Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 | // SPDX-License-Identifier: GPL-2.0+ /* * 2002-10-15 Posix Clocks & timers * by George Anzinger george@mvista.com * Copyright (C) 2002 2003 by MontaVista Software. * * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. * Copyright (C) 2004 Boris Hu * * These are all the functions necessary to implement POSIX clocks & timers */ #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/mutex.h> #include <linux/sched/task.h> #include <linux/uaccess.h> #include <linux/list.h> #include <linux/init.h> #include <linux/compiler.h> #include <linux/hash.h> #include <linux/posix-clock.h> #include <linux/posix-timers.h> #include <linux/syscalls.h> #include <linux/wait.h> #include <linux/workqueue.h> #include <linux/export.h> #include <linux/hashtable.h> #include <linux/compat.h> #include <linux/nospec.h> #include <linux/time_namespace.h> #include "timekeeping.h" #include "posix-timers.h" static struct kmem_cache *posix_timers_cache; /* * Timers are managed in a hash table for lockless lookup. The hash key is * constructed from current::signal and the timer ID and the timer is * matched against current::signal and the timer ID when walking the hash * bucket list. * * This allows checkpoint/restore to reconstruct the exact timer IDs for * a process. */ static DEFINE_HASHTABLE(posix_timers_hashtable, 9); static DEFINE_SPINLOCK(hash_lock); static const struct k_clock * const posix_clocks[]; static const struct k_clock *clockid_to_kclock(const clockid_t id); static const struct k_clock clock_realtime, clock_monotonic; /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */ #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" #endif static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); #define lock_timer(tid, flags) \ ({ struct k_itimer *__timr; \ __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ __timr; \ }) static int hash(struct signal_struct *sig, unsigned int nr) { return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); } static struct k_itimer *__posix_timers_find(struct hlist_head *head, struct signal_struct *sig, timer_t id) { struct k_itimer *timer; hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&hash_lock)) { /* timer->it_signal can be set concurrently */ if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id)) return timer; } return NULL; } static struct k_itimer *posix_timer_by_id(timer_t id) { struct signal_struct *sig = current->signal; struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; return __posix_timers_find(head, sig, id); } static int posix_timer_add(struct k_itimer *timer) { struct signal_struct *sig = current->signal; struct hlist_head *head; unsigned int cnt, id; /* * FIXME: Replace this by a per signal struct xarray once there is * a plan to handle the resulting CRIU regression gracefully. */ for (cnt = 0; cnt <= INT_MAX; cnt++) { spin_lock(&hash_lock); id = sig->next_posix_timer_id; /* Write the next ID back. Clamp it to the positive space */ sig->next_posix_timer_id = (id + 1) & INT_MAX; head = &posix_timers_hashtable[hash(sig, id)]; if (!__posix_timers_find(head, sig, id)) { hlist_add_head_rcu(&timer->t_hash, head); spin_unlock(&hash_lock); return id; } spin_unlock(&hash_lock); } /* POSIX return code when no timer ID could be allocated */ return -EAGAIN; } static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) { spin_unlock_irqrestore(&timr->it_lock, flags); } static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp) { ktime_get_real_ts64(tp); return 0; } static ktime_t posix_get_realtime_ktime(clockid_t which_clock) { return ktime_get_real(); } static int posix_clock_realtime_set(const clockid_t which_clock, const struct timespec64 *tp) { return do_sys_settimeofday64(tp, NULL); } static int posix_clock_realtime_adj(const clockid_t which_clock, struct __kernel_timex *t) { return do_adjtimex(t); } static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp) { ktime_get_ts64(tp); timens_add_monotonic(tp); return 0; } static ktime_t posix_get_monotonic_ktime(clockid_t which_clock) { return ktime_get(); } static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) { ktime_get_raw_ts64(tp); timens_add_monotonic(tp); return 0; } static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) { ktime_get_coarse_real_ts64(tp); return 0; } static int posix_get_monotonic_coarse(clockid_t which_clock, struct timespec64 *tp) { ktime_get_coarse_ts64(tp); timens_add_monotonic(tp); return 0; } static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) { *tp = ktime_to_timespec64(KTIME_LOW_RES); return 0; } static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp) { ktime_get_boottime_ts64(tp); timens_add_boottime(tp); return 0; } static ktime_t posix_get_boottime_ktime(const clockid_t which_clock) { return ktime_get_boottime(); } static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp) { ktime_get_clocktai_ts64(tp); return 0; } static ktime_t