Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2011-2013 Solarflare Communications Inc.
 */

/* Theory of operation:
 *
 * PTP support is assisted by firmware running on the MC, which provides
 * the hardware timestamping capabilities.  Both transmitted and received
 * PTP event packets are queued onto internal queues for subsequent processing;
 * this is because the MC operations are relatively long and would block
 * block NAPI/interrupt operation.
 *
 * Receive event processing:
 *	The event contains the packet's UUID and sequence number, together
 *	with the hardware timestamp.  The PTP receive packet queue is searched
 *	for this UUID/sequence number and, if found, put on a pending queue.
 *	Packets not matching are delivered without timestamps (MCDI events will
 *	always arrive after the actual packet).
 *	It is important for the operation of the PTP protocol that the ordering
 *	of packets between the event and general port is maintained.
 *
 * Work queue processing:
 *	If work waiting, synchronise host/hardware time
 *
 *	Transmit: send packet through MC, which returns the transmission time
 *	that is converted to an appropriate timestamp.
 *
 *	Receive: the packet's reception time is converted to an appropriate
 *	timestamp.
 */
#include <linux/ip.h>
#include <linux/udp.h>
#include <linux/time.h>
#include <linux/errno.h>
#include <linux/ktime.h>
#include <linux/module.h>
#include <linux/pps_kernel.h>
#include <linux/ptp_clock_kernel.h>
#include "net_driver.h"
#include "efx.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "io.h"
#include "tx.h"
#include "nic.h" /* indirectly includes ptp.h */
#include "efx_channels.h"

/* Maximum number of events expected to make up a PTP event */
#define	MAX_EVENT_FRAGS			3

/* Maximum delay, ms, to begin synchronisation */
#define	MAX_SYNCHRONISE_WAIT_MS		2

/* How long, at most, to spend synchronising */
#define	SYNCHRONISE_PERIOD_NS		250000

/* How often to update the shared memory time */
#define	SYNCHRONISATION_GRANULARITY_NS	200

/* Minimum permitted length of a (corrected) synchronisation time */
#define	DEFAULT_MIN_SYNCHRONISATION_NS	120

/* Maximum permitted length of a (corrected) synchronisation time */
#define	MAX_SYNCHRONISATION_NS		1000

/* How many (MC) receive events that can be queued */
#define	MAX_RECEIVE_EVENTS		8

/* Length of (modified) moving average. */
#define	AVERAGE_LENGTH			16

/* How long an unmatched event or packet can be held */
#define PKT_EVENT_LIFETIME_MS		10

/* How long unused unicast filters can be held */
#define UCAST_FILTER_EXPIRY_JIFFIES	msecs_to_jiffies(30000)

/* Offsets into PTP packet for identification.  These offsets are from the
 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
 * PTP V2 permit the use of IPV4 options.
 */
#define PTP_DPORT_OFFSET	22

#define PTP_V1_VERSION_LENGTH	2
#define PTP_V1_VERSION_OFFSET	28

#define PTP_V1_SEQUENCE_LENGTH	2
#define PTP_V1_SEQUENCE_OFFSET	58

/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
 * includes IP header.
 */
#define	PTP_V1_MIN_LENGTH	64

#define PTP_V2_VERSION_LENGTH	1
#define PTP_V2_VERSION_OFFSET	29

#define PTP_V2_SEQUENCE_LENGTH	2
#define PTP_V2_SEQUENCE_OFFSET	58

/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 * includes IP header.
 */
#define	PTP_V2_MIN_LENGTH	63

#define	PTP_MIN_LENGTH		63

#define PTP_ADDR_IPV4		0xe0000181	/* 224.0.1.129 */

/* ff0e::181 */
static const struct in6_addr ptp_addr_ipv6 = { { {
	0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01, 0x81 } } };

/* 01-1B-19-00-00-00 */
static const u8 ptp_addr_ether[ETH_ALEN] __aligned(2) = {
	0x01, 0x1b, 0x19, 0x00, 0x00, 0x00 };

#define PTP_EVENT_PORT		319
#define PTP_GENERAL_PORT	320

/* Annoyingly the format of the version numbers are different between
 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 */
#define	PTP_VERSION_V1		1

#define	PTP_VERSION_V2		2
#define	PTP_VERSION_V2_MASK	0x0f

enum ptp_packet_state {
	PTP_PACKET_STATE_UNMATCHED = 0,
	PTP_PACKET_STATE_MATCHED,
	PTP_PACKET_STATE_TIMED_OUT,
	PTP_PACKET_STATE_MATCH_UNWANTED
};

/* NIC synchronised with single word of time only comprising
 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 */
#define	MC_NANOSECOND_BITS	30
#define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
#define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)

/* Maximum parts-per-billion adjustment that is acceptable */
#define MAX_PPB			1000000

/* Precalculate scale word to avoid long long division at runtime */
/* This is equivalent to 2^66 / 10^9. */
#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)

/* How much to shift down after scaling to convert to FP40 */
#define PPB_SHIFT_FP40		26
/* ... and FP44. */
#define PPB_SHIFT_FP44		22

#define PTP_SYNC_ATTEMPTS	4

/**
 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 * @expiry: Time after which the packet should be delivered irrespective of
 *            event arrival.
 * @state: The state of the packet - whether it is ready for processing or
 *         whether that is of no interest.
 */
struct efx_ptp_match {
	unsigned long expiry;
	enum ptp_packet_state state;
};

/**
 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 * @link: list of events
 * @seq0: First part of (PTP) UUID
 * @seq1: Second part of (PTP) UUID and sequence number
 * @hwtimestamp: Event timestamp
 * @expiry: Time which the packet arrived
 */
struct efx_ptp_event_rx {
	struct list_head link;
	u32 seq0;
	u32 seq1;
	ktime_t hwtimestamp;
	unsigned long expiry;
};

/**
 * struct efx_ptp_timeset - Synchronisation between host and MC
 * @host_start: Host time immediately before hardware timestamp taken
 * @major: Hardware timestamp, major
 * @minor: Hardware timestamp, minor
 * @host_end: Host time immediately after hardware timestamp taken
 * @wait: Number of NIC clock ticks between hardware timestamp being read and
 *          host end time being seen
 * @window: Difference of host_end and host_start
 * @valid: Whether this timeset is valid
 */
struct efx_ptp_timeset {
	u32 host_start;
	u32 major;
	u32 minor;
	u32 host_end;
	u32 wait;
	u32 window;	/* Derived: end - start, allowing for wrap */
};

/**
 * struct efx_ptp_rxfilter - Filter for PTP packets
 * @list: Node of the list where the filter is added
 * @ether_type: Network protocol of the filter (ETHER_P_IP / ETHER_P_IPV6)
 * @loc_port: UDP port of the filter (PTP_EVENT_PORT / PTP_GENERAL_PORT)
 * @loc_host: IPv4/v6 address of the filter
 * @expiry: time when the filter expires, in jiffies
 * @handle: Handle ID for the MCDI filters table
 */
struct efx_ptp_rxfilter {
	struct list_head list;
	__be16 ether_type;
	__be16 loc_port;
	__be32 loc_host[4];
	unsigned long expiry;
	int handle;
};

