Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/mm/flush.c * * Copyright (C) 1995-2002 Russell King */ #include <linux/module.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/highmem.h> #include <asm/cacheflush.h> #include <asm/cachetype.h> #include <asm/highmem.h> #include <asm/smp_plat.h> #include <asm/tlbflush.h> #include <linux/hugetlb.h> #include "mm.h" #ifdef CONFIG_ARM_HEAVY_MB void (*soc_mb)(void); void arm_heavy_mb(void) { #ifdef CONFIG_OUTER_CACHE_SYNC if (outer_cache.sync) outer_cache.sync(); #endif if (soc_mb) soc_mb(); } EXPORT_SYMBOL(arm_heavy_mb); #endif #ifdef CONFIG_CPU_CACHE_VIPT static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr) { unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT); const int zero = 0; set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL)); asm( "mcrr p15, 0, %1, %0, c14\n" " mcr p15, 0, %2, c7, c10, 4" : : "r" (to), "r" (to + PAGE_SIZE - 1), "r" (zero) : "cc"); } static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len) { unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT); unsigned long offset = vaddr & (PAGE_SIZE - 1); unsigned long to; set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL)); to = va + offset; flush_icache_range(to, to + len); } void flush_cache_mm(struct mm_struct *mm) { if (cache_is_vivt()) { vivt_flush_cache_mm(mm); return; } if (cache_is_vipt_aliasing()) { asm( "mcr p15, 0, %0, c7, c14, 0\n" " mcr p15, 0, %0, c7, c10, 4" : : "r" (0) : "cc"); } } void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { if (cache_is_vivt()) { vivt_flush_cache_range(vma, start, end); return; } if (cache_is_vipt_aliasing()) { asm( "mcr p15, 0, %0, c7, c14, 0\n" " mcr p15, 0, %0, c7, c10, 4" : : "r" (0) : "cc"); } if (vma->vm_flags & VM_EXEC) __flush_icache_all(); } void flush_cache_pages(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn, unsigned int nr) { if (cache_is_vivt()) { vivt_flush_cache_pages(vma, user_addr, pfn, nr); return; } if (cache_is_vipt_aliasing()) { flush_pfn_alias(pfn, user_addr); __flush_icache_all(); } if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged()) __flush_icache_all(); } #else #define flush_pfn_alias(pfn,vaddr) do { } while (0) #define flush_icache_alias(pfn,vaddr,len) do { } while (0) #endif #define FLAG_PA_IS_EXEC 1 #define FLAG_PA_CORE_IN_MM 2 static void flush_ptrace_access_other(void *args) { __flush_icache_all(); } static inline void __flush_ptrace_access(struct page *page, unsigned long uaddr, void *kaddr, unsigned long len, unsigned int flags) { if (cache_is_vivt()) { if (flags & FLAG_PA_CORE_IN_MM) { unsigned long addr = (unsigned long)kaddr; __cpuc_coherent_kern_range(addr, addr + len); } return; } if (cache_is_vipt_aliasing()) { flush_pfn_alias(page_to_pfn(page), uaddr); __flush_icache_all(); return; } /* VIPT non-aliasing D-cache */ if (flags & FLAG_PA_IS_EXEC) { unsigned long addr = (unsigned long)kaddr; if (icache_is_vipt_aliasing()) flush_icache_alias(page_to_pfn(page), uaddr, len); else __cpuc_coherent_kern_range(addr, addr + len); if (cache_ops_need_broadcast()) smp_call_function(flush_ptrace_access_other, NULL, 1); } } static void flush_ptrace_access(struct vm_area_struct *vma, struct page *page, unsigned long uaddr, void *kaddr, unsigned long len) { unsigned int flags = 0; if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) flags |= FLAG_PA_CORE_IN_MM; if (vma->vm_flags & VM_EXEC) flags |= FLAG_PA_IS_EXEC; __flush_ptrace_access(page, uaddr, kaddr, len, flags); } void flush_uprobe_xol_access(struct page *page, unsigned long uaddr, void *kaddr, unsigned long len) { unsigned int flags = FLAG_PA_CORE_IN_MM|FLAG_PA_IS_EXEC; __flush_ptrace_access(page, uaddr, kaddr, len, flags); } /* * Copy user data from/to a page which is mapped into a different * processes address space. Really, we want to allow our "user * space" model to handle this. * * Note that this code needs to run on the current CPU. */ void copy_to_user_page(struct vm_area_struct *vma, struct page *page, unsigned long uaddr, void *dst, const void *src, unsigned long len) { #ifdef CONFIG_SMP preempt_disable(); #endif memcpy(dst, src, len); flush_ptrace_access(vma, page, uaddr, dst, len); #ifdef CONFIG_SMP preempt_enable(); #endif } void __flush_dcache_folio(struct address_space *mapping, struct folio *folio) { /* * Writeback any data associated with the kernel mapping of this * page. This ensures that data in the physical page is mutually * coherent with the kernels mapping. */ if (!folio_test_highmem(folio)) { __cpuc_flush_dcache_area(folio_address(folio), folio_size(folio)); } else { unsigned long i; if (cache_is_vipt_nonaliasing()) { for (i = 0; i < folio_nr_pages(folio); i++) { void *addr = kmap_local_folio(folio, i * PAGE_SIZE); __cpuc_flush_dcache_area(addr, PAGE_SIZE); kunmap_local(addr); } } else { for (i = 0; i < folio_nr_pages(folio); i++) { void *addr = kmap_high_get(folio_page(folio, i)); if (addr) { __cpuc_flush_dcache_area(addr, PAGE_SIZE); kunmap_high(folio_page(folio, i)); } } } } /* * If this is a page cache page, and we have an aliasing VIPT cache, * we only need to do one flush - which would be at the relevant * userspace colour, which is congruent with page->index. */ if (mapping && cache_is_vipt_aliasing()) flush_pfn_alias(folio_pfn(folio), folio_pos(folio)); } static void __flush_dcache_aliases(struct address_space *mapping, struct folio *folio) { struct mm_struct *mm = current->active_mm; struct vm_area_struct *vma; pgoff_t pgoff, pgoff_end; /* * There are possible user space mappings of this page: * - VIVT cache: we need to also write back and invalidate all user * data in the current VM view associated with this page. * - aliasing VIPT: we only need to find one mapping of this page. */ pgoff = folio->index; pgoff_end = pgoff + folio_nr_pages(folio) - 1; flush_dcache_mmap_lock(mapping); vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff_end) { unsigned long start, offset, pfn; unsigned int nr; /* * If this VMA is not in our MM, we can ignore it. */ if (vma->vm_mm != mm) continue; if (!(vma->vm_flags & VM_MAYSHARE)) continue; start = vma->vm_start; pfn = folio_pfn(folio); nr = folio_nr_pages(folio); offset = pgoff - vma->vm_pgoff; if (offset > -nr) { pfn -= offset; nr += offset; } else { start += offset * PAGE_SIZE; } if (start + nr * PAGE_SIZE > vma->vm_end) nr = (vma->vm_end - start) / PAGE_SIZE; flush_cache_pages(vma, start, pfn, nr); } flush_dcache_mmap_unlock(mapping); } #if __LINUX_ARM_ARCH__ >= 6 void __sync_icache_dcache(pte_t pteval) { unsigned long pfn; struct folio *folio; struct address_space *mapping; if (cache_is_vipt_nonaliasing() && !pte_exec(pteval)) /* only flush non-aliasing VIPT caches for exec mappings */ return; pfn = pte_pfn(pteval); if (!pfn_valid(pfn)) return; folio = page_folio(pfn_to_page(pfn)); if (cache_is_vipt_aliasing()) mapping = folio_flush_mapping(folio); else mapping = NULL; if (!test_and_set_bit(PG_dcache_clean, &folio->flags)) __flush_dcache_folio(mapping, folio); if (pte_exec(pteval)) __flush_icache_all(); } #endif /* * Ensure cache coherency between kernel mapping and userspace mapping * of this page. * * We have three cases to consider: * - VIPT non-aliasing cache: fully coherent so nothing required. * - VIVT: fully aliasing, so we need to handle every alias in our * current VM view. * - VIPT aliasing: need to handle one alias in our current VM view. * * If we need to handle aliasing: * If the page only exists in the page cache and there are no user * space mappings, we can be lazy and remember that we may have dirty * kernel cache lines for later. Otherwise, we assume we have * aliasing mappings. * * Note that we disable the lazy flush for SMP configurations where * the cache maintenance operations are not automatically broadcasted. */ void flush_dcache_folio(struct folio *folio) { struct address_space *mapping; /* * The zero page is never written to, so never has any dirty * cache lines, and therefore never needs to be flushed. */ if (is_zero_pfn(folio_pfn(folio))) return; if (!cache_ops_need_broadcast() && cache_is_vipt_nonaliasing()) { if (test_bit(PG_dcache_clean, &folio->flags)) clear_bit(PG_dcache_clean, &folio->flags); return; } mapping = folio_flush_mapping(folio); if (!cache_ops_need_broadcast() && mapping && !folio_mapped(folio)) clear_bit(PG_dcache_clean, &folio->flags); else { __flush_dcache_folio(mapping, folio); if (mapping && cache_is_vivt()) __flush_dcache_aliases(mapping, folio); else if (mapping) __flush_icache_all(); set_bit(PG_dcache_clean, &folio->flags); } } EXPORT_SYMBOL(flush_dcache_folio); void flush_dcache_page(struct page *page) { flush_dcache_folio(page_folio(page)); } EXPORT_SYMBOL(flush_dcache_page); /* * Flush an anonymous page so that users of get_user_pages() * can safely access the data. The expected sequence is: * * get_user_pages() * -> flush_anon_page * memcpy() to/from page * if written to page, flush_dcache_page() */ void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr); void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) { unsigned long pfn; /* VIPT non-aliasing caches need do nothing */ if (cache_is_vipt_nonaliasing()) return; /* * Write back and invalidate userspace mapping. */ pfn = page_to_pfn(page); if (cache_is_vivt()) { flush_cache_page(vma, vmaddr, pfn); } else { /* * For aliasing VIPT, we can flush an alias of the * userspace address only. */ flush_pfn_alias(pfn, vmaddr); __flush_icache_all(); } /* * Invalidate kernel mapping. No data should be contained * in this mapping of the page. FIXME: this is overkill * since we actually ask for a write-back and invalidate. */ __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); } |