posix_get_tai_ktime(clockid_t which_clock) { return ktime_get_clocktai(); } static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) { tp->tv_sec = 0; tp->tv_nsec = hrtimer_resolution; return 0; } static __init int init_posix_timers(void) { posix_timers_cache = kmem_cache_create("posix_timers_cache", sizeof(struct k_itimer), 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); return 0; } __initcall(init_posix_timers); /* * The siginfo si_overrun field and the return value of timer_getoverrun(2) * are of type int. Clamp the overrun value to INT_MAX */ static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) { s64 sum = timr->it_overrun_last + (s64)baseval; return sum > (s64)INT_MAX ? INT_MAX : (int)sum; } static void common_hrtimer_rearm(struct k_itimer *timr) { struct hrtimer *timer = &timr->it.real.timer; timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), timr->it_interval); hrtimer_restart(timer); } /* * This function is called from the signal delivery code if * info->si_sys_private is not zero, which indicates that the timer has to * be rearmed. Restart the timer and update info::si_overrun. */ void posixtimer_rearm(struct kernel_siginfo *info) { struct k_itimer *timr; unsigned long flags; timr = lock_timer(info->si_tid, &flags); if (!timr) return; if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) { timr->kclock->timer_rearm(timr); timr->it_active = 1; timr->it_overrun_last = timr->it_overrun; timr->it_overrun = -1LL; ++timr->it_requeue_pending; info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); } unlock_timer(timr, flags); } int posix_timer_event(struct k_itimer *timr, int si_private) { enum pid_type type; int ret; /* * FIXME: if ->sigq is queued we can race with * dequeue_signal()->posixtimer_rearm(). * * If dequeue_signal() sees the "right" value of * si_sys_private it calls posixtimer_rearm(). * We re-queue ->sigq and drop ->it_lock(). * posixtimer_rearm() locks the timer * and re-schedules it while ->sigq is pending. * Not really bad, but not that we want. */ timr->sigq->info.si_sys_private = si_private; type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID; ret = send_sigqueue(timr->sigq, timr->it_pid, type); /* If we failed to send the signal the timer stops. */ return ret > 0; } /* * This function gets called when a POSIX.1b interval timer expires from * the HRTIMER interrupt (soft interrupt on RT kernels). * * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI * based timers. */ static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) { enum hrtimer_restart ret = HRTIMER_NORESTART; struct k_itimer *timr; unsigned long flags; int si_private = 0; timr = container_of(timer, struct k_itimer, it.real.timer); spin_lock_irqsave(&timr->it_lock, flags); timr->it_active = 0; if (timr->it_interval != 0) si_private = ++timr->it_requeue_pending; if (posix_timer_event(timr, si_private)) { /* * The signal was not queued due to SIG_IGN. As a * consequence the timer is not going to be rearmed from * the signal delivery path. But as a real signal handler * can be installed later the timer must be rearmed here. */ if (timr->it_interval != 0) { ktime_t now = hrtimer_cb_get_time(timer); /* * FIXME: What we really want, is to stop this * timer completely and restart it in case the * SIG_IGN is removed. This is a non trivial * change to the signal handling code. * * For now let timers with an interval less than a * jiffie expire every jiffie and recheck for a * valid signal handler. * * This avoids interrupt starvation in case of a * very small interval, which would expire the * timer immediately again. * * Moving now ahead of time by one jiffie tricks * hrtimer_forward() to expire the timer later, * while it still maintains the overrun accuracy * for the price of a slight inconsistency in the * timer_gettime() case. This is at least better * than a timer storm. * * Only required when high resolution timers are * enabled as the periodic tick based timers are * automatically aligned to the next tick. */ if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) { ktime_t kj = TICK_NSEC; if (timr->it_interval < kj) now = ktime_add(now, kj); } timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval); ret = HRTIMER_RESTART; ++timr->it_requeue_pending; timr->it_active = 1; } } unlock_timer(timr, flags); return ret; } static struct pid *good_sigevent(sigevent_t * event) { struct pid *pid = task_tgid(current); struct task_struct *rtn; switch (event->sigev_notify) { case SIGEV_SIGNAL | SIGEV_THREAD_ID: pid = find_vpid(event->sigev_notify_thread_id); rtn = pid_task(pid, PIDTYPE_PID); if (!rtn || !same_thread_group(rtn, current)) return NULL; fallthrough; case SIGEV_SIGNAL: case SIGEV_THREAD: if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) return NULL; fallthrough; case SIGEV_NONE: return pid; default: return NULL; } } static struct k_itimer * alloc_posix_timer(void) { struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); if (!tmr) return tmr; if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { kmem_cache_free(posix_timers_cache, tmr); return NULL; } clear_siginfo(&tmr->sigq->info); return tmr; } static void k_itimer_rcu_free(struct rcu_head *head) { struct k_itimer *tmr = container_of(head, struct k_itimer, rcu); kmem_cache_free(posix_timers_cache, tmr); } static void posix_timer_free(struct k_itimer *tmr) { put_pid(tmr->it_pid); sigqueue_free(tmr->sigq); call_rcu(&tmr->rcu, k_itimer_rcu_free); } static void posix_timer_unhash_and_free(struct k_itimer *tmr) { spin_lock(&hash_lock); hlist_del_rcu(&tmr->t_hash); spin_unlock(&hash_lock); posix_timer_free(tmr); } static int common_timer_create(struct k_itimer *new_timer) { hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); return 0; } /* Create a POSIX.1b interval timer. */ static int do_timer_create(clockid_t which_clock, struct sigevent *event, timer_t __user *created_timer_id) { const struct k_clock *kc = clockid_to_kclock(which_clock); struct k_itimer *new_timer; int error, new_timer_id; if (!kc) return -EINVAL; if (!kc->timer_create) return -EOPNOTSUPP; new_timer = alloc_posix_timer(); if (unlikely(!new_timer)) return -EAGAIN; spin_lock_init(&new_timer->it_lock); /* * Add the timer to the hash table. The timer is not yet valid * because new_timer::it_signal is still NULL. The timer id is also * not yet visible to user space. */ new_timer_id = posix_timer_add(new_timer); if (new_timer_id < 0) { posix_timer_free(new_timer); return new_timer_id; } new_timer->it_id = (timer_t) new_timer_id; new_timer->it_clock = which_clock; new_timer->kclock = kc; new_timer->it_overrun = -1LL; if (event) { rcu_read_lock(); new_timer->it_pid = get_pid(good_sigevent(event)); rcu_read_unlock(); if (!new_timer->it_pid) { error = -EINVAL; goto out; } new_timer->it_sigev_notify = event->sigev_notify; new_timer->sigq->info.si_signo = event->sigev_signo; new_timer->sigq->info.si_value = event->sigev_value; } else { new_timer->it_sigev_notify = SIGEV_SIGNAL; new_timer->sigq->info.si_signo = SIGALRM; memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); new_timer->sigq->info.si_value.sival_int = new_timer->it_id; new_timer->it_pid = get_pid(task_tgid(current)); } new_timer->sigq->info.si_tid = new_timer->it_id; new_timer->sigq->info.si_code = SI_TIMER; if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) { error = -EFAULT; goto out; } /* * After succesful copy out, the timer ID is visible to user space * now but not yet valid because new_timer::signal is still NULL. * * Complete the initialization with the clock specific create * callback. */ error = kc->timer_create(new_timer); if (error) goto out; spin_lock_irq(¤t->sighand->siglock); /* This makes the timer valid in the hash table */ WRITE_ONCE(new_timer->it_signal, current->signal); list_add(&new_timer->list, ¤t->signal->posix_timers); spin_unlock_irq(¤t->sighand->siglock); /* * After unlocking sighand::siglock @new_timer is subject to * concurrent removal and cannot be touched anymore */ return 0; out: posix_timer_unhash_and_free(new_timer); return error; } SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, struct sigevent __user *, timer_event_spec, timer_t __user *, created_timer_id) { if (timer_event_spec) { sigevent_t event; if (copy_from_user(&event, timer_event_spec, sizeof (event))) return -EFAULT; return do_timer_create(which_clock, &event, created_timer_id); } return do_timer_create(which_clock, NULL, created_timer_id); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, struct compat_sigevent __user *, timer_event_spec, timer_t __user *, created_timer_id) { if (timer_event_spec) { sigevent_t event; if (get_compat_sigevent(&event, timer_event_spec)) return -EFAULT; return do_timer_create(which_clock, &event, created_timer_id); } return do_timer_create(which_clock, NULL, created_timer_id); } #endif static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) { struct k_itimer *timr; /* * timer_t could be any type >= int and we want to make sure any * @timer_id outside positive int range fails lookup. */ if ((unsigned long long)timer_id > INT_MAX) return NULL; /* * The hash lookup and the timers are RCU protected. * * Timers are added to the hash in invalid state where * timr::it_signal == NULL. timer::it_signal is only set after the * rest of the initialization succeeded. * * Timer destruction happens in steps: * 1) Set timr::it_signal to NULL with timr::it_lock held * 2) Release timr::it_lock * 3) Remove from the hash under hash_lock * 4) Call RCU for removal after the grace period * * Holding rcu_read_lock() accross the lookup ensures that * the timer cannot be freed. * * The lookup validates locklessly that timr::it_signal == * current::it_signal and timr::it_id == @timer_id. timr::it_id * can't change, but timr::it_signal becomes NULL during * destruction. */ rcu_read_lock(); timr = posix_timer_by_id(timer_id); if (timr) { spin_lock_irqsave(&timr->it_lock, *flags); /* * Validate under timr::it_lock that timr::it_signal is * still valid. Pairs with #1 above. */ if (timr->it_signal == current->signal) { rcu_read_unlock(); return timr; } spin_unlock_irqrestore(&timr->it_lock, *flags); } rcu_read_unlock(); return NULL; } static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) { struct hrtimer *timer = &timr->it.real.timer; return __hrtimer_expires_remaining_adjusted(timer, now); } static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) { struct hrtimer *timer = &timr->it.real.timer; return hrtimer_forward(timer, now, timr->it_interval); } /* * Get the time remaining on a POSIX.1b interval timer. * * Two issues to handle here: * * 1) The timer has a requeue pending. The return value must appear as * if the timer has been requeued right now. * * 2) The timer is a SIGEV_NONE timer. These timers are never enqueued * into the hrtimer queue and therefore never expired. Emulate expiry * here taking #1 into account. */ void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) { const struct k_clock *kc = timr->kclock; ktime_t now, remaining, iv; bool sig_none; sig_none = timr->it_sigev_notify == SIGEV_NONE; iv = timr->it_interval; /* interval timer ? */ if (iv) { cur_setting->it_interval = ktime_to_timespec64(iv); } else if (!timr->it_active) { /* * SIGEV_NONE oneshot timers are never queued and therefore * timr->it_active is always false. The check below * vs. remaining time will handle this case. * * For all other timers there is nothing to update here, so * return. */ if (!sig_none) return; } now = kc->clock_get_ktime(timr->it_clock); /* * If this is an interval timer and either has requeue pending or * is a SIGEV_NONE timer move the expiry time forward by intervals, * so expiry is > now. */ if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) timr->it_overrun += kc->timer_forward(timr, now); remaining = kc->timer_remaining(timr, now); /* * As @now is retrieved before a possible timer_forward() and * cannot be reevaluated by the compiler @remaining is based on the * same @now value. Therefore @remaining is consistent vs. @now. * * Consequently all interval timers, i.e. @iv > 0, cannot have a * remaining time <= 0 because timer_forward() guarantees to move * them forward so that the next timer expiry is > @now. */ if (remaining <= 0) { /* * A single shot SIGEV_NONE timer must return 0, when it is * expired! Timers which have a real signal delivery mode * must return a remaining time greater than 0 because the * signal has not yet been delivered. */ if (!sig_none) cur_setting->it_value.tv_nsec = 1; } else { cur_setting->it_value = ktime_to_timespec64(remaining); } } static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) { const struct k_clock *kc; struct k_itimer *timr; unsigned long flags; int ret = 0; timr = lock_timer(timer_id, &flags); if (!timr) return -EINVAL; memset(setting, 0, sizeof(*setting)); kc = timr->kclock; if (WARN_ON_ONCE(!kc || !kc->timer_get)) ret = -EINVAL; else kc->timer_get(timr, setting); unlock_timer(timr, flags); return ret; } /* Get the time remaining on a POSIX.1b interval timer. */ SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, struct __kernel_itimerspec __user *, setting) { struct itimerspec64 cur_setting; int ret = do_timer_gettime(timer_id, &cur_setting); if (!ret) { if (put_itimerspec64(&cur_setting, setting)) ret = -EFAULT; } return ret; } #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id, struct old_itimerspec32 __user *, setting) { struct itimerspec64 cur_setting; int ret = do_timer_gettime(timer_id, &cur_setting); if (!ret) { if (put_old_itimerspec32(&cur_setting, setting)) ret = -EFAULT; } return ret; } #endif /** * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer * @timer_id: The timer ID which identifies the timer * * The "overrun count" of a timer is one plus the number of expiration * intervals which have elapsed between the first expiry, which queues the * signal and the actual signal delivery. On signal delivery the "overrun * count" is calculated and cached, so it can be returned directly here. * * As this is relative to the last queued signal the returned overrun count * is meaningless outside of the signal delivery path and even there it * does not accurately reflect the current state when user space evaluates * it. * * Returns: * -EINVAL @timer_id is invalid * 1..INT_MAX The number of overruns related to the last delivered signal */ SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) { struct k_itimer *timr; unsigned long flags; int overrun; timr = lock_timer(timer_id, &flags); if (!timr) return -EINVAL; overrun = timer_overrun_to_int(timr, 0); unlock_timer(timr, flags); return overrun; } static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, bool absolute, bool sigev_none) { struct hrtimer *timer = &timr->it.real.timer; enum hrtimer_mode mode; mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; /* * Posix