/**
 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 * @efx: The NIC context
 * @channel: The PTP channel (for Medford and Medford2)
 * @rxq: Receive SKB queue (awaiting timestamps)
 * @txq: Transmit SKB queue
 * @workwq: Work queue for processing pending PTP operations
 * @work: Work task
 * @cleanup_work: Work task for periodic cleanup
 * @reset_required: A serious error has occurred and the PTP task needs to be
 *                  reset (disable, enable).
 * @rxfilters_mcast: Receive filters for multicast PTP packets
 * @rxfilters_ucast: Receive filters for unicast PTP packets
 * @config: Current timestamp configuration
 * @enabled: PTP operation enabled
 * @mode: Mode in which PTP operating (PTP version)
 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 * @nic_time: contains time details
 * @nic_time.minor_max: Wrap point for NIC minor times
 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
 * in packet prefix and last MCDI time sync event i.e. how much earlier than
 * the last sync event time a packet timestamp can be.
 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
 * in packet prefix and last MCDI time sync event i.e. how much later than
 * the last sync event time a packet timestamp can be.
 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
 * field in MCDI time sync event.
 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 * @capabilities: Capabilities flags from the NIC
 * @ts_corrections: contains corrections details
 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
 *                         timestamps
 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
 *                         timestamps
 * @ts_corrections.pps_out: PPS output error (information only)
 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 * @ts_corrections.general_tx: Required driver correction of general packet
 *                             transmit timestamps
 * @ts_corrections.general_rx: Required driver correction of general packet
 *                             receive timestamps
 * @evt_frags: Partly assembled PTP events
 * @evt_frag_idx: Current fragment number
 * @evt_code: Last event code
 * @start: Address at which MC indicates ready for synchronisation
 * @host_time_pps: Host time at last PPS
 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
 * frequency adjustment into a fixed point fractional nanosecond format.
 * @current_adjfreq: Current ppb adjustment.
 * @phc_clock: Pointer to registered phc device (if primary function)
 * @phc_clock_info: Registration structure for phc device
 * @pps_work: pps work task for handling pps events
 * @pps_workwq: pps work queue
 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 *         allocations in main data path).
 * @good_syncs: Number of successful synchronisations.
 * @fast_syncs: Number of synchronisations requiring short delay
 * @bad_syncs: Number of failed synchronisations.
 * @sync_timeouts: Number of synchronisation timeouts
 * @no_time_syncs: Number of synchronisations with no good times.
 * @invalid_sync_windows: Number of sync windows with bad durations.
 * @undersize_sync_windows: Number of corrected sync windows that are too small
 * @oversize_sync_windows: Number of corrected sync windows that are too large
 * @rx_no_timestamp: Number of packets received without a timestamp.
 * @timeset: Last set of synchronisation statistics.
 * @xmit_skb: Transmit SKB function.
 */
struct efx_ptp_data {
	struct efx_nic *efx;
	struct efx_channel *channel;
	struct sk_buff_head rxq;
	struct sk_buff_head txq;
	struct workqueue_struct *workwq;
	struct work_struct work;
	struct delayed_work cleanup_work;
	bool reset_required;
	struct list_head rxfilters_mcast;
	struct list_head rxfilters_ucast;
	struct hwtstamp_config config;
	bool enabled;
	unsigned int mode;
	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
				      s32 correction);
	struct {
		u32 minor_max;
		u32 sync_event_diff_min;
		u32 sync_event_diff_max;
		unsigned int sync_event_minor_shift;
	} nic_time;
	unsigned int min_synchronisation_ns;
	unsigned int capabilities;
	struct {
		s32 ptp_tx;
		s32 ptp_rx;
		s32 pps_out;
		s32 pps_in;
		s32 general_tx;
		s32 general_rx;
	} ts_corrections;
	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
	int evt_frag_idx;
	int evt_code;
	struct efx_buffer start;
	struct pps_event_time host_time_pps;
	unsigned int adjfreq_ppb_shift;
	s64 current_adjfreq;
	struct ptp_clock *phc_clock;
	struct ptp_clock_info phc_clock_info;
	struct work_struct pps_work;
	struct workqueue_struct *pps_workwq;
	bool nic_ts_enabled;
	efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];

	unsigned int good_syncs;
	unsigned int fast_syncs;
	unsigned int bad_syncs;
	unsigned int sync_timeouts;
	unsigned int no_time_syncs;
	unsigned int invalid_sync_windows;
	unsigned int undersize_sync_windows;
	unsigned int oversize_sync_windows;
	unsigned int rx_no_timestamp;
	struct efx_ptp_timeset
	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
};

static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm);
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
static int efx_phc_settime(struct ptp_clock_info *ptp,
			   const struct timespec64 *e_ts);
static int efx_phc_enable(struct ptp_clock_info *ptp,
			  struct ptp_clock_request *request, int on);
static int efx_ptp_insert_unicast_filter(struct efx_nic *efx,
					 struct sk_buff *skb);

bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
{
	return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
}

/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
 */
static bool efx_ptp_want_txqs(struct efx_channel *channel)
{
	return efx_ptp_use_mac_tx_timestamps(channel->efx);
}

#define PTP_SW_STAT(ext_name, field_name)				\
	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
#define PTP_MC_STAT(ext_name, mcdi_name)				\
	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
	PTP_SW_STAT(ptp_good_syncs, good_syncs),
	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
	PTP_MC_STAT(ptp_timestamp_packets, TS),
	PTP_MC_STAT(ptp_filter_matches, FM),
	PTP_MC_STAT(ptp_non_filter_matches, NFM),
};
#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
static const unsigned long efx_ptp_stat_mask[] = {
	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
};

size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
{
	if (!efx->ptp_data)
		return 0;

	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
				      efx_ptp_stat_mask, strings);
}

size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
	size_t i;
	int rc;

	if (!efx->ptp_data)
		return 0;

	/* Copy software statistics */
	for (i = 0; i < PTP_STAT_COUNT; i++) {
		if (efx_ptp_stat_desc[i].dma_width)
			continue;
		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
					     efx_ptp_stat_desc[i].offset);
	}

	/* Fetch MC statistics.  We *must* fill in all statistics or
	 * risk leaking kernel memory to userland, so if the MCDI
	 * request fails we pretend we got zeroes.
	 */
	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), NULL);
	if (rc)
		memset(outbuf, 0, sizeof(outbuf));
	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
			     efx_ptp_stat_mask,
			     stats, _MCDI_PTR(outbuf, 0), false);

	return PTP_STAT_COUNT;
}

/* To convert from s27 format to ns we multiply then divide by a power of 2.
 * For the conversion from ns to s27, the operation is also converted to a
 * multiply and shift.
 */
#define S27_TO_NS_SHIFT	(27)
#define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
#define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
#define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)

/* For Huntington platforms NIC time is in seconds and fractions of a second
 * where the minor register only uses 27 bits in units of 2^-27s.
 */
static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
{
	struct timespec64 ts = ns_to_timespec64(ns);
	u32 maj = (u32)ts.tv_sec;
	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);

	/* The conversion can result in the minor value exceeding the maximum.
	 * In this case, round up to the next second.
	 */
	if (min >= S27_MINOR_MAX) {
		min -= S27_MINOR_MAX;
		maj++;
	}

	*nic_major = maj;
	*nic_minor = min;
}

static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
{
	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
	return ktime_set(nic_major, ns);
}

static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
					       s32 correction)
{
	/* Apply the correction and deal with carry */
	nic_minor += correction;
	if ((s32)nic_minor < 0) {
		nic_minor += S27_MINOR_MAX;
		nic_major--;
	} else if (nic_minor >= S27_MINOR_MAX) {
		nic_minor -= S27_MINOR_MAX;
		nic_major++;
	}

	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
}

/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
{
	struct timespec64 ts = ns_to_timespec64(ns);

