Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Debugging module statistics. * * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> */ #include <linux/module.h> #include <uapi/linux/module.h> #include <linux/string.h> #include <linux/printk.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/debugfs.h> #include <linux/rculist.h> #include <linux/math.h> #include "internal.h" /** * DOC: module debugging statistics overview * * Enabling CONFIG_MODULE_STATS enables module debugging statistics which * are useful to monitor and root cause memory pressure issues with module * loading. These statistics are useful to allow us to improve production * workloads. * * The current module debugging statistics supported help keep track of module * loading failures to enable improvements either for kernel module auto-loading * usage (request_module()) or interactions with userspace. Statistics are * provided to track all possible failures in the finit_module() path and memory * wasted in this process space. Each of the failure counters are associated * to a type of module loading failure which is known to incur a certain amount * of memory allocation loss. In the worst case loading a module will fail after * a 3 step memory allocation process: * * a) memory allocated with kernel_read_file_from_fd() * b) module decompression processes the file read from * kernel_read_file_from_fd(), and vmap() is used to map * the decompressed module to a new local buffer which represents * a copy of the decompressed module passed from userspace. The buffer * from kernel_read_file_from_fd() is freed right away. * c) layout_and_allocate() allocates space for the final resting * place where we would keep the module if it were to be processed * successfully. * * If a failure occurs after these three different allocations only one * counter will be incremented with the summation of the allocated bytes freed * incurred during this failure. Likewise, if module loading failed only after * step b) a separate counter is used and incremented for the bytes freed and * not used during both of those allocations. * * Virtual memory space can be limited, for example on x86 virtual memory size * defaults to 128 MiB. We should strive to limit and avoid wasting virtual * memory allocations when possible. These module debugging statistics help * to evaluate how much memory is being wasted on bootup due to module loading * failures. * * All counters are designed to be incremental. Atomic counters are used so to * remain simple and avoid delays and deadlocks. */ /** * DOC: dup_failed_modules - tracks duplicate failed modules * * Linked list of modules which failed to be loaded because an already existing * module with the same name was already being processed or already loaded. * The finit_module() system call incurs heavy virtual memory allocations. In * the worst case an finit_module() system call can end up allocating virtual * memory 3 times: * * 1) kernel_read_file_from_fd() call uses vmalloc() * 2) optional module decompression uses vmap() * 3) layout_and allocate() can use vzalloc() or an arch specific variation of * vmalloc to deal with ELF sections requiring special permissions * * In practice on a typical boot today most finit_module() calls fail due to * the module with the same name already being loaded or about to be processed. * All virtual memory allocated to these failed modules will be freed with * no functional use. * * To help with this the dup_failed_modules allows us to track modules which * failed to load due to the fact that a module was already loaded or being * processed. There are only two points at which we can fail such calls, * we list them below along with the number of virtual memory allocation * calls: * * a) FAIL_DUP_MOD_BECOMING: at the end of early_mod_check() before * layout_and_allocate(). * - with module decompression: 2 virtual memory allocation calls * - without module decompression: 1 virtual memory allocation calls * b) FAIL_DUP_MOD_LOAD: after layout_and_allocate() on add_unformed_module() * - with module decompression 3 virtual memory allocation calls * - without module decompression 2 virtual memory allocation calls * * We should strive to get this list to be as small as possible. If this list * is not empty it is a reflection of possible work or optimizations possible * either in-kernel or in userspace. */ static LIST_HEAD(dup_failed_modules); /** * DOC: module statistics debugfs counters * * The total amount of wasted virtual memory allocation space during module * loading can be computed by adding the total from the summation: * * * @invalid_kread_bytes + * @invalid_decompress_bytes + * @invalid_becoming_bytes + * @invalid_mod_bytes * * The following debugfs counters are available to inspect module loading * failures: * * * total_mod_size: total bytes ever used by all modules we've dealt with on * this system * * total_text_size: total bytes of the .text and .init.text ELF section * sizes we've dealt with on this system * * invalid_kread_bytes: bytes allocated and then freed on failures which * happen due to the initial kernel_read_file_from_fd(). kernel_read_file_from_fd() * uses vmalloc(). These should typically not happen unless your system is * under memory pressure. * * invalid_decompress_bytes: number of bytes allocated and freed due to * memory allocations in the module decompression path that use vmap(). * These