been decrypted. Mac80211 doesnt check the MMIC failure
* flag to initiate MMIC countermeasures if the decoded flag
* has not been set.
*/
rxdesc->flags |= RX_FLAG_DECRYPTED;
rxdesc->flags |= RX_FLAG_MMIC_ERROR;
}
}
if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
rxdesc->dev_flags |= RXDONE_MY_BSS;
if (rt2x00_get_field32(word, RXD_W3_L2PAD))
rxdesc->dev_flags |= RXDONE_L2PAD;
/*
* Process the RXWI structure that is at the start of the buffer.
*/
rt2800_process_rxwi(entry, rxdesc);
}
EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
/*
* Interrupt functions.
*/
static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
{
struct ieee80211_conf conf = { .flags = 0 };
struct rt2x00lib_conf libconf = { .conf = &conf };
rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}
static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
struct rt2x00_field32 irq_field)
{
u32 reg;
/*
* Enable a single interrupt. The interrupt mask register
* access needs locking.
*/
spin_lock_irq(&rt2x00dev->irqmask_lock);
reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
rt2x00_set_field32(®, irq_field, 1);
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
spin_unlock_irq(&rt2x00dev->irqmask_lock);
}
void rt2800mmio_pretbtt_tasklet(struct tasklet_struct *t)
{
struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
pretbtt_tasklet);
rt2x00lib_pretbtt(rt2x00dev);
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
}
EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
void rt2800mmio_tbtt_tasklet(struct tasklet_struct *t)
{
struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
u32 reg;
rt2x00lib_beacondone(rt2x00dev);
if (rt2x00dev->intf_ap_count) {
/*
* The rt2800pci hardware tbtt timer is off by 1us per tbtt
* causing beacon skew and as a result causing problems with
* some powersaving clients over time. Shorten the beacon
* interval every 64 beacons by 64us to mitigate this effect.
*/
if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
(rt2x00dev->beacon_int * 16) - 1);
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
(rt2x00dev->beacon_int * 16));
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
}
drv_data->tbtt_tick++;
drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
}
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
}
EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
void rt2800mmio_rxdone_tasklet(struct tasklet_struct *t)
{
struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
rxdone_tasklet);
if (rt2x00mmio_rxdone(rt2x00dev))
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
}
EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
void rt2800mmio_autowake_tasklet(struct tasklet_struct *t)
{
struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
autowake_tasklet);
rt2800mmio_wakeup(rt2x00dev);
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800mmio_enable_interrupt(rt2x00dev,
INT_MASK_CSR_AUTO_WAKEUP);
}
EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
{
u32 status;
unsigned long flags;
/*
* The TX_FIFO_STATUS interrupt needs special care. We should
* read TX_STA_FIFO but we should do it immediately as otherwise
* the register can overflow and we would lose status reports.
*
* Hence, read the TX_STA_FIFO register and copy all tx status
* reports into a kernel FIFO which is handled in the txstatus
* tasklet. We use a tasklet to process the tx status reports
* because we can schedule the tasklet multiple times (when the
* interrupt fires again during tx status processing).
*
* We also read statuses from tx status timeout timer, use
* lock to prevent concurent writes to fifo.
*/
spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
break;
kfifo_put(&rt2x00dev->txstatus_fifo, status);
}
spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
}
void rt2800mmio_txstatus_tasklet(struct tasklet_struct *t)
{
struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
txstatus_tasklet);
rt2800_txdone(rt2x00dev, 16);
if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}
EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
{
struct rt2x00_dev *rt2x00dev = dev_instance;
u32 reg, mask;
/* Read status and ACK all interrupts */
reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
if (!reg)
return IRQ_NONE;
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return IRQ_HANDLED;
/*
* Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
* for interrupts and interrupt masks we can just use the value of
* INT_SOURCE_CSR to create the interrupt mask.
*/
mask = ~reg;
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
rt2800mmio_fetch_txstatus(rt2x00dev);
if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
tasklet_schedule(&rt2x00dev->autowake_tasklet);
/*
* Disable all interrupts for which a tasklet was scheduled right now,
* the tasklet will reenable the appropriate interrupts.