	*nic_major = (u32)ts.tv_sec;
	*nic_minor = ts.tv_nsec * 4;
}

static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
						 s32 correction)
{
	ktime_t kt;

	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
	correction = DIV_ROUND_CLOSEST(correction, 4);

	kt = ktime_set(nic_major, nic_minor);

	if (correction >= 0)
		kt = ktime_add_ns(kt, (u64)correction);
	else
		kt = ktime_sub_ns(kt, (u64)-correction);
	return kt;
}

struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
{
	return efx->ptp_data ? efx->ptp_data->channel : NULL;
}

void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel)
{
	if (efx->ptp_data)
		efx->ptp_data->channel = channel;
}

static u32 last_sync_timestamp_major(struct efx_nic *efx)
{
	struct efx_channel *channel = efx_ptp_channel(efx);
	u32 major = 0;

	if (channel)
		major = channel->sync_timestamp_major;
	return major;
}

/* The 8000 series and later can provide the time from the MAC, which is only
 * 48 bits long and provides meta-information in the top 2 bits.
 */
static ktime_t
efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
				    struct efx_ptp_data *ptp,
				    u32 nic_major, u32 nic_minor,
				    s32 correction)
{
	u32 sync_timestamp;
	ktime_t kt = { 0 };
	s16 delta;

	if (!(nic_major & 0x80000000)) {
		WARN_ON_ONCE(nic_major >> 16);

		/* Medford provides 48 bits of timestamp, so we must get the top
		 * 16 bits from the timesync event state.
		 *
		 * We only have the lower 16 bits of the time now, but we do
		 * have a full resolution timestamp at some point in past. As
		 * long as the difference between the (real) now and the sync
		 * is less than 2^15, then we can reconstruct the difference
		 * between those two numbers using only the lower 16 bits of
		 * each.
		 *
		 * Put another way
		 *
		 * a - b = ((a mod k) - b) mod k
		 *
		 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
		 * (a mod k) and b, so can calculate the delta, a - b.
		 *
		 */
		sync_timestamp = last_sync_timestamp_major(efx);

		/* Because delta is s16 this does an implicit mask down to
		 * 16 bits which is what we need, assuming
		 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
		 * we can deal with the (unlikely) case of sync timestamps
		 * arriving from the future.
		 */
		delta = nic_major - sync_timestamp;

		/* Recover the fully specified time now, by applying the offset
		 * to the (fully specified) sync time.
		 */
		nic_major = sync_timestamp + delta;

		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
					     correction);
	}
	return kt;
}

ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	struct efx_ptp_data *ptp = efx->ptp_data;
	ktime_t kt;

	if (efx_ptp_use_mac_tx_timestamps(efx))
		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
				tx_queue->completed_timestamp_major,
				tx_queue->completed_timestamp_minor,
				ptp->ts_corrections.general_tx);
	else
		kt = ptp->nic_to_kernel_time(
				tx_queue->completed_timestamp_major,
				tx_queue->completed_timestamp_minor,
				ptp->ts_corrections.general_tx);
	return kt;
}

/* Get PTP attributes and set up time conversions */
static int efx_ptp_get_attributes(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
	struct efx_ptp_data *ptp = efx->ptp_data;
	int rc;
	u32 fmt;
	size_t out_len;

	/* Get the PTP attributes. If the NIC doesn't support the operation we
	 * use the default format for compatibility with older NICs i.e.
	 * seconds and nanoseconds.
	 */
	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
				outbuf, sizeof(outbuf), &out_len);
	if (rc == 0) {
		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
	} else if (rc == -EINVAL) {
		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
	} else if (rc == -EPERM) {
		pci_info(efx->pci_dev, "no PTP support\n");
		return rc;
	} else {
		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
				       outbuf, sizeof(outbuf), rc);
		return rc;
	}

	switch (fmt) {
	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
		ptp->nic_time.minor_max = 1 << 27;
		ptp->nic_time.sync_event_minor_shift = 19;
		break;
	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
		ptp->nic_time.minor_max = 4000000000UL;
		ptp->nic_time.sync_event_minor_shift = 24;
		break;
	default:
		return -ERANGE;
	}

	/* Precalculate acceptable difference between the minor time in the
	 * packet prefix and the last MCDI time sync event. We expect the
	 * packet prefix timestamp to be after of sync event by up to one
	 * sync event interval (0.25s) but we allow it to exceed this by a
	 * fuzz factor of (0.1s)
	 */
	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
		- (ptp->nic_time.minor_max / 10);
	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
		+ (ptp->nic_time.minor_max / 10);

	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
	 * a value to use for the minimum acceptable corrected synchronization
	 * window and may return further capabilities.
	 * If we have the extra information store it. For older firmware that
	 * does not implement the extended command use the default value.
	 */
	if (rc == 0 &&
	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
		ptp->min_synchronisation_ns =
			MCDI_DWORD(outbuf,
				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
	else
		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;

	if (rc == 0 &&
	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
		ptp->capabilities = MCDI_DWORD(outbuf,
					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
	else
		ptp->capabilities = 0;

	/* Set up the shift for conversion between frequency
	 * adjustments in parts-per-billion and the fixed-point
	 * fractional ns format that the adapter uses.
	 */
	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
	else
		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;

	return 0;
}

/* Get PTP timestamp corrections */
static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
	int rc;
	size_t out_len;

	/* Get the timestamp corrections from the NIC. If this operation is
	 * not supported (older NICs) then no correction is required.
	 */
	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);

	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
				outbuf, sizeof(outbuf), &out_len);
	if (rc == 0) {
		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);

		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
				outbuf,
				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
				outbuf,
				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
		} else {
			efx->ptp_data->ts_corrections.general_tx =
				efx->ptp_data->ts_corrections.ptp_tx;
			efx->ptp_data->ts_corrections.general_rx =
				efx->ptp_data->ts_corrections.ptp_rx;
		}
	} else if (rc == -EINVAL) {
		efx->ptp_data->ts_corrections.ptp_tx = 0;
		efx->ptp_data->ts_corrections.ptp_rx = 0;
		efx->ptp_data->ts_corrections.pps_out = 0;
		efx->ptp_data->ts_corrections.pps_in = 0;
		efx->ptp_data->ts_corrections.general_tx = 0;
		efx->ptp_data->ts_corrections.general_rx = 0;
	} else {
		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
				       sizeof(outbuf), rc);
		return rc;
	}

	return 0;
}

/* Enable MCDI PTP support. */
static int efx_ptp_enable(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
	MCDI_DECLARE_BUF_ERR(outbuf);
	int rc;

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
		       efx->ptp_data->channel ?
		       efx->ptp_data->channel->channel : 0);
	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);

	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
				outbuf, sizeof(outbuf), NULL);
	rc = (rc == -EALREADY) ? 0 : rc;
	if (rc)
		efx_mcdi_display_error(efx, MC_CMD_PTP,
				       MC_CMD_PTP_IN_ENABLE_LEN,
				       outbuf, sizeof(outbuf), rc);
	return rc;
}

/* Disable MCDI PTP support.
 *
 * Note that this function should never rely on the presence of ptp_data -
 * may be called before that exists.
 */
static int efx_ptp_disable(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
	MCDI_DECLARE_BUF_ERR(outbuf);
	int rc;

