Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2011-2016 Synaptics Incorporated
 * Copyright (c) 2011 Unixphere
 */

#include <linux/kernel.h>
#include <linux/rmi.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/of.h>
#include <asm/unaligned.h>
#include "rmi_driver.h"

#define RMI_PRODUCT_ID_LENGTH    10
#define RMI_PRODUCT_INFO_LENGTH   2

#define RMI_DATE_CODE_LENGTH      3

#define PRODUCT_ID_OFFSET 0x10
#define PRODUCT_INFO_OFFSET 0x1E


/* Force a firmware reset of the sensor */
#define RMI_F01_CMD_DEVICE_RESET	1

/* Various F01_RMI_QueryX bits */

#define RMI_F01_QRY1_CUSTOM_MAP		BIT(0)
#define RMI_F01_QRY1_NON_COMPLIANT	BIT(1)
#define RMI_F01_QRY1_HAS_LTS		BIT(2)
#define RMI_F01_QRY1_HAS_SENSOR_ID	BIT(3)
#define RMI_F01_QRY1_HAS_CHARGER_INP	BIT(4)
#define RMI_F01_QRY1_HAS_ADJ_DOZE	BIT(5)
#define RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF	BIT(6)
#define RMI_F01_QRY1_HAS_QUERY42	BIT(7)

#define RMI_F01_QRY5_YEAR_MASK		0x1f
#define RMI_F01_QRY6_MONTH_MASK		0x0f
#define RMI_F01_QRY7_DAY_MASK		0x1f

#define RMI_F01_QRY2_PRODINFO_MASK	0x7f

#define RMI_F01_BASIC_QUERY_LEN		21 /* From Query 00 through 20 */

struct f01_basic_properties {
	u8 manufacturer_id;
	bool has_lts;
	bool has_adjustable_doze;
	bool has_adjustable_doze_holdoff;
	char dom[11]; /* YYYY/MM/DD + '\0' */
	u8 product_id[RMI_PRODUCT_ID_LENGTH + 1];
	u16 productinfo;
	u32 firmware_id;
	u32 package_id;
};

/* F01 device status bits */

/* Most recent device status event */
#define RMI_F01_STATUS_CODE(status)		((status) & 0x0f)
/* The device has lost its configuration for some reason. */
#define RMI_F01_STATUS_UNCONFIGURED(status)	(!!((status) & 0x80))
/* The device is in bootloader mode */
#define RMI_F01_STATUS_BOOTLOADER(status)	((status) & 0x40)

/* Control register bits */

/*
 * Sleep mode controls power management on the device and affects all
 * functions of the device.
 */
#define RMI_F01_CTRL0_SLEEP_MODE_MASK	0x03

#define RMI_SLEEP_MODE_NORMAL		0x00
#define RMI_SLEEP_MODE_SENSOR_SLEEP	0x01
#define RMI_SLEEP_MODE_RESERVED0	0x02
#define RMI_SLEEP_MODE_RESERVED1	0x03

/*
 * This bit disables whatever sleep mode may be selected by the sleep_mode
 * field and forces the device to run at full power without sleeping.
 */
#define RMI_F01_CTRL0_NOSLEEP_BIT	BIT(2)

/*
 * When this bit is set, the touch controller employs a noise-filtering
 * algorithm designed for use with a connected battery charger.
 */
#define RMI_F01_CTRL0_CHARGER_BIT	BIT(5)

/*
 * Sets the report rate for the device. The effect of this setting is
 * highly product dependent. Check the spec sheet for your particular
 * touch sensor.
 */
#define RMI_F01_CTRL0_REPORTRATE_BIT	BIT(6)

/*
 * Written by the host as an indicator that the device has been
 * successfully configured.
 */
#define RMI_F01_CTRL0_CONFIGURED_BIT	BIT(7)

/**
 * struct f01_device_control - controls basic sensor functions
 *
 * @ctrl0: see the bit definitions above.
 * @doze_interval: controls the interval between checks for finger presence
 *	when the touch sensor is in doze mode, in units of 10ms.
 * @wakeup_threshold: controls the capacitance threshold at which the touch
 *	sensor will decide to wake up from that low power state.
 * @doze_holdoff: controls how long the touch sensor waits after the last
 *	finger lifts before entering the doze state, in units of 100ms.
 */
struct f01_device_control {
	u8 ctrl0;
	u8 doze_interval;
	u8 wakeup_threshold;
	u8 doze_holdoff;
};

struct f01_data {
	struct f01_basic_properties properties;
	struct f01_device_control device_control;