typically should not happen unless your system is under memory * pressure. * * invalid_becoming_bytes: total number of bytes allocated and freed used * used to read the kernel module userspace wants us to read before we * promote it to be processed to be added to our @modules linked list. These * failures can happen if we had a check in between a successful kernel_read_file_from_fd() * call and right before we allocate the our private memory for the module * which would be kept if the module is successfully loaded. The most common * reason for this failure is when userspace is racing to load a module * which it does not yet see loaded. The first module to succeed in * add_unformed_module() will add a module to our &modules list and * subsequent loads of modules with the same name will error out at the * end of early_mod_check(). The check for module_patient_check_exists() * at the end of early_mod_check() prevents duplicate allocations * on layout_and_allocate() for modules already being processed. These * duplicate failed modules are non-fatal, however they typically are * indicative of userspace not seeing a module in userspace loaded yet and * unnecessarily trying to load a module before the kernel even has a chance * to begin to process prior requests. Although duplicate failures can be * non-fatal, we should try to reduce vmalloc() pressure proactively, so * ideally after boot this will be close to as 0 as possible. If module * decompression was used we also add to this counter the cost of the * initial kernel_read_file_from_fd() of the compressed module. If module * decompression was not used the value represents the total allocated and * freed bytes in kernel_read_file_from_fd() calls for these type of * failures. These failures can occur because: * * * module_sig_check() - module signature checks * * elf_validity_cache_copy() - some ELF validation issue * * early_mod_check(): * * * blacklisting * * failed to rewrite section headers * * version magic * * live patch requirements didn't check out * * the module was detected as being already present * * * invalid_mod_bytes: these are the total number of bytes allocated and * freed due to failures after we did all the sanity checks of the module * which userspace passed to us and after our first check that the module * is unique. A module can still fail to load if we detect the module is * loaded after we allocate space for it with layout_and_allocate(), we do * this check right before processing the module as live and run its * initialization routines. Note that you have a failure of this type it * also means the respective kernel_read_file_from_fd() memory space was * also freed and not used, and so we increment this counter with twice * the size of the module. Additionally if you used module decompression * the size of the compressed module is also added to this counter. * * * modcount: how many modules we've loaded in our kernel life time * * failed_kreads: how many modules failed due to failed kernel_read_file_from_fd() * * failed_decompress: how many failed module decompression attempts we've had. * These really should not happen unless your compression / decompression * might be broken. * * failed_becoming: how many modules failed after we kernel_read_file_from_fd() * it and before we allocate memory for it with layout_and_allocate(). This * counter is never incremented if you manage to validate the module and * call layout_and_allocate() for it. * * failed_load_modules: how many modules failed once we've allocated our * private space for our module using layout_and_allocate(). These failures * should hopefully mostly be dealt with already. Races in theory could * still exist here, but it would just mean the kernel had started processing * two threads concurrently up to early_mod_check() and one thread won. * These failures are good signs the kernel or userspace is doing something * seriously stupid or that could be improved. We should strive to fix these, * but it is perhaps not easy to fix them. A recent example are the modules * requests incurred for frequency modules, a separate module request was * being issued for each CPU on a system. */ atomic_long_t total_mod_size; atomic_long_t total_text_size; atomic_long_t invalid_kread_bytes; atomic_long_t invalid_decompress_bytes; static atomic_long_t invalid_becoming_bytes; static atomic_long_t invalid_mod_bytes; atomic_t modcount; atomic_t failed_kreads; atomic_t failed_decompress; static atomic_t failed_becoming; static atomic_t failed_load_modules; static const char *mod_fail_to_str(struct mod_fail_load *mod_fail) { if (test_bit(FAIL_DUP_MOD_BECOMING, &mod_fail->dup_fail_mask) && test_bit(FAIL_DUP_MOD_LOAD, &mod_fail->dup_fail_mask)) return "Becoming & Load"; if (test_bit(FAIL_DUP_MOD_BECOMING, &mod_fail->dup_fail_mask)) return "Becoming"; if (test_bit(FAIL_DUP_MOD_LOAD, &mod_fail->dup_fail_mask)) return "Load"; return "Bug-on-stats"; } void mod_stat_bump_invalid(struct load_info *info, int flags) { atomic_long_add(info->len * 2, &invalid_mod_bytes); atomic_inc(&failed_load_modules); #if defined(CONFIG_MODULE_DECOMPRESS) if (flags & MODULE_INIT_COMPRESSED_FILE) atomic_long_add(info->compressed_len, &invalid_mod_bytes); #endif } void mod_stat_bump_becoming(struct load_info *info, int flags) { atomic_inc(&failed_becoming); atomic_long_add(info->len, &invalid_becoming_bytes); #if defined(CONFIG_MODULE