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
				outbuf, sizeof(outbuf), NULL);
	rc = (rc == -EALREADY) ? 0 : rc;
	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
	 * should only have been called during probe.
	 */
	if (rc == -ENOSYS || rc == -EPERM)
		pci_info(efx->pci_dev, "no PTP support\n");
	else if (rc)
		efx_mcdi_display_error(efx, MC_CMD_PTP,
				       MC_CMD_PTP_IN_DISABLE_LEN,
				       outbuf, sizeof(outbuf), rc);
	return rc;
}

static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
{
	struct sk_buff *skb;

	while ((skb = skb_dequeue(q))) {
		local_bh_disable();
		netif_receive_skb(skb);
		local_bh_enable();
	}
}

static void efx_ptp_handle_no_channel(struct efx_nic *efx)
{
	netif_err(efx, drv, efx->net_dev,
		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
		  "vector. PTP disabled\n");
}

/* Repeatedly send the host time to the MC which will capture the hardware
 * time.
 */
static void efx_ptp_send_times(struct efx_nic *efx,
			       struct pps_event_time *last_time)
{
	struct pps_event_time now;
	struct timespec64 limit;
	struct efx_ptp_data *ptp = efx->ptp_data;
	int *mc_running = ptp->start.addr;

	pps_get_ts(&now);
	limit = now.ts_real;
	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);

	/* Write host time for specified period or until MC is done */
	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
	       READ_ONCE(*mc_running)) {
		struct timespec64 update_time;
		unsigned int host_time;

		/* Don't update continuously to avoid saturating the PCIe bus */
		update_time = now.ts_real;
		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
		do {
			pps_get_ts(&now);
		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
			 READ_ONCE(*mc_running));

		/* Synchronise NIC with single word of time only */
		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
			     now.ts_real.tv_nsec);
		/* Update host time in NIC memory */
		efx->type->ptp_write_host_time(efx, host_time);
	}
	*last_time = now;
}

/* Read a timeset from the MC's results and partial process. */
static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
				 struct efx_ptp_timeset *timeset)
{
	unsigned start_ns, end_ns;

	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);

	/* Ignore seconds */
	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
	/* Allow for rollover */
	if (end_ns < start_ns)
		end_ns += NSEC_PER_SEC;
	/* Determine duration of operation */
	timeset->window = end_ns - start_ns;
}

/* Process times received from MC.
 *
 * Extract times from returned results, and establish the minimum value
 * seen.  The minimum value represents the "best" possible time and events
 * too much greater than this are rejected - the machine is, perhaps, too
 * busy. A number of readings are taken so that, hopefully, at least one good
 * synchronisation will be seen in the results.
 */
static int
efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
		      size_t response_length,
		      const struct pps_event_time *last_time)
{
	unsigned number_readings =
		MCDI_VAR_ARRAY_LEN(response_length,
				   PTP_OUT_SYNCHRONIZE_TIMESET);
	unsigned i;
	unsigned ngood = 0;
	unsigned last_good = 0;
	struct efx_ptp_data *ptp = efx->ptp_data;
	u32 last_sec;
	u32 start_sec;
	struct timespec64 delta;
	ktime_t mc_time;

	if (number_readings == 0)
		return -EAGAIN;

	/* Read the set of results and find the last good host-MC
	 * synchronization result. The MC times when it finishes reading the
	 * host time so the corrected window time should be fairly constant
	 * for a given platform. Increment stats for any results that appear
	 * to be erroneous.
	 */
	for (i = 0; i < number_readings; i++) {
		s32 window, corrected;
		struct timespec64 wait;

		efx_ptp_read_timeset(
			MCDI_ARRAY_STRUCT_PTR(synch_buf,
					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
			&ptp->timeset[i]);

		wait = ktime_to_timespec64(
			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
		window = ptp->timeset[i].window;
		corrected = window - wait.tv_nsec;

		/* We expect the uncorrected synchronization window to be at
		 * least as large as the interval between host start and end
		 * times. If it is smaller than this then this is mostly likely
		 * to be a consequence of the host's time being adjusted.
		 * Check that the corrected sync window is in a reasonable
		 * range. If it is out of range it is likely to be because an
		 * interrupt or other delay occurred between reading the system
		 * time and writing it to MC memory.
		 */
		if (window < SYNCHRONISATION_GRANULARITY_NS) {
			++ptp->invalid_sync_windows;
		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
			++ptp->oversize_sync_windows;
		} else if (corrected < ptp->min_synchronisation_ns) {
			++ptp->undersize_sync_windows;
		} else {
			ngood++;
			last_good = i;
		}
	}

	if (ngood == 0) {
		netif_warn(efx, drv, efx->net_dev,
			   "PTP no suitable synchronisations\n");
		return -EAGAIN;
	}

	/* Calculate delay from last good sync (host time) to last_time.
	 * It is possible that the seconds rolled over between taking
	 * the start reading and the last value written by the host.  The
	 * timescales are such that a gap of more than one second is never
	 * expected.  delta is *not* normalised.
	 */
	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
	if (start_sec != last_sec &&
	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
		netif_warn(efx, hw, efx->net_dev,
			   "PTP bad synchronisation seconds\n");
		return -EAGAIN;
	}
	delta.tv_sec = (last_sec - start_sec) & 1;
	delta.tv_nsec =
		last_time->ts_real.tv_nsec -
		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);

	/* Convert the NIC time at last good sync into kernel time.
	 * No correction is required - this time is the output of a
	 * firmware process.
	 */
	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
					  ptp->timeset[last_good].minor, 0);

	/* Calculate delay from NIC top of second to last_time */
	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;

	/* Set PPS timestamp to match NIC top of second */
	ptp->host_time_pps = *last_time;
	pps_sub_ts(&ptp->host_time_pps, delta);

	return 0;
}

/* Synchronize times between the host and the MC */
static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
	size_t response_length;
	int rc;
	unsigned long timeout;
	struct pps_event_time last_time = {};
	unsigned int loops = 0;
	int *start = ptp->start.addr;

	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
		       num_readings);
	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
		       ptp->start.dma_addr);

	/* Clear flag that signals MC ready */
	WRITE_ONCE(*start, 0);
	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
	EFX_WARN_ON_ONCE_PARANOID(rc);

	/* Wait for start from MCDI (or timeout) */
	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
		udelay(20);	/* Usually start MCDI execution quickly */
		loops++;
	}

	if (loops <= 1)
		++ptp->fast_syncs;
	if (!time_before(jiffies, timeout))
		++ptp->sync_timeouts;

	if (READ_ONCE(*start))
		efx_ptp_send_times(efx, &last_time);

	/* Collect results */
	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
				 synch_buf, sizeof(synch_buf),
				 &response_length);
	if (rc == 0) {
		rc = efx_ptp_process_times(efx, synch_buf, response_length,
					   &last_time);
		if (rc == 0)
			++ptp->good_syncs;
		else
			++ptp->no_time_syncs;
	}

	/* Increment the bad syncs counter if the synchronize fails, whatever
	 * the reason.
	 */
	if (rc != 0)
		++ptp->bad_syncs;

	return rc;
}

/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
{
	struct efx_ptp_data *ptp_data = efx->ptp_data;
	u8 type = efx_tx_csum_type_skb(skb);
	struct efx_tx_queue *tx_queue;

	tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
	if (tx_queue && tx_queue->timestamping) {
		skb_get(skb);