*/
spin_lock(&rt2x00dev->irqmask_lock);
reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
reg &= mask;
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
spin_unlock(&rt2x00dev->irqmask_lock);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
u32 reg;
unsigned long flags;
/*
* When interrupts are being enabled, the interrupt registers
* should clear the register to assure a clean state.
*/
if (state == STATE_RADIO_IRQ_ON) {
reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
}
spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
reg = 0;
if (state == STATE_RADIO_IRQ_ON) {
rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, 1);
rt2x00_set_field32(®, INT_MASK_CSR_TBTT, 1);
rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, 1);
rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1);
rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, 1);
}
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
if (state == STATE_RADIO_IRQ_OFF) {
/*
* Wait for possibly running tasklets to finish.
*/
tasklet_kill(&rt2x00dev->txstatus_tasklet);
tasklet_kill(&rt2x00dev->rxdone_tasklet);
tasklet_kill(&rt2x00dev->autowake_tasklet);
tasklet_kill(&rt2x00dev->tbtt_tasklet);
tasklet_kill(&rt2x00dev->pretbtt_tasklet);
}
}
EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
/*
* Queue handlers.
*/
void rt2800mmio_start_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:
reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1);
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
break;
case QID_BEACON:
reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1);
rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1);
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1);
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
break;
default:
break;
}
}
EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
/* 200 ms */
#define TXSTATUS_TIMEOUT 200000000
void rt2800mmio_kick_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
struct queue_entry *entry;
switch (queue->qid) {
case QID_AC_VO:
case QID_AC_VI:
case QID_AC_BE:
case QID_AC_BK:
WARN_ON_ONCE(rt2x00queue_empty(queue));
entry = rt2x00queue_get_entry(queue, Q_INDEX);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
entry->entry_idx);
hrtimer_start(&rt2x00dev->txstatus_timer,
TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
break;
case QID_MGMT:
entry = rt2x00queue_get_entry(queue, Q_INDEX);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
entry->entry_idx);
break;
default:
break;
}
}
EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
bool tx_queue = false;
unsigned int i;
switch (queue->qid) {
case QID_AC_VO:
case QID_AC_VI:
case QID_AC_BE:
case QID_AC_BK:
tx_queue = true;
break;
case QID_RX:
break;
default:
return;
}
for (i = 0; i < 5; i++) {
/*
* Check if the driver is already done, otherwise we
* have to sleep a little while to give the driver/hw
* the oppurtunity to complete interrupt process itself.
*/
if (rt2x00queue_empty(queue))
break;
/*
* For TX queues schedule completion tasklet to catch
* tx status timeouts, othewise just wait.
*/
if (tx_queue)
queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
/*
* Wait for a little while to give the driver
* the oppurtunity to recover itself.
*/
msleep(50);
}
}
EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
void rt2800mmio_stop_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:
reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0);
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
break;
case QID_BEACON:
reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0);
rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0);
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
/*
* Wait for current invocation to finish. The tasklet
* won't be scheduled anymore afterwards since we disabled
* the TBTT and PRE TBTT timer.
*/
tasklet_kill(&rt2x00dev->tbtt_tasklet);
tasklet_kill(&rt2x00dev->pretbtt_tasklet);
break;
default:
break;
}
}
EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
void rt2800mmio_queue_init(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
unsigned short txwi_size, rxwi_size;
rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
switch (queue->qid) {
case QID_RX:
queue->limit = 128;
queue->data_size = AGGREGATION_SIZE;
queue->desc_size = RXD_DESC_SIZE;
queue->winfo_size = rxwi_size;
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
break;
case QID_AC_VO:
case QID_AC_VI:
case QID_AC_BE:
case QID_AC_BK:
queue->limit = 64;
queue->data_size = AGGREGATION_SIZE;
queue->desc_size = TXD_DESC_SIZE;
queue->winfo_size = txwi_size;
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
break;
case QID_BEACON:
queue->limit = 8;
queue->data_size = 0; /* No DMA required for beacons */
queue->desc_size = TXD_DESC_SIZE;
queue->winfo_size = txwi_size;
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
break;
case QID_ATIM:
default:
BUG();
break;
}
}
EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
/*
* Initialization functions.