magic: Relative CLOCK_REALTIME timers are not affected by * clock modifications, so they become CLOCK_MONOTONIC based under the * hood. See hrtimer_init(). Update timr->kclock, so the generic * functions which use timr->kclock->clock_get_*() work. * * Note: it_clock stays unmodified, because the next timer_set() might * use ABSTIME, so it needs to switch back. */ if (timr->it_clock == CLOCK_REALTIME) timr->kclock = absolute ? &clock_realtime : &clock_monotonic; hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); timr->it.real.timer.function = posix_timer_fn; if (!absolute) expires = ktime_add_safe(expires, timer->base->get_time()); hrtimer_set_expires(timer, expires); if (!sigev_none) hrtimer_start_expires(timer, HRTIMER_MODE_ABS); } static int common_hrtimer_try_to_cancel(struct k_itimer *timr) { return hrtimer_try_to_cancel(&timr->it.real.timer); } static void common_timer_wait_running(struct k_itimer *timer) { hrtimer_cancel_wait_running(&timer->it.real.timer); } /* * On PREEMPT_RT this prevents priority inversion and a potential livelock * against the ksoftirqd thread in case that ksoftirqd gets preempted while * executing a hrtimer callback. * * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this * just results in a cpu_relax(). * * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this * prevents spinning on an eventually scheduled out task and a livelock * when the task which tries to delete or disarm the timer has preempted * the task which runs the expiry in task work context. */ static struct k_itimer *timer_wait_running(struct k_itimer *timer, unsigned long *flags) { const struct k_clock *kc = READ_ONCE(timer->kclock); timer_t timer_id = READ_ONCE(timer->it_id); /* Prevent kfree(timer) after dropping the lock */ rcu_read_lock(); unlock_timer(timer, *flags); /* * kc->timer_wait_running() might drop RCU lock. So @timer * cannot be touched anymore after the function returns! */ if (!WARN_ON_ONCE(!kc->timer_wait_running)) kc->timer_wait_running(timer); rcu_read_unlock(); /* Relock the timer. It might be not longer hashed. */ return lock_timer(timer_id, flags); } /* Set a POSIX.1b interval timer. */ int common_timer_set(struct k_itimer *timr, int flags, struct itimerspec64 *new_setting, struct itimerspec64 *old_setting) { const struct k_clock *kc = timr->kclock; bool sigev_none; ktime_t expires; if (old_setting) common_timer_get(timr, old_setting); /* Prevent rearming by clearing the interval */ timr->it_interval = 0; /* * Careful here. On SMP systems the timer expiry function could be * active and spinning on timr->it_lock. */ if (kc->timer_try_to_cancel(timr) < 0) return TIMER_RETRY; timr->it_active = 0; timr->it_requeue_pending = (timr->it_requeue_pending + 2) & ~REQUEUE_PENDING; timr->it_overrun_last = 0; /* Switch off the timer when it_value is zero */ if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) return 0; timr->it_interval = timespec64_to_ktime(new_setting->it_interval); expires = timespec64_to_ktime(new_setting->it_value); if (flags & TIMER_ABSTIME) expires = timens_ktime_to_host(timr->it_clock, expires); sigev_none = timr->it_sigev_notify == SIGEV_NONE; kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); timr->it_active = !sigev_none; return 0; } static int do_timer_settime(timer_t timer_id, int tmr_flags, struct itimerspec64 *new_spec64, struct itimerspec64 *old_spec64) { const struct k_clock *kc; struct k_itimer *timr; unsigned long flags; int error = 0; if (!timespec64_valid(&new_spec64->it_interval) || !timespec64_valid(&new_spec64->it_value)) return -EINVAL; if (old_spec64) memset(old_spec64, 0, sizeof(*old_spec64)); timr = lock_timer(timer_id, &flags); retry: if (!timr) return -EINVAL; kc = timr->kclock; if (WARN_ON_ONCE(!kc || !kc->timer_set)) error = -EINVAL; else error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64); if (error == TIMER_RETRY) { // We already got the old time... old_spec64 = NULL; /* Unlocks and relocks the timer if it still exists */ timr = timer_wait_running(timr, &flags); goto retry; } unlock_timer(timr, flags); return error; } /* Set a POSIX.1b interval timer */ SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, const struct __kernel_itimerspec __user *, new_setting, struct __kernel_itimerspec __user *, old_setting) { struct itimerspec64 new_spec, old_spec, *rtn; int error = 0; if (!new_setting) return -EINVAL; if (get_itimerspec64(&new_spec, new_setting)) return -EFAULT; rtn = old_setting ? &old_spec : NULL; error = do_timer_settime(timer_id, flags, &new_spec, rtn); if (!error && old_setting) { if (put_itimerspec64(&old_spec, old_setting)) error = -EFAULT; } return error; } #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags, struct old_itimerspec32 __user *, new, struct old_itimerspec32 __user *, old) { struct itimerspec64 new_spec, old_spec; struct itimerspec64 *rtn = old ? &old_spec : NULL; int error = 0; if (!new) return -EINVAL; if (get_old_itimerspec32(&new_spec, new)) return -EFAULT; error = do_timer_settime(timer_id, flags, &new_spec, rtn); if (!error && old) { if (put_old_itimerspec32(&old_spec, old)) error = -EFAULT; } return error; } #endif int common_timer_del(struct k_itimer *timer) { const struct k_clock *kc = timer->kclock; timer->it_interval = 0; if (kc->timer_try_to_cancel(timer) < 0) return TIMER_RETRY; timer->it_active = 0; return 0; } static inline int timer_delete_hook(struct k_itimer *timer) { const struct k_clock *kc = timer->kclock; if (WARN_ON_ONCE(!kc || !kc->timer_del)) return -EINVAL; return kc->timer_del(timer); } /* Delete a POSIX.1b interval timer. */ SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) { struct k_itimer *timer; unsigned long flags; timer = lock_timer(timer_id, &flags); retry_delete: if (!timer) return -EINVAL; if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) { /* Unlocks and relocks the timer if it still exists */ timer = timer_wait_running(timer, &flags); goto retry_delete; } spin_lock(¤t->sighand->siglock); list_del(&timer->list); spin_unlock(¤t->sighand->siglock); /* * A concurrent lookup could check timer::it_signal lockless. It * will reevaluate with timer::it_lock held and observe the NULL. */ WRITE_ONCE(timer->it_signal, NULL); unlock_timer(timer, flags); posix_timer_unhash_and_free(timer); return 0; } /* * Delete a timer if it is armed, remove it from the hash and schedule it * for RCU freeing. */ static void itimer_delete(struct k_itimer *timer) { unsigned long flags; /* * irqsave is required to make timer_wait_running() work. */ spin_lock_irqsave(&timer->it_lock, flags); retry_delete: /* * Even if the timer is not longer accessible from other tasks * it still might be armed and queued in the underlying timer * mechanism. Worse, that timer mechanism might run the expiry * function concurrently. */ if (timer_delete_hook(timer) == TIMER_RETRY) { /* * Timer is expired concurrently, prevent livelocks * and pointless spinning on RT. * * timer_wait_running() drops timer::it_lock, which opens * the possibility for another task to delete the timer. * * That's not possible here because this is invoked from * do_exit() only for the last thread of the thread group. * So no other task can access and delete that timer. */ if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer)) return; goto retry_delete; } list_del(&timer->list); /* * Setting timer::it_signal to NULL is technically not required * here as nothing can access the timer anymore legitimately via * the hash table. Set it to NULL nevertheless so that all deletion * paths are consistent. */ WRITE_ONCE(timer->it_signal, NULL); spin_unlock_irqrestore(&timer->it_lock, flags); posix_timer_unhash_and_free(timer); } /* * Invoked from do_exit() when the last thread of a thread group exits. * At that point no other task can access the timers of the dying * task anymore. */ void exit_itimers(struct task_struct *tsk) { struct list_head timers; struct k_itimer *tmr; if (list_empty(&tsk->signal->posix_timers)) return; /* Protect against concurrent read via /proc/$PID/timers */ spin_lock_irq(&tsk->sighand->siglock); list_replace_init(&tsk->signal->posix_timers, &timers); spin_unlock_irq(&tsk->sighand->siglock); /* The timers are not longer accessible via tsk::signal */ while (!list_empty(&timers)) { tmr = list_first_entry(&timers, struct k_itimer, list); itimer_delete(tmr); } } SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, const struct __kernel_timespec __user *, tp) { const struct k_clock *kc = clockid_to_kclock(which_clock); struct timespec64 new_tp; if (!kc || !kc->clock_set) return -EINVAL; if (get_timespec64(&new_tp, tp)) return -EFAULT; /* * Permission checks have to be done inside the clock specific * setter callback. */ return kc->clock_set(which_clock, &new_tp); } SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, struct __kernel_timespec __user *, tp) { const struct k_clock *kc = clockid_to_kclock(which_clock); struct timespec64 kernel_tp; int error; if (!kc) return -EINVAL; error = kc->clock_get_timespec(which_clock, &kernel_tp); if (!error && put_timespec64(&kernel_tp, tp)) error = -EFAULT; return error; } int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx) { const struct k_clock *kc = clockid_to_kclock(which_clock); if (!kc) return -EINVAL; if (!kc->clock_adj) return -EOPNOTSUPP; return kc->clock_adj(which_clock, ktx); } SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, struct __kernel_timex __user *, utx) { struct __kernel_timex ktx; int err; if (copy_from_user(&ktx, utx, sizeof(ktx))) return -EFAULT; err = do_clock_adjtime(which_clock, &ktx); if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) return -EFAULT; return err; } /** * sys_clock_getres - Get the resolution of a clock * @which_clock: The clock to get the resolution for * @tp: Pointer to a a user space timespec64 for storage * * POSIX defines: * * "The clock_getres() function shall return the