		/* This code invokes normal driver TX code which is always
		 * protected from softirqs when called from generic TX code,
		 * which in turn disables preemption. Look at __dev_queue_xmit
		 * which uses rcu_read_lock_bh disabling preemption for RCU
		 * plus disabling softirqs. We do not need RCU reader
		 * protection here.
		 *
		 * Although it is theoretically safe for current PTP TX/RX code
		 * running without disabling softirqs, there are three good
		 * reasond for doing so:
		 *
		 *      1) The code invoked is mainly implemented for non-PTP
		 *         packets and it is always executed with softirqs
		 *         disabled.
		 *      2) This being a single PTP packet, better to not
		 *         interrupt its processing by softirqs which can lead
		 *         to high latencies.
		 *      3) netdev_xmit_more checks preemption is disabled and
		 *         triggers a BUG_ON if not.
		 */
		local_bh_disable();
		efx_enqueue_skb(tx_queue, skb);
		local_bh_enable();

		/* We need to add the filters after enqueuing the packet.
		 * Otherwise, there's high latency in sending back the
		 * timestamp, causing ptp4l timeouts
		 */
		efx_ptp_insert_unicast_filter(efx, skb);
		dev_consume_skb_any(skb);
	} else {
		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
		dev_kfree_skb_any(skb);
	}
}

/* Transmit a PTP packet, via the MCDI interface, to the wire. */
static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
{
	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
	struct efx_ptp_data *ptp_data = efx->ptp_data;
	struct skb_shared_hwtstamps timestamps;
	size_t len;
	int rc;

	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
	if (skb_shinfo(skb)->nr_frags != 0) {
		rc = skb_linearize(skb);
		if (rc != 0)
			goto fail;
	}

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		rc = skb_checksum_help(skb);
		if (rc != 0)
			goto fail;
	}
	skb_copy_from_linear_data(skb,
				  MCDI_PTR(ptp_data->txbuf,
					   PTP_IN_TRANSMIT_PACKET),
				  skb->len);
	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
			  txtime, sizeof(txtime), &len);
	if (rc != 0)
		goto fail;

	memset(&timestamps, 0, sizeof(timestamps));
	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
		ptp_data->ts_corrections.ptp_tx);

	skb_tstamp_tx(skb, &timestamps);

	/* Add the filters after sending back the timestamp to avoid delaying it
	 * or ptp4l may timeout.
	 */
	efx_ptp_insert_unicast_filter(efx, skb);

fail:
	dev_kfree_skb_any(skb);

	return;
}

/* Process any queued receive events and corresponding packets
 *
 * q is returned with all the packets that are ready for delivery.
 */
static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct sk_buff *skb;

	while ((skb = skb_dequeue(&ptp->rxq))) {
		struct efx_ptp_match *match;

		match = (struct efx_ptp_match *)skb->cb;
		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
			__skb_queue_tail(q, skb);
		} else if (time_after(jiffies, match->expiry)) {
			match->state = PTP_PACKET_STATE_TIMED_OUT;
			++ptp->rx_no_timestamp;
			__skb_queue_tail(q, skb);
		} else {
			/* Replace unprocessed entry and stop */
			skb_queue_head(&ptp->rxq, skb);
			break;
		}
	}
}

/* Complete processing of a received packet */
static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
{
	local_bh_disable();
	netif_receive_skb(skb);
	local_bh_enable();
}

static struct efx_ptp_rxfilter *
efx_ptp_find_filter(struct list_head *filter_list, struct efx_filter_spec *spec)
{
	struct efx_ptp_rxfilter *rxfilter;

	list_for_each_entry(rxfilter, filter_list, list) {
		if (rxfilter->ether_type == spec->ether_type &&
		    rxfilter->loc_port == spec->loc_port &&
		    !memcmp(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host)))
			return rxfilter;
	}

	return NULL;
}

static void efx_ptp_remove_one_filter(struct efx_nic *efx,
				      struct efx_ptp_rxfilter *rxfilter)
{
	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
				  rxfilter->handle);
	list_del(&rxfilter->list);
	kfree(rxfilter);
}

static void efx_ptp_remove_filters(struct efx_nic *efx,
				   struct list_head *filter_list)
{
	struct efx_ptp_rxfilter *rxfilter, *tmp;

	list_for_each_entry_safe(rxfilter, tmp, filter_list, list)
		efx_ptp_remove_one_filter(efx, rxfilter);
}

static void efx_ptp_init_filter(struct efx_nic *efx,
				struct efx_filter_spec *rxfilter)
{
	struct efx_channel *channel = efx->ptp_data->channel;
	struct efx_rx_queue *queue = efx_channel_get_rx_queue(channel);

	efx_filter_init_rx(rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
			   efx_rx_queue_index(queue));
}

static int efx_ptp_insert_filter(struct efx_nic *efx,
				 struct list_head *filter_list,
				 struct efx_filter_spec *spec,
				 unsigned long expiry)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct efx_ptp_rxfilter *rxfilter;
	int rc;

	rxfilter = efx_ptp_find_filter(filter_list, spec);
	if (rxfilter) {
		rxfilter->expiry = expiry;
		return 0;
	}

	rxfilter = kzalloc(sizeof(*rxfilter), GFP_KERNEL);
	if (!rxfilter)
		return -ENOMEM;

	rc = efx_filter_insert_filter(efx, spec, true);
	if (rc < 0)
		goto fail;

	rxfilter->handle = rc;
	rxfilter->ether_type = spec->ether_type;
	rxfilter->loc_port = spec->loc_port;
	memcpy(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host));
	rxfilter->expiry = expiry;
	list_add(&rxfilter->list, filter_list);

	queue_delayed_work(ptp->workwq, &ptp->cleanup_work,
			   UCAST_FILTER_EXPIRY_JIFFIES + 1);

	return 0;

fail:
	kfree(rxfilter);
	return rc;
}

static int efx_ptp_insert_ipv4_filter(struct efx_nic *efx,
				      struct list_head *filter_list,
				      __be32 addr, u16 port,
				      unsigned long expiry)
{
	struct efx_filter_spec spec;

	efx_ptp_init_filter(efx, &spec);
	efx_filter_set_ipv4_local(&spec, IPPROTO_UDP, addr, htons(port));
	return efx_ptp_insert_filter(efx, filter_list, &spec, expiry);
}

static int efx_ptp_insert_ipv6_filter(struct efx_nic *efx,
				      struct list_head *filter_list,
				      const struct in6_addr *addr, u16 port,
				      unsigned long expiry)
{
	struct efx_filter_spec spec;

	efx_ptp_init_filter(efx, &spec);
	efx_filter_set_ipv6_local(&spec, IPPROTO_UDP, addr, htons(port));
	return efx_ptp_insert_filter(efx, filter_list, &spec, expiry);
}

static int efx_ptp_insert_eth_multicast_filter(struct efx_nic *efx)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct efx_filter_spec spec;

	efx_ptp_init_filter(efx, &spec);
	efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, ptp_addr_ether);
	spec.match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
	spec.ether_type = htons(ETH_P_1588);
	return efx_ptp_insert_filter(efx, &ptp->rxfilters_mcast, &spec, 0);
}

static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	int rc;

	if (!ptp->channel || !list_empty(&ptp->rxfilters_mcast))
		return 0;

	/* Must filter on both event and general ports to ensure
	 * that there is no packet re-ordering.
	 */
	rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast,
					htonl(PTP_ADDR_IPV4), PTP_EVENT_PORT,
					0);
	if (rc < 0)
		goto fail;

	rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast,
					htonl(PTP_ADDR_IPV4), PTP_GENERAL_PORT,
					0);
	if (rc < 0)
		goto fail;

	/* if the NIC supports hw timestamps by the MAC, we can support
	 * PTP over IPv6 and Ethernet
	 */
	if (efx_ptp_use_mac_tx_timestamps(efx)) {
		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast,
						&ptp_addr_ipv6, PTP_EVENT_PORT, 0);
		if (rc < 0)
			goto fail;