*/
bool rt2800mmio_get_entry_state(struct queue_entry *entry)
{
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
u32 word;
if (entry->queue->qid == QID_RX) {
word = rt2x00_desc_read(entry_priv->desc, 1);
return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
} else {
word = rt2x00_desc_read(entry_priv->desc, 1);
return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
}
}
EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
void rt2800mmio_clear_entry(struct queue_entry *entry)
{
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
u32 word;
if (entry->queue->qid == QID_RX) {
word = rt2x00_desc_read(entry_priv->desc, 0);
rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
rt2x00_desc_write(entry_priv->desc, 0, word);
word = rt2x00_desc_read(entry_priv->desc, 1);
rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
rt2x00_desc_write(entry_priv->desc, 1, word);
/*
* Set RX IDX in register to inform hardware that we have
* handled this entry and it is available for reuse again.
*/
rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
entry->entry_idx);
} else {
word = rt2x00_desc_read(entry_priv->desc, 1);
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
rt2x00_desc_write(entry_priv->desc, 1, word);
/* If last entry stop txstatus timer */
if (entry->queue->length == 1)
hrtimer_cancel(&rt2x00dev->txstatus_timer);
}
}
EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
{
struct queue_entry_priv_mmio *entry_priv;
/*
* Initialize registers.
*/
entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
rt2x00dev->tx[0].limit);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
rt2x00dev->tx[1].limit);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
rt2x00dev->tx[2].limit);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
rt2x00dev->tx[3].limit);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
entry_priv = rt2x00dev->rx->entries[0].priv_data;
rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
rt2x00dev->rx[0].limit);
rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
rt2x00dev->rx[0].limit - 1);
rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
rt2800_disable_wpdma(rt2x00dev);
rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
/*
* Reset DMA indexes
*/
reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1);
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1);
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1);
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1);
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1);
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1);
rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1);
rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
if (rt2x00_is_pcie(rt2x00dev) &&
(rt2x00_rt(rt2x00dev, RT3090) ||
rt2x00_rt(rt2x00dev, RT3390) ||
rt2x00_rt(rt2x00dev, RT3572) ||
rt2x00_rt(rt2x00dev, RT3593) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392) ||
rt2x00_rt(rt2x00dev, RT5592))) {
reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1);
rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1);
rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
}
rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
if (rt2x00_rt(rt2x00dev, RT6352))
return 0;
reg = 0;
rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1);
rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1);
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
/*
* Device state switch handlers.
*/
int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
{
/* Wait for DMA, ignore error until we initialize queues. */
rt2800_wait_wpdma_ready(rt2x00dev);
if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
return -EIO;
return rt2800_enable_radio(rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
static void rt2800mmio_work_txdone(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, txdone_work);
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return;
while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
rt2800_txstatus_timeout(rt2x00dev)) {
tasklet_disable(&rt2x00dev->txstatus_tasklet);
rt2800_txdone(rt2x00dev, UINT_MAX);
rt2800_txdone_nostatus(rt2x00dev);
tasklet_enable(&rt2x00dev->txstatus_tasklet);
}
if (rt2800_txstatus_pending(rt2x00dev))
hrtimer_start(&rt2x00dev->txstatus_timer,
TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
}
static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer)
{
struct rt2x00_dev *rt2x00dev =
container_of(timer, struct rt2x00_dev, txstatus_timer);
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
goto out;
if (!rt2800_txstatus_pending(rt2x00dev))
goto out;
rt2800mmio_fetch_txstatus(rt2x00dev);
if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
tasklet_schedule(&rt2x00dev->txstatus_tasklet);
else
queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
out:
return HRTIMER_NORESTART;
}
int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev)
{
int retval;
retval = rt2800_probe_hw(rt2x00dev);
if (retval)
return retval;
/*
* Set txstatus timer function.
*/
rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout;
/*
* Overwrite TX done handler
*/
INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw);
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2800 MMIO library");
MODULE_LICENSE("GPL");