	u16 doze_interval_addr;
	u16 wakeup_threshold_addr;
	u16 doze_holdoff_addr;

	bool suspended;
	bool old_nosleep;

	unsigned int num_of_irq_regs;
};

static int rmi_f01_read_properties(struct rmi_device *rmi_dev,
				   u16 query_base_addr,
				   struct f01_basic_properties *props)
{
	u8 queries[RMI_F01_BASIC_QUERY_LEN];
	int ret;
	int query_offset = query_base_addr;
	bool has_ds4_queries = false;
	bool has_query42 = false;
	bool has_sensor_id = false;
	bool has_package_id_query = false;
	bool has_build_id_query = false;
	u16 prod_info_addr;
	u8 ds4_query_len;

	ret = rmi_read_block(rmi_dev, query_offset,
			       queries, RMI_F01_BASIC_QUERY_LEN);
	if (ret) {
		dev_err(&rmi_dev->dev,
			"Failed to read device query registers: %d\n", ret);
		return ret;
	}

	prod_info_addr = query_offset + 17;
	query_offset += RMI_F01_BASIC_QUERY_LEN;

	/* Now parse what we got */
	props->manufacturer_id = queries[0];

	props->has_lts = queries[1] & RMI_F01_QRY1_HAS_LTS;
	props->has_adjustable_doze =
			queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE;
	props->has_adjustable_doze_holdoff =
			queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF;
	has_query42 = queries[1] & RMI_F01_QRY1_HAS_QUERY42;
	has_sensor_id = queries[1] & RMI_F01_QRY1_HAS_SENSOR_ID;

	snprintf(props->dom, sizeof(props->dom), "20%02d/%02d/%02d",
		 queries[5] & RMI_F01_QRY5_YEAR_MASK,
		 queries[6] & RMI_F01_QRY6_MONTH_MASK,
		 queries[7] & RMI_F01_QRY7_DAY_MASK);

	memcpy(props->product_id, &queries[11],
		RMI_PRODUCT_ID_LENGTH);
	props->product_id[RMI_PRODUCT_ID_LENGTH] = '\0';

	props->productinfo =
			((queries[2] & RMI_F01_QRY2_PRODINFO_MASK) << 7) |
			(queries[3] & RMI_F01_QRY2_PRODINFO_MASK);

	if (has_sensor_id)
		query_offset++;

	if (has_query42) {
		ret = rmi_read(rmi_dev, query_offset, queries);
		if (ret) {
			dev_err(&rmi_dev->dev,
				"Failed to read query 42 register: %d\n", ret);
			return ret;
		}

		has_ds4_queries = !!(queries[0] & BIT(0));
		query_offset++;
	}

	if (has_ds4_queries) {
		ret = rmi_read(rmi_dev, query_offset, &ds4_query_len);
		if (ret) {
			dev_err(&rmi_dev->dev,
				"Failed to read DS4 queries length: %d\n", ret);
			return ret;
		}
		query_offset++;

		if (ds4_query_len > 0) {
			ret = rmi_read(rmi_dev, query_offset, queries);
			if (ret) {
				dev_err(&rmi_dev->dev,
					"Failed to read DS4 queries: %d\n",
					ret);
				return ret;
			}

			has_package_id_query = !!(queries[0] & BIT(0));
			has_build_id_query = !!(queries[0] & BIT(1));
		}

		if (has_package_id_query) {
			ret = rmi_read_block(rmi_dev, prod_info_addr,
					     queries, sizeof(__le64));
			if (ret) {
				dev_err(&rmi_dev->dev,
					"Failed to read package info: %d\n",
					ret);
				return ret;
			}

			props->package_id = get_unaligned_le64(queries);
			prod_info_addr++;
		}

		if (has_build_id_query) {
			ret = rmi_read_block(rmi_dev, prod_info_addr, queries,
					    3);
			if (ret) {
				dev_err(&rmi_dev->dev,
					"Failed to read product info: %d\n",
					ret);
				return ret;
			}

			props->firmware_id = queries[1] << 8 | queries[0];
			props->firmware_id += queries[2] * 65536;
		}
	}

	return 0;
}

const char *rmi_f01_get_product_ID(struct rmi_function *fn)
{
	struct f01_data *f01 = dev_get_drvdata(&fn->dev);

	return f01->properties.product_id;
}

static ssize_t rmi_driver_manufacturer_id_show(struct device *dev,
					       struct device_attribute *dattr,
					       char *buf)
{
	struct rmi_driver_data *data = dev_get_drvdata(dev);
	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n",
			 f01->properties.manufacturer_id);
}