		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast,
						&ptp_addr_ipv6, PTP_GENERAL_PORT, 0);
		if (rc < 0)
			goto fail;

		rc = efx_ptp_insert_eth_multicast_filter(efx);

		/* Not all firmware variants support this filter */
		if (rc < 0 && rc != -EPROTONOSUPPORT)
			goto fail;
	}

	return 0;

fail:
	efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
	return rc;
}

static bool efx_ptp_valid_unicast_event_pkt(struct sk_buff *skb)
{
	if (skb->protocol == htons(ETH_P_IP)) {
		return ip_hdr(skb)->daddr != htonl(PTP_ADDR_IPV4) &&
			ip_hdr(skb)->protocol == IPPROTO_UDP &&
			udp_hdr(skb)->source == htons(PTP_EVENT_PORT);
	} else if (skb->protocol == htons(ETH_P_IPV6)) {
		return !ipv6_addr_equal(&ipv6_hdr(skb)->daddr, &ptp_addr_ipv6) &&
			ipv6_hdr(skb)->nexthdr == IPPROTO_UDP &&
			udp_hdr(skb)->source == htons(PTP_EVENT_PORT);
	}
	return false;
}

static int efx_ptp_insert_unicast_filter(struct efx_nic *efx,
					 struct sk_buff *skb)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	unsigned long expiry;
	int rc;

	if (!efx_ptp_valid_unicast_event_pkt(skb))
		return -EINVAL;

	expiry = jiffies + UCAST_FILTER_EXPIRY_JIFFIES;

	if (skb->protocol == htons(ETH_P_IP)) {
		__be32 addr = ip_hdr(skb)->saddr;

		rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast,
						addr, PTP_EVENT_PORT, expiry);
		if (rc < 0)
			goto out;

		rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast,
						addr, PTP_GENERAL_PORT, expiry);
	} else if (efx_ptp_use_mac_tx_timestamps(efx)) {
		/* IPv6 PTP only supported by devices with MAC hw timestamp */
		struct in6_addr *addr = &ipv6_hdr(skb)->saddr;

		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast,
						addr, PTP_EVENT_PORT, expiry);
		if (rc < 0)
			goto out;

		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast,
						addr, PTP_GENERAL_PORT, expiry);
	} else {
		return -EOPNOTSUPP;
	}

out:
	return rc;
}

static int efx_ptp_start(struct efx_nic *efx)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	int rc;

	ptp->reset_required = false;

	rc = efx_ptp_insert_multicast_filters(efx);
	if (rc)
		return rc;

	rc = efx_ptp_enable(efx);
	if (rc != 0)
		goto fail;

	ptp->evt_frag_idx = 0;
	ptp->current_adjfreq = 0;

	return 0;

fail:
	efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
	return rc;
}

static int efx_ptp_stop(struct efx_nic *efx)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	int rc;

	if (ptp == NULL)
		return 0;

	rc = efx_ptp_disable(efx);

	efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
	efx_ptp_remove_filters(efx, &ptp->rxfilters_ucast);

	/* Make sure RX packets are really delivered */
	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
	skb_queue_purge(&efx->ptp_data->txq);

	return rc;
}

static int efx_ptp_restart(struct efx_nic *efx)
{
	if (efx->ptp_data && efx->ptp_data->enabled)
		return efx_ptp_start(efx);
	return 0;
}

static void efx_ptp_pps_worker(struct work_struct *work)
{
	struct efx_ptp_data *ptp =
		container_of(work, struct efx_ptp_data, pps_work);
	struct efx_nic *efx = ptp->efx;
	struct ptp_clock_event ptp_evt;

	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
		return;

	ptp_evt.type = PTP_CLOCK_PPSUSR;
	ptp_evt.pps_times = ptp->host_time_pps;
	ptp_clock_event(ptp->phc_clock, &ptp_evt);
}

static void efx_ptp_worker(struct work_struct *work)
{
	struct efx_ptp_data *ptp_data =
		container_of(work, struct efx_ptp_data, work);
	struct efx_nic *efx = ptp_data->efx;
	struct sk_buff *skb;
	struct sk_buff_head tempq;

	if (ptp_data->reset_required) {
		efx_ptp_stop(efx);
		efx_ptp_start(efx);
		return;
	}

	__skb_queue_head_init(&tempq);
	efx_ptp_process_events(efx, &tempq);

	while ((skb = skb_dequeue(&ptp_data->txq)))
		ptp_data->xmit_skb(efx, skb);

	while ((skb = __skb_dequeue(&tempq)))
		efx_ptp_process_rx(efx, skb);
}

static void efx_ptp_cleanup_worker(struct work_struct *work)
{
	struct efx_ptp_data *ptp =
		container_of(work, struct efx_ptp_data, cleanup_work.work);
	struct efx_ptp_rxfilter *rxfilter, *tmp;

	list_for_each_entry_safe(rxfilter, tmp, &ptp->rxfilters_ucast, list) {
		if (time_is_before_jiffies(rxfilter->expiry))
			efx_ptp_remove_one_filter(ptp->efx, rxfilter);
	}

	if (!list_empty(&ptp->rxfilters_ucast)) {
		queue_delayed_work(ptp->workwq, &ptp->cleanup_work,
				   UCAST_FILTER_EXPIRY_JIFFIES + 1);
	}
}

static const struct ptp_clock_info efx_phc_clock_info = {
	.owner		= THIS_MODULE,
	.name		= "sfc",
	.max_adj	= MAX_PPB,
	.n_alarm	= 0,
	.n_ext_ts	= 0,
	.n_per_out	= 0,
	.n_pins		= 0,
	.pps		= 1,
	.adjfine	= efx_phc_adjfine,
	.adjtime	= efx_phc_adjtime,
	.gettime64	= efx_phc_gettime,
	.settime64	= efx_phc_settime,
	.enable		= efx_phc_enable,
};

/* Initialise PTP state. */
int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
{
	struct efx_ptp_data *ptp;
	int rc = 0;

	if (efx->ptp_data) {
		efx->ptp_data->channel = channel;
		return 0;
	}

	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
	efx->ptp_data = ptp;
	if (!efx->ptp_data)
		return -ENOMEM;

	ptp->efx = efx;
	ptp->channel = channel;

	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
	if (rc != 0)
		goto fail1;

	skb_queue_head_init(&ptp->rxq);
	skb_queue_head_init(&ptp->txq);
	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
	if (!ptp->workwq) {
		rc = -ENOMEM;
		goto fail2;
	}

	if (efx_ptp_use_mac_tx_timestamps(efx)) {
		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
		/* Request sync events on this channel. */
		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
	} else {
		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
	}

	INIT_WORK(&ptp->work, efx_ptp_worker);
	INIT_DELAYED_WORK(&ptp->cleanup_work, efx_ptp_cleanup_worker);
	ptp->config.flags = 0;
	ptp->config.tx_type = HWTSTAMP_TX_OFF;
	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
	INIT_LIST_HEAD(&ptp->rxfilters_mcast);
	INIT_LIST_HEAD(&ptp->rxfilters_ucast);

	/* Get the NIC PTP attributes and set up time conversions */
	rc = efx_ptp_get_attributes(efx);
	if (rc < 0)
		goto fail3;