resolution of any * clock. Clock resolutions are implementation-defined and cannot be set by * a process. If the argument res is not NULL, the resolution of the * specified clock shall be stored in the location pointed to by res. If * res is NULL, the clock resolution is not returned. If the time argument * of clock_settime() is not a multiple of res, then the value is truncated * to a multiple of res." * * Due to the various hardware constraints the real resolution can vary * wildly and even change during runtime when the underlying devices are * replaced. The kernel also can use hardware devices with different * resolutions for reading the time and for arming timers. * * The kernel therefore deviates from the POSIX spec in various aspects: * * 1) The resolution returned to user space * * For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI, * CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW * the kernel differentiates only two cases: * * I) Low resolution mode: * * When high resolution timers are disabled at compile or runtime * the resolution returned is nanoseconds per tick, which represents * the precision at which timers expire. * * II) High resolution mode: * * When high resolution timers are enabled the resolution returned * is always one nanosecond independent of the actual resolution of * the underlying hardware devices. * * For CLOCK_*_ALARM the actual resolution depends on system * state. When system is running the resolution is the same as the * resolution of the other clocks. During suspend the actual * resolution is the resolution of the underlying RTC device which * might be way less precise than the clockevent device used during * running state. * * For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution * returned is always nanoseconds per tick. * * For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution * returned is always one nanosecond under the assumption that the * underlying scheduler clock has a better resolution than nanoseconds * per tick. * * For dynamic POSIX clocks (PTP devices) the resolution returned is * always one nanosecond. * * 2) Affect on sys_clock_settime() * * The kernel does not truncate the time which is handed in to * sys_clock_settime(). The kernel internal timekeeping is always using * nanoseconds precision independent of the clocksource device which is * used to read the time from. The resolution of that device only * affects the presicion of the time returned by sys_clock_gettime(). * * Returns: * 0 Success. @tp contains the resolution * -EINVAL @which_clock is not a valid clock ID * -EFAULT Copying the resolution to @tp faulted * -ENODEV Dynamic POSIX clock is not backed by a device * -EOPNOTSUPP Dynamic POSIX clock does not support getres() */ SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, struct __kernel_timespec __user *, tp) { const struct k_clock *kc = clockid_to_kclock(which_clock); struct timespec64 rtn_tp; int error; if (!kc) return -EINVAL; error = kc->clock_getres(which_clock, &rtn_tp); if (!error && tp && put_timespec64(&rtn_tp, tp)) error = -EFAULT; return error; } #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock, struct old_timespec32 __user *, tp) { const struct k_clock *kc = clockid_to_kclock(which_clock); struct timespec64 ts; if (!kc || !kc->clock_set) return -EINVAL; if (get_old_timespec32(&ts, tp)) return -EFAULT; return kc->clock_set(which_clock, &ts); } SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock, struct old_timespec32 __user *, tp) { const struct k_clock *kc = clockid_to_kclock(which_clock); struct timespec64 ts; int err; if (!kc) return -EINVAL; err = kc->clock_get_timespec(which_clock, &ts); if (!err && put_old_timespec32(&ts, tp)) err = -EFAULT; return err; } SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock, struct old_timex32 __user *, utp) { struct __kernel_timex ktx; int err; err = get_old_timex32(&ktx, utp); if (err) return err; err = do_clock_adjtime(which_clock, &ktx); if (err >= 0 && put_old_timex32(utp, &ktx)) return -EFAULT; return err; } SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock, struct old_timespec32 __user *, tp) { const struct k_clock *kc = clockid_to_kclock(which_clock); struct timespec64 ts; int err; if (!kc) return -EINVAL; err = kc->clock_getres(which_clock, &ts); if (!err && tp && put_old_timespec32(&ts, tp)) return -EFAULT; return err; } #endif /* * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI */ static int common_nsleep(const clockid_t which_clock, int flags, const struct timespec64 *rqtp) { ktime_t texp = timespec64_to_ktime(*rqtp); return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL, which_clock); } /* * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME * * Absolute nanosleeps for these clocks are time-namespace adjusted. */ static int common_nsleep_timens(const clockid_t which_clock, int flags, const struct timespec64 *rqtp) { ktime_t texp = timespec64_to_ktime(*rqtp); if (flags & TIMER_ABSTIME) texp = timens_ktime_to_host(which_clock, texp); return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL, which_clock); } SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, const struct __kernel_timespec __user *, rqtp, struct __kernel_timespec __user *, rmtp) { const struct k_clock *kc = clockid_to_kclock(which_clock); struct timespec64 t; if (!kc) return -EINVAL; if (!kc->nsleep) return -EOPNOTSUPP; if (get_timespec64(&t, rqtp)) return -EFAULT; if (!timespec64_valid(&t)) return -EINVAL; if (flags & TIMER_ABSTIME) rmtp = NULL; current->restart_block.fn = do_no_restart_syscall; current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; current->restart_block.nanosleep.rmtp = rmtp; return kc->nsleep(which_clock, flags, &t); } #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags, struct old_timespec32 __user *, rqtp, struct old_timespec32 __user *, rmtp) { const struct k_clock *kc = clockid_to_kclock(which_clock); struct timespec64 t; if (!kc) return -EINVAL; if (!kc->nsleep) return -EOPNOTSUPP; if (get_old_timespec32(&t, rqtp)) return -EFAULT; if (!timespec64_valid(&t)) return -EINVAL; if (flags & TIMER_ABSTIME) rmtp = NULL; current->restart_block.fn = do_no_restart_syscall; current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; current->restart_block.nanosleep.compat_rmtp = rmtp; return kc->nsleep(which_clock, flags, &t); } #endif static const struct k_clock clock_realtime = { .clock_getres = posix_get_hrtimer_res, .clock_get_timespec = posix_get_realtime_timespec, .clock_get_ktime = posix_get_realtime_ktime, .clock_set = posix_clock_realtime_set, .clock_adj = posix_clock_realtime_adj, .nsleep = common_nsleep, .timer_create = common_timer_create, .timer_set = common_timer_set, .timer_get = common_timer_get, .timer_del = common_timer_del, .timer_rearm = common_hrtimer_rearm, .timer_forward = common_hrtimer_forward, .timer_remaining = common_hrtimer_remaining, .timer_try_to_cancel = common_hrtimer_try_to_cancel, .timer_wait_running = common_timer_wait_running, .timer_arm = common_hrtimer_arm, }; static const struct k_clock clock_monotonic = { .clock_getres = posix_get_hrtimer_res, .clock_get_timespec = posix_get_monotonic_timespec, .clock_get_ktime = posix_get_monotonic_ktime, .nsleep = common_nsleep_timens, .timer_create = common_timer_create, .timer_set = common_timer_set, .timer_get = common_timer_get, .timer_del = common_timer_del, .timer_rearm = common_hrtimer_rearm, .timer_forward = common_hrtimer_forward, .timer_remaining = common_hrtimer_remaining, .timer_try_to_cancel = common_hrtimer_try_to_cancel, .timer_wait_running = common_timer_wait_running, .timer_arm = common_hrtimer_arm, }; static const struct k_clock clock_monotonic_raw = { .clock_getres = posix_get_hrtimer_res, .clock_get_timespec = posix_get_monotonic_raw, }; static const struct k_clock clock_realtime_coarse = { .clock_getres = posix_get_coarse_res, .clock_get_timespec = posix_get_realtime_coarse, }; static const struct k_clock clock_monotonic_coarse = { .clock_getres = posix_get_coarse_res, .clock_get_timespec = posix_get_monotonic_coarse, }; static const struct k_clock clock_tai = { .clock_getres = posix_get_hrtimer_res, .clock_get_ktime = posix_get_tai_ktime, .clock_get_timespec = posix_get_tai_timespec, .nsleep = common_nsleep, .timer_create = common_timer_create, .timer_set = common_timer_set, .timer_get = common_timer_get, .timer_del = common_timer_del, .timer_rearm = common_hrtimer_rearm, .timer_forward = common_hrtimer_forward, .timer_remaining = common_hrtimer_remaining, .timer_try_to_cancel = common_hrtimer_try_to_cancel, .timer_wait_running = common_timer_wait_running, .timer_arm = common_hrtimer_arm, }; static const struct k_clock clock_boottime = { .clock_getres = posix_get_hrtimer_res, .clock_get_ktime = posix_get_boottime_ktime, .clock_get_timespec = posix_get_boottime_timespec, .nsleep = common_nsleep_timens, .timer_create = common_timer_create, .timer_set = common_timer_set, .timer_get = common_timer_get, .timer_del = common_timer_del, .timer_rearm = common_hrtimer_rearm, .timer_forward = common_hrtimer_forward, .timer_remaining = common_hrtimer_remaining, .timer_try_to_cancel = common_hrtimer_try_to_cancel, .timer_wait_running = common_timer_wait_running, .timer_arm = common_hrtimer_arm, }; static const struct k_clock * const posix_clocks[] = { [CLOCK_REALTIME] = &clock_realtime, [CLOCK_MONOTONIC] = &clock_monotonic, [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, [CLOCK_BOOTTIME] = &clock_boottime, [CLOCK_REALTIME_ALARM] = &alarm_clock, [CLOCK_BOOTTIME_ALARM] = &alarm_clock, [CLOCK_TAI] = &clock_tai, }; static const struct k_clock *clockid_to_kclock(const clockid_t id) { clockid_t idx = id; if (id < 0) { return (id & CLOCKFD_MASK) == CLOCKFD ? &clock_posix_dynamic : &clock_posix_cpu; } if (id >= ARRAY_SIZE(posix_clocks)) return NULL; return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; } |