static DEVICE_ATTR(manufacturer_id, 0444,
		   rmi_driver_manufacturer_id_show, NULL);

static ssize_t rmi_driver_dom_show(struct device *dev,
				   struct device_attribute *dattr, char *buf)
{
	struct rmi_driver_data *data = dev_get_drvdata(dev);
	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);

	return scnprintf(buf, PAGE_SIZE, "%s\n", f01->properties.dom);
}

static DEVICE_ATTR(date_of_manufacture, 0444, rmi_driver_dom_show, NULL);

static ssize_t rmi_driver_product_id_show(struct device *dev,
					  struct device_attribute *dattr,
					  char *buf)
{
	struct rmi_driver_data *data = dev_get_drvdata(dev);
	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);

	return scnprintf(buf, PAGE_SIZE, "%s\n", f01->properties.product_id);
}

static DEVICE_ATTR(product_id, 0444, rmi_driver_product_id_show, NULL);

static ssize_t rmi_driver_firmware_id_show(struct device *dev,
					   struct device_attribute *dattr,
					   char *buf)
{
	struct rmi_driver_data *data = dev_get_drvdata(dev);
	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", f01->properties.firmware_id);
}

static DEVICE_ATTR(firmware_id, 0444, rmi_driver_firmware_id_show, NULL);

static ssize_t rmi_driver_package_id_show(struct device *dev,
					  struct device_attribute *dattr,
					  char *buf)
{
	struct rmi_driver_data *data = dev_get_drvdata(dev);
	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);

	u32 package_id = f01->properties.package_id;

	return scnprintf(buf, PAGE_SIZE, "%04x.%04x\n",
			 package_id & 0xffff, (package_id >> 16) & 0xffff);
}

static DEVICE_ATTR(package_id, 0444, rmi_driver_package_id_show, NULL);

static struct attribute *rmi_f01_attrs[] = {
	&dev_attr_manufacturer_id.attr,
	&dev_attr_date_of_manufacture.attr,
	&dev_attr_product_id.attr,
	&dev_attr_firmware_id.attr,
	&dev_attr_package_id.attr,
	NULL
};

static const struct attribute_group rmi_f01_attr_group = {
	.attrs = rmi_f01_attrs,
};

#ifdef CONFIG_OF
static int rmi_f01_of_probe(struct device *dev,
				struct rmi_device_platform_data *pdata)
{
	int retval;
	u32 val;

	retval = rmi_of_property_read_u32(dev,
			(u32 *)&pdata->power_management.nosleep,
			"syna,nosleep-mode", 1);
	if (retval)
		return retval;

	retval = rmi_of_property_read_u32(dev, &val,
			"syna,wakeup-threshold", 1);
	if (retval)
		return retval;

	pdata->power_management.wakeup_threshold = val;

	retval = rmi_of_property_read_u32(dev, &val,
			"syna,doze-holdoff-ms", 1);
	if (retval)
		return retval;

	pdata->power_management.doze_holdoff = val * 100;

	retval = rmi_of_property_read_u32(dev, &val,
			"syna,doze-interval-ms", 1);
	if (retval)
		return retval;

	pdata->power_management.doze_interval = val / 10;

	return 0;
}
#else
static inline int rmi_f01_of_probe(struct device *dev,
					struct rmi_device_platform_data *pdata)
{
	return -ENODEV;
}
#endif

static int rmi_f01_probe(struct rmi_function *fn)
{
	struct rmi_device *rmi_dev = fn->rmi_dev;
	struct rmi_driver_data *driver_data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
	struct f01_data *f01;
	int error;
	u16 ctrl_base_addr = fn->fd.control_base_addr;
	u8 device_status;
	u8 temp;

	if (fn->dev.of_node) {
		error = rmi_f01_of_probe(&fn->dev, pdata);
		if (error)
			return error;
	}

	f01 = devm_kzalloc(&fn->dev, sizeof(struct f01_data), GFP_KERNEL);
	if (!f01)
		return -ENOMEM;

	f01->num_of_irq_regs = driver_data->num_of_irq_regs;

	/*
	 * Set the configured bit and (optionally) other important stuff
	 * in the device control register.
	 */

	error = rmi_read(rmi_dev, fn->fd.control_base_addr,
			 &f01->device_control.ctrl0);
	if (error) {
		dev_err(&fn->dev, "Failed to read F01 control: %d\n", error);
		return error;
	}

	switch (pdata->power_management.nosleep) {
	case RMI_REG_STATE_DEFAULT:
		break;
	case RMI_REG_STATE_OFF:
		f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT;
		break;
	case RMI_REG_STATE_ON:
		f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;
		break;
	}