	/* Get the timestamp corrections */
	rc = efx_ptp_get_timestamp_corrections(efx);
	if (rc < 0)
		goto fail3;

	if (efx->mcdi->fn_flags &
	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
		ptp->phc_clock_info = efx_phc_clock_info;
		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
						    &efx->pci_dev->dev);
		if (IS_ERR(ptp->phc_clock)) {
			rc = PTR_ERR(ptp->phc_clock);
			goto fail3;
		} else if (ptp->phc_clock) {
			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
			ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
			if (!ptp->pps_workwq) {
				rc = -ENOMEM;
				goto fail4;
			}
		}
	}
	ptp->nic_ts_enabled = false;

	return 0;
fail4:
	ptp_clock_unregister(efx->ptp_data->phc_clock);

fail3:
	destroy_workqueue(efx->ptp_data->workwq);

fail2:
	efx_nic_free_buffer(efx, &ptp->start);

fail1:
	kfree(efx->ptp_data);
	efx->ptp_data = NULL;

	return rc;
}

/* Initialise PTP channel.
 *
 * Setting core_index to zero causes the queue to be initialised and doesn't
 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
 */
static int efx_ptp_probe_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
	int rc;

	channel->irq_moderation_us = 0;
	channel->rx_queue.core_index = 0;

	rc = efx_ptp_probe(efx, channel);
	/* Failure to probe PTP is not fatal; this channel will just not be
	 * used for anything.
	 * In the case of EPERM, efx_ptp_probe will print its own message (in
	 * efx_ptp_get_attributes()), so we don't need to.
	 */
	if (rc && rc != -EPERM)
		netif_warn(efx, drv, efx->net_dev,
			   "Failed to probe PTP, rc=%d\n", rc);
	return 0;
}

void efx_ptp_remove(struct efx_nic *efx)
{
	if (!efx->ptp_data)
		return;

	(void)efx_ptp_disable(efx);

	cancel_work_sync(&efx->ptp_data->work);
	cancel_delayed_work_sync(&efx->ptp_data->cleanup_work);
	if (efx->ptp_data->pps_workwq)
		cancel_work_sync(&efx->ptp_data->pps_work);

	skb_queue_purge(&efx->ptp_data->rxq);
	skb_queue_purge(&efx->ptp_data->txq);

	if (efx->ptp_data->phc_clock) {
		destroy_workqueue(efx->ptp_data->pps_workwq);
		ptp_clock_unregister(efx->ptp_data->phc_clock);
	}

	destroy_workqueue(efx->ptp_data->workwq);

	efx_nic_free_buffer(efx, &efx->ptp_data->start);
	kfree(efx->ptp_data);
	efx->ptp_data = NULL;
}

static void efx_ptp_remove_channel(struct efx_channel *channel)
{
	efx_ptp_remove(channel->efx);
}

static void efx_ptp_get_channel_name(struct efx_channel *channel,
				     char *buf, size_t len)
{
	snprintf(buf, len, "%s-ptp", channel->efx->name);
}

/* Determine whether this packet should be processed by the PTP module
 * or transmitted conventionally.
 */
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
	return efx->ptp_data &&
		efx->ptp_data->enabled &&
		skb->len >= PTP_MIN_LENGTH &&
		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
		likely(skb->protocol == htons(ETH_P_IP)) &&
		skb_transport_header_was_set(skb) &&
		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
		ip_hdr(skb)->protocol == IPPROTO_UDP &&
		skb_headlen(skb) >=
		skb_transport_offset(skb) + sizeof(struct udphdr) &&
		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
}

/* Receive a PTP packet.  Packets are queued until the arrival of
 * the receive timestamp from the MC - this will probably occur after the
 * packet arrival because of the processing in the MC.
 */
static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
{
	struct efx_nic *efx = channel->efx;
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
	unsigned int version;
	u8 *data;

	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);

	/* Correct version? */
	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
			return false;
		}
		data = skb->data;
		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
		if (version != PTP_VERSION_V1) {
			return false;
		}
	} else {
		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
			return false;
		}
		data = skb->data;
		version = data[PTP_V2_VERSION_OFFSET];
		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
			return false;
		}
	}

	/* Does this packet require timestamping? */
	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
		match->state = PTP_PACKET_STATE_UNMATCHED;

		/* We expect the sequence number to be in the same position in
		 * the packet for PTP V1 and V2
		 */
		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
	} else {
		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
	}

	skb_queue_tail(&ptp->rxq, skb);
	queue_work(ptp->workwq, &ptp->work);

	return true;
}

/* Transmit a PTP packet.  This has to be transmitted by the MC
 * itself, through an MCDI call.  MCDI calls aren't permitted
 * in the transmit path so defer the actual transmission to a suitable worker.
 */
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
	struct efx_ptp_data *ptp = efx->ptp_data;

	skb_queue_tail(&ptp->txq, skb);

	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
		efx_xmit_hwtstamp_pending(skb);
	queue_work(ptp->workwq, &ptp->work);

	return NETDEV_TX_OK;
}

int efx_ptp_get_mode(struct efx_nic *efx)
{
	return efx->ptp_data->mode;
}

int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
			unsigned int new_mode)
{
	if ((enable_wanted != efx->ptp_data->enabled) ||
	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
		int rc = 0;

		if (enable_wanted) {
			/* Change of mode requires disable */
			if (efx->ptp_data->enabled &&
			    (efx->ptp_data->mode != new_mode)) {
				efx->ptp_data->enabled = false;
				rc = efx_ptp_stop(efx);
				if (rc != 0)
					return rc;
			}

			/* Set new operating mode and establish
			 * baseline synchronisation, which must
			 * succeed.
			 */
			efx->ptp_data->mode = new_mode;
			if (netif_running(efx->net_dev))
				rc = efx_ptp_start(efx);
			if (rc == 0) {
				rc = efx_ptp_synchronize(efx,
							 PTP_SYNC_ATTEMPTS * 2);
				if (rc != 0)
					efx_ptp_stop(efx);
			}
		} else {
			rc = efx_ptp_stop(efx);
		}

		if (rc != 0)
			return rc;

		efx->ptp_data->enabled = enable_wanted;
	}

	return 0;
}

static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
{
	int rc;

	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
	    (init->tx_type != HWTSTAMP_TX_ON))
		return -ERANGE;

	rc = efx->type->ptp_set_ts_config(efx, init);
	if (rc)
		return rc;

	efx->ptp_data->config = *init;
	return 0;
}

void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct efx_nic *primary = efx->primary;

	ASSERT_RTNL();

	if (!ptp)
		return;

	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
				     SOF_TIMESTAMPING_RX_HARDWARE |
				     SOF_TIMESTAMPING_RAW_HARDWARE);
	/* Check licensed features.  If we don't have the license for TX
	 * timestamps, the NIC will not support them.
	 */
	if (efx_ptp_use_mac_tx_timestamps(efx)) {
		struct efx_ef10_nic_data *nic_data = efx->nic_data;

		if (!(nic_data->licensed_features &
		      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
			ts_info->so_timestamping &=
				~SOF_TIMESTAMPING_TX_HARDWARE;
	}
	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
		ts_info->phc_index =
			ptp_clock_index(primary->ptp_data->phc_clock);
	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
}

int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
{
	struct hwtstamp_config config;
	int rc;

	/* Not a PTP enabled port */
	if (!efx->ptp_data)
		return -EOPNOTSUPP;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	rc = efx_ptp_ts_init(efx, &config);
	if (rc != 0)
		return rc;

	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
		? -EFAULT : 0;
}

int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
{
	if (!efx->ptp_data)
		return -EOPNOTSUPP;

