Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | // SPDX-License-Identifier: GPL-2.0-only /* * This code is taken from the Android Open Source Project and the author * (Maciej Żenczykowski) has gave permission to relicense it under the * GPLv2. Therefore this program is free software; * You can redistribute it and/or modify it under the terms of the GNU * General Public License version 2 as published by the Free Software * Foundation * The original headers, including the original license headers, are * included below for completeness. * * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <linux/bpf.h> #include <linux/if.h> #include <linux/if_ether.h> #include <linux/if_packet.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/pkt_cls.h> #include <linux/swab.h> #include <stdbool.h> #include <stdint.h> #include <linux/udp.h> #include <bpf/bpf_helpers.h> #include <bpf/bpf_endian.h> #define IP_DF 0x4000 // Flag: "Don't Fragment" SEC("schedcls/ingress6/nat_6") int sched_cls_ingress6_nat_6_prog(struct __sk_buff *skb) { const int l2_header_size = sizeof(struct ethhdr); void *data = (void *)(long)skb->data; const void *data_end = (void *)(long)skb->data_end; const struct ethhdr * const eth = data; // used iff is_ethernet const struct ipv6hdr * const ip6 = (void *)(eth + 1); // Require ethernet dst mac address to be our unicast address. if (skb->pkt_type != PACKET_HOST) return TC_ACT_OK; // Must be meta-ethernet IPv6 frame if (skb->protocol != bpf_htons(ETH_P_IPV6)) return TC_ACT_OK; // Must have (ethernet and) ipv6 header if (data + l2_header_size + sizeof(*ip6) > data_end) return TC_ACT_OK; // Ethertype - if present - must be IPv6 if (eth->h_proto != bpf_htons(ETH_P_IPV6)) return TC_ACT_OK; // IP version must be 6 if (ip6->version != 6) return TC_ACT_OK; // Maximum IPv6 payload length that can be translated to IPv4 if (bpf_ntohs(ip6->payload_len) > 0xFFFF - sizeof(struct iphdr)) return TC_ACT_OK; switch (ip6->nexthdr) { case IPPROTO_TCP: // For TCP & UDP the checksum neutrality of the chosen IPv6 case IPPROTO_UDP: // address means there is no need to update their checksums. case IPPROTO_GRE: // We do not need to bother looking at GRE/ESP headers, case IPPROTO_ESP: // since there is never a checksum to update. break; default: // do not know how to handle anything else return TC_ACT_OK; } struct ethhdr eth2; // used iff is_ethernet eth2 = *eth; // Copy over the ethernet header (src/dst mac) eth2.h_proto = bpf_htons(ETH_P_IP); // But replace the ethertype struct iphdr ip = { .version = 4, // u4 .ihl = sizeof(struct iphdr) / sizeof(__u32), // u4 .tos = (ip6->priority << 4) + (ip6->flow_lbl[0] >> 4), // u8 .tot_len = bpf_htons(bpf_ntohs(ip6->payload_len) + sizeof(struct iphdr)), // u16 .id = 0, // u16 .frag_off = bpf_htons(IP_DF), // u16 .ttl = ip6->hop_limit, // u8 .protocol = ip6->nexthdr, // u8 .check = 0, // u16 .saddr = 0x0201a8c0, // u32 .daddr = 0x0101a8c0, // u32 }; // Calculate the IPv4 one's complement checksum of the IPv4 header. __wsum sum4 = 0; for (int i = 0; i < sizeof(ip) / sizeof(__u16); ++i) sum4 += ((__u16 *)&ip)[i]; // Note that sum4 is guaranteed to be non-zero by virtue of ip.version == 4 sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse u32 into range 1 .. 0x1FFFE sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse any potential carry into u16 ip.check = (__u16)~sum4; // sum4 cannot be zero, so this is never 0xFFFF // Calculate the *negative* IPv6 16-bit one's complement checksum of the IPv6 header. __wsum sum6 = 0; // We'll end up with a non-zero sum due to ip6->version == 6 (which has '0' bits) for (int i = 0; i < sizeof(*ip6) / sizeof(__u16); ++i) sum6 += ~((__u16 *)ip6)[i]; // note the bitwise negation // Note that there is no L4 checksum update: we are relying on the checksum neutrality // of the ipv6 address chosen by netd's ClatdController. // Packet mutations begin - point of no return, but if this first modification fails // the packet is probably still pristine, so let clatd handle it. if (bpf_skb_change_proto(skb, bpf_htons(ETH_P_IP), 0)) return TC_ACT_OK; bpf_csum_update(skb, sum6); data = (void *)(long)skb->data; data_end = (void *)(long)skb->data_end; if (data + l2_header_size + sizeof(struct iphdr) > data_end) return TC_ACT_SHOT; struct ethhdr *new_eth = data; // Copy over the updated ethernet header *new_eth = eth2; // Copy over the new ipv4 header. *(struct iphdr *)(new_eth + 1) = ip; return bpf_redirect(skb->ifindex, BPF_F_INGRESS); } SEC("schedcls/egress4/snat4") int sched_cls_egress4_snat4_prog(struct __sk_buff *skb) { const int l2_header_size = sizeof(struct ethhdr); void *data = (void *)(long)skb->data; const void *data_end = (void *)(long)skb->data_end; const struct ethhdr *const eth = data; // used iff is_ethernet const struct iphdr *const ip4 = (void *)(eth + 1); // Must be meta-ethernet IPv4 frame if (skb->protocol != bpf_htons(ETH_P_IP)) return TC_ACT_OK; // Must have ipv4 header if (data + l2_header_size + sizeof(struct ipv6hdr) > data_end) return TC_ACT_OK; // Ethertype - if present - must be IPv4 if (eth->h_proto != bpf_htons(ETH_P_IP)) return TC_ACT_OK; // IP version must be 4 if (ip4->version != 4) return TC_ACT_OK; // We cannot handle IP options, just standard 20 byte == 5 dword minimal IPv4 header if (ip4->ihl != 5) return TC_ACT_OK; // Maximum IPv6 payload length that can be translated to IPv4 if (bpf_htons(ip4->tot_len) > 0xFFFF - sizeof(struct ipv6hdr)) return TC_ACT_OK; // Calculate the IPv4 one's complement checksum of the IPv4 header. __wsum sum4 = 0; for (int i = 0; i < sizeof(*ip4) / sizeof(__u16); ++i) sum4 += ((__u16 *)ip4)[i]; // Note that sum4 is guaranteed to be non-zero by virtue of ip4->version == 4 sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse u32 into range 1 .. 0x1FFFE sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse any potential carry into u16 // for a correct checksum we should get *a* zero, but sum4 must be positive, ie 0xFFFF if (sum4 != 0xFFFF) return TC_ACT_OK; // Minimum IPv4 total length is the size of the header if (bpf_ntohs(ip4->tot_len) < sizeof(*ip4)) return TC_ACT_OK; // We are incapable of dealing with IPv4 fragments if (ip4->frag_off & ~bpf_htons(IP_DF)) return TC_ACT_OK; switch (ip4->protocol) { case IPPROTO_TCP: // For TCP & UDP the checksum neutrality of the chosen IPv6 case IPPROTO_GRE: // address means there is no need to update their checksums. case IPPROTO_ESP: // We do not need to bother looking at GRE/ESP headers, break; // since there is never a checksum to update. case IPPROTO_UDP: // See above comment, but must also have UDP header... if (data + sizeof(*ip4) + sizeof(struct udphdr) > data_end) return TC_ACT_OK; const struct udphdr *uh = (const struct udphdr *)(ip4 + 1); // If IPv4/UDP checksum is 0 then fallback to clatd so it can calculate the // checksum. Otherwise the network or more likely the NAT64 gateway might // drop the packet because in most cases IPv6/UDP packets with a zero checksum // are invalid. See RFC 6935. TODO: calculate checksum via bpf_csum_diff() if (!uh->check) return TC_ACT_OK; break; default: // do not know how to handle anything else return TC_ACT_OK; } struct ethhdr eth2; // used iff is_ethernet eth2 = *eth; // Copy over the ethernet header (src/dst mac) eth2.h_proto = bpf_htons(ETH_P_IPV6); // But replace the ethertype struct ipv6hdr ip6 = { .version = 6, // __u8:4 .priority = ip4->tos >> 4, // __u8:4 .flow_lbl = {(ip4->tos & 0xF) << 4, 0, 0}, // __u8[3] .payload_len = bpf_htons(bpf_ntohs(ip4->tot_len) - 20), // __be16 .nexthdr = ip4->protocol, // __u8 .hop_limit = ip4->ttl, // __u8 }; ip6.saddr.in6_u.u6_addr32[0] = bpf_htonl(0x20010db8); ip6.saddr.in6_u.u6_addr32[1] = 0; ip6.saddr.in6_u.u6_addr32[2] = 0; ip6.saddr.in6_u.u6_addr32[3] = bpf_htonl(1); ip6.daddr.in6_u.u6_addr32[0] = bpf_htonl(0x20010db8); ip6.daddr.in6_u.u6_addr32[1] = 0; ip6.daddr.in6_u.u6_addr32[2] = 0; ip6.daddr.in6_u.u6_addr32[3] = bpf_htonl(2); // Calculate the IPv6 16-bit one's complement checksum of the IPv6 header. __wsum sum6 = 0; // We'll end up with a non-zero sum due to ip6.version == 6 for (int i = 0; i < sizeof(ip6) / sizeof(__u16); ++i) sum6 += ((__u16 *)&ip6)[i]; // Packet mutations begin - point of no return, but if this first modification fails // the packet is probably still pristine, so let clatd handle it. if (bpf_skb_change_proto(skb, bpf_htons(ETH_P_IPV6), 0)) return TC_ACT_OK; // This takes care of updating the skb->csum field for a CHECKSUM_COMPLETE packet. // In such a case, skb->csum is a 16-bit one's complement sum of the entire payload, // thus we need to subtract out the ipv4 header's sum, and add in the ipv6 header's sum. // However, we've already verified the ipv4 checksum is correct and thus 0. // Thus we only need to add the ipv6 header's sum. // // bpf_csum_update() always succeeds if the skb is CHECKSUM_COMPLETE and returns an error // (-ENOTSUPP) if it isn't. So we just ignore the return code (see above for more details). bpf_csum_update(skb, sum6); // bpf_skb_change_proto() invalidates all pointers - reload them. data = (void *)(long)skb->data; data_end = (void *)(long)skb->data_end; // I cannot think of any valid way for this error condition to trigger, however I do // believe the explicit check is required to keep the in kernel ebpf verifier happy. if (data + l2_header_size + sizeof(ip6) > data_end) return TC_ACT_SHOT; struct ethhdr *new_eth = data; // Copy over the updated ethernet header *new_eth = eth2; // Copy over the new ipv4 header. *(struct ipv6hdr *)(new_eth + 1) = ip6; return TC_ACT_OK; } char _license[] SEC("license") = ("GPL"); |