	/*
	 * Sleep mode might be set as a hangover from a system crash or
	 * reboot without power cycle.  If so, clear it so the sensor
	 * is certain to function.
	 */
	if ((f01->device_control.ctrl0 & RMI_F01_CTRL0_SLEEP_MODE_MASK) !=
			RMI_SLEEP_MODE_NORMAL) {
		dev_warn(&fn->dev,
			 "WARNING: Non-zero sleep mode found. Clearing...\n");
		f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
	}

	f01->device_control.ctrl0 |= RMI_F01_CTRL0_CONFIGURED_BIT;

	error = rmi_write(rmi_dev, fn->fd.control_base_addr,
			  f01->device_control.ctrl0);
	if (error) {
		dev_err(&fn->dev, "Failed to write F01 control: %d\n", error);
		return error;
	}

	/* Dummy read in order to clear irqs */
	error = rmi_read(rmi_dev, fn->fd.data_base_addr + 1, &temp);
	if (error < 0) {
		dev_err(&fn->dev, "Failed to read Interrupt Status.\n");
		return error;
	}

	error = rmi_f01_read_properties(rmi_dev, fn->fd.query_base_addr,
					&f01->properties);
	if (error < 0) {
		dev_err(&fn->dev, "Failed to read F01 properties.\n");
		return error;
	}

	dev_info(&fn->dev, "found RMI device, manufacturer: %s, product: %s, fw id: %d\n",
		 f01->properties.manufacturer_id == 1 ? "Synaptics" : "unknown",
		 f01->properties.product_id, f01->properties.firmware_id);

	/* Advance to interrupt control registers, then skip over them. */
	ctrl_base_addr++;
	ctrl_base_addr += f01->num_of_irq_regs;

	/* read control register */
	if (f01->properties.has_adjustable_doze) {
		f01->doze_interval_addr = ctrl_base_addr;
		ctrl_base_addr++;

		if (pdata->power_management.doze_interval) {
			f01->device_control.doze_interval =
				pdata->power_management.doze_interval;
			error = rmi_write(rmi_dev, f01->doze_interval_addr,
					  f01->device_control.doze_interval);
			if (error) {
				dev_err(&fn->dev,
					"Failed to configure F01 doze interval register: %d\n",
					error);
				return error;
			}
		} else {
			error = rmi_read(rmi_dev, f01->doze_interval_addr,
					 &f01->device_control.doze_interval);
			if (error) {
				dev_err(&fn->dev,
					"Failed to read F01 doze interval register: %d\n",
					error);
				return error;
			}
		}

		f01->wakeup_threshold_addr = ctrl_base_addr;
		ctrl_base_addr++;

		if (pdata->power_management.wakeup_threshold) {
			f01->device_control.wakeup_threshold =
				pdata->power_management.wakeup_threshold;
			error = rmi_write(rmi_dev, f01->wakeup_threshold_addr,
					  f01->device_control.wakeup_threshold);
			if (error) {
				dev_err(&fn->dev,
					"Failed to configure F01 wakeup threshold register: %d\n",
					error);
				return error;
			}
		} else {
			error = rmi_read(rmi_dev, f01->wakeup_threshold_addr,
					 &f01->device_control.wakeup_threshold);
			if (error < 0) {
				dev_err(&fn->dev,
					"Failed to read F01 wakeup threshold register: %d\n",
					error);
				return error;
			}
		}
	}

	if (f01->properties.has_lts)
		ctrl_base_addr++;

	if (f01->properties.has_adjustable_doze_holdoff) {
		f01->doze_holdoff_addr = ctrl_base_addr;
		ctrl_base_addr++;

		if (pdata->power_management.doze_holdoff) {
			f01->device_control.doze_holdoff =
				pdata->power_management.doze_holdoff;
			error = rmi_write(rmi_dev, f01->doze_holdoff_addr,
					  f01->device_control.doze_holdoff);
			if (error) {
				dev_err(&fn->dev,
					"Failed to configure F01 doze holdoff register: %d\n",
					error);
				return error;
			}
		} else {
			error = rmi_read(rmi_dev, f01->doze_holdoff_addr,
					 &f01->device_control.doze_holdoff);
			if (error) {
				dev_err(&fn->dev,
					"Failed to read F01 doze holdoff register: %d\n",
					error);
				return error;
			}
		}
	}

	error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status);
	if (error < 0) {
		dev_err(&fn->dev,
			"Failed to read device status: %d\n", error);
		return error;
	}