	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
}

static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
{
	struct efx_ptp_data *ptp = efx->ptp_data;

	netif_err(efx, hw, efx->net_dev,
		"PTP unexpected event length: got %d expected %d\n",
		ptp->evt_frag_idx, expected_frag_len);
	ptp->reset_required = true;
	queue_work(ptp->workwq, &ptp->work);
}

static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
	if (ptp->evt_frag_idx != 1) {
		ptp_event_failure(efx, 1);
		return;
	}

	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
}

static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
	if (ptp->nic_ts_enabled)
		queue_work(ptp->pps_workwq, &ptp->pps_work);
}

void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);

	if (!ptp) {
		if (!efx->ptp_warned) {
			netif_warn(efx, drv, efx->net_dev,
				   "Received PTP event but PTP not set up\n");
			efx->ptp_warned = true;
		}
		return;
	}

	if (!ptp->enabled)
		return;

	if (ptp->evt_frag_idx == 0) {
		ptp->evt_code = code;
	} else if (ptp->evt_code != code) {
		netif_err(efx, hw, efx->net_dev,
			  "PTP out of sequence event %d\n", code);
		ptp->evt_frag_idx = 0;
	}

	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
		/* Process resulting event */
		switch (code) {
		case MCDI_EVENT_CODE_PTP_FAULT:
			ptp_event_fault(efx, ptp);
			break;
		case MCDI_EVENT_CODE_PTP_PPS:
			ptp_event_pps(efx, ptp);
			break;
		default:
			netif_err(efx, hw, efx->net_dev,
				  "PTP unknown event %d\n", code);
			break;
		}
		ptp->evt_frag_idx = 0;
	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
		netif_err(efx, hw, efx->net_dev,
			  "PTP too many event fragments\n");
		ptp->evt_frag_idx = 0;
	}
}

void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
{
	struct efx_nic *efx = channel->efx;
	struct efx_ptp_data *ptp = efx->ptp_data;

	/* When extracting the sync timestamp minor value, we should discard
	 * the least significant two bits. These are not required in order
	 * to reconstruct full-range timestamps and they are optionally used
	 * to report status depending on the options supplied when subscribing
	 * for sync events.
	 */
	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
	channel->sync_timestamp_minor =
		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
			<< ptp->nic_time.sync_event_minor_shift;

	/* if sync events have been disabled then we want to silently ignore
	 * this event, so throw away result.
	 */
	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
		       SYNC_EVENTS_VALID);
}

static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
#else
	const u8 *data = eh + efx->rx_packet_ts_offset;
	return (u32)data[0]       |
	       (u32)data[1] << 8  |
	       (u32)data[2] << 16 |
	       (u32)data[3] << 24;
#endif
}

void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
				   struct sk_buff *skb)
{
	struct efx_nic *efx = channel->efx;
	struct efx_ptp_data *ptp = efx->ptp_data;
	u32 pkt_timestamp_major, pkt_timestamp_minor;
	u32 diff, carry;
	struct skb_shared_hwtstamps *timestamps;

	if (channel->sync_events_state != SYNC_EVENTS_VALID)
		return;

	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));

	/* get the difference between the packet and sync timestamps,
	 * modulo one second
	 */
	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
		diff += ptp->nic_time.minor_max;

	/* do we roll over a second boundary and need to carry the one? */
	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
		1 : 0;

	if (diff <= ptp->nic_time.sync_event_diff_max) {
		/* packet is ahead of the sync event by a quarter of a second or
		 * less (allowing for fuzz)
		 */
		pkt_timestamp_major = channel->sync_timestamp_major + carry;
	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
		/* packet is behind the sync event but within the fuzz factor.
		 * This means the RX packet and sync event crossed as they were
		 * placed on the event queue, which can sometimes happen.
		 */
		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
	} else {
		/* it's outside tolerance in both directions. this might be
		 * indicative of us missing sync events for some reason, so
		 * we'll call it an error rather than risk giving a bogus
		 * timestamp.
		 */
		netif_vdbg(efx, drv, efx->net_dev,
			  "packet timestamp %x too far from sync event %x:%x\n",
			  pkt_timestamp_minor, channel->sync_timestamp_major,
			  channel->sync_timestamp_minor);
		return;
	}

	/* attach the timestamps to the skb */
	timestamps = skb_hwtstamps(skb);
	timestamps->hwtstamp =
		ptp->nic_to_kernel_time(pkt_timestamp_major,
					pkt_timestamp_minor,
					ptp->ts_corrections.general_rx);
}

static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
	s32 delta = scaled_ppm_to_ppb(scaled_ppm);
	struct efx_nic *efx = ptp_data->efx;
	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
	s64 adjustment_ns;
	int rc;

	if (delta > MAX_PPB)
		delta = MAX_PPB;
	else if (delta < -MAX_PPB)
		delta = -MAX_PPB;

	/* Convert ppb to fixed point ns taking care to round correctly. */
	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
			ptp_data->adjfreq_ppb_shift;

	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
			  NULL, 0, NULL);
	if (rc != 0)
		return rc;

	ptp_data->current_adjfreq = adjustment_ns;
	return 0;
}

static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	u32 nic_major, nic_minor;
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
	struct efx_nic *efx = ptp_data->efx;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);

	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
	struct efx_nic *efx = ptp_data->efx;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
	int rc;
	ktime_t kt;

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), NULL);
	if (rc != 0)
		return rc;

	kt = ptp_data->nic_to_kernel_time(
		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
	*ts = ktime_to_timespec64(kt);
	return 0;
}

static int efx_phc_settime(struct ptp_clock_info *ptp,
			   const struct timespec64 *e_ts)
{
	/* Get the current NIC time, efx_phc_gettime.
	 * Subtract from the desired time to get the offset
	 * call efx_phc_adjtime with the offset
	 */
	int rc;
	struct timespec64 time_now;
	struct timespec64 delta;

	rc = efx_phc_gettime(ptp, &time_now);
	if (rc != 0)
		return rc;

	delta = timespec64_sub(*e_ts, time_now);

	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
	if (rc != 0)
		return rc;

	return 0;
}

static int efx_phc_enable(struct ptp_clock_info *ptp,
			  struct ptp_clock_request *request,
			  int enable)
{
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
	if (request->type != PTP_CLK_REQ_PPS)
		return -EOPNOTSUPP;

	ptp_data->nic_ts_enabled = !!enable;
	return 0;
}

static const struct efx_channel_type efx_ptp_channel_type = {
	.handle_no_channel	= efx_ptp_handle_no_channel,
	.pre_probe		= efx_ptp_probe_channel,
	.post_remove		= efx_ptp_remove_channel,
	.get_name		= efx_ptp_get_channel_name,
	.copy                   = efx_copy_channel,
	.receive_skb		= efx_ptp_rx,
	.want_txqs		= efx_ptp_want_txqs,
	.keep_eventq		= false,
};

void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
{
	/* Check whether PTP is implemented on this NIC.  The DISABLE
	 * operation will succeed if and only if it is implemented.
	 */
	if (efx_ptp_disable(efx) == 0)
		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
			&efx_ptp_channel_type;
}

void efx_ptp_start_datapath(struct efx_nic *efx)
{
	if (efx_ptp_restart(efx))
		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
	/* re-enable timestamping if it was previously enabled */
	if (efx->type->ptp_set_ts_sync_events)
		efx->type->ptp_set_ts_sync_events(efx, true, true);
}

void efx_ptp_stop_datapath(struct efx_nic *efx)
{
	/* temporarily disable timestamping */
	if (efx->type->ptp_set_ts_sync_events)
		efx->type->ptp_set_ts_sync_events(efx, false, true);
	efx_ptp_stop(efx);
}