	if (RMI_F01_STATUS_UNCONFIGURED(device_status)) {
		dev_err(&fn->dev,
			"Device was reset during configuration process, status: %#02x!\n",
			RMI_F01_STATUS_CODE(device_status));
		return -EINVAL;
	}

	dev_set_drvdata(&fn->dev, f01);

	error = sysfs_create_group(&fn->rmi_dev->dev.kobj, &rmi_f01_attr_group);
	if (error)
		dev_warn(&fn->dev, "Failed to create sysfs group: %d\n", error);

	return 0;
}

static void rmi_f01_remove(struct rmi_function *fn)
{
	/* Note that the bus device is used, not the F01 device */
	sysfs_remove_group(&fn->rmi_dev->dev.kobj, &rmi_f01_attr_group);
}

static int rmi_f01_config(struct rmi_function *fn)
{
	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
	int error;

	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
			  f01->device_control.ctrl0);
	if (error) {
		dev_err(&fn->dev,
			"Failed to write device_control register: %d\n", error);
		return error;
	}

	if (f01->properties.has_adjustable_doze) {
		error = rmi_write(fn->rmi_dev, f01->doze_interval_addr,
				  f01->device_control.doze_interval);
		if (error) {
			dev_err(&fn->dev,
				"Failed to write doze interval: %d\n", error);
			return error;
		}

		error = rmi_write_block(fn->rmi_dev,
					 f01->wakeup_threshold_addr,
					 &f01->device_control.wakeup_threshold,
					 sizeof(u8));
		if (error) {
			dev_err(&fn->dev,
				"Failed to write wakeup threshold: %d\n",
				error);
			return error;
		}
	}

	if (f01->properties.has_adjustable_doze_holdoff) {
		error = rmi_write(fn->rmi_dev, f01->doze_holdoff_addr,
				  f01->device_control.doze_holdoff);
		if (error) {
			dev_err(&fn->dev,
				"Failed to write doze holdoff: %d\n", error);
			return error;
		}
	}

	return 0;
}

static int rmi_f01_suspend(struct rmi_function *fn)
{
	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
	int error;

	f01->old_nosleep =
		f01->device_control.ctrl0 & RMI_F01_CTRL0_NOSLEEP_BIT;
	f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT;

	f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
	if (device_may_wakeup(fn->rmi_dev->xport->dev))
		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_RESERVED1;
	else
		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_SENSOR_SLEEP;

	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
			  f01->device_control.ctrl0);
	if (error) {
		dev_err(&fn->dev, "Failed to write sleep mode: %d.\n", error);
		if (f01->old_nosleep)
			f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;
		f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL;
		return error;
	}

	return 0;
}

static int rmi_f01_resume(struct rmi_function *fn)
{
	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
	int error;

	if (f01->old_nosleep)
		f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;

	f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
	f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL;

	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
			  f01->device_control.ctrl0);
	if (error) {
		dev_err(&fn->dev,
			"Failed to restore normal operation: %d.\n", error);
		return error;
	}

	return 0;
}

static irqreturn_t rmi_f01_attention(int irq, void *ctx)
{
	struct rmi_function *fn = ctx;
	struct rmi_device *rmi_dev = fn->rmi_dev;
	int error;
	u8 device_status;

	error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status);
	if (error) {
		dev_err(&fn->dev,
			"Failed to read device status: %d.\n", error);
		return IRQ_RETVAL(error);
	}

	if (RMI_F01_STATUS_BOOTLOADER(device_status))
		dev_warn(&fn->dev,
			 "Device in bootloader mode, please update firmware\n");

	if (RMI_F01_STATUS_UNCONFIGURED(device_status)) {
		dev_warn(&fn->dev, "Device reset detected.\n");
		error = rmi_dev->driver->reset_handler(rmi_dev);
		if (error) {
			dev_err(&fn->dev, "Device reset failed: %d\n", error);
			return IRQ_RETVAL(error);
		}
	}

	return IRQ_HANDLED;
}

struct rmi_function_handler rmi_f01_handler = {
	.driver = {
		.name	= "rmi4_f01",
		/*
		 * Do not allow user unbinding F01 as it is critical
		 * function.
		 */
		.suppress_bind_attrs = true,
	},
	.func		= 0x01,
	.probe		= rmi_f01_probe,
	.remove		= rmi_f01_remove,
	.config		= rmi_f01_config,
	.attention	= rmi_f01_attention,
	.suspend	= rmi_f01_suspend,
	.resume		= rmi_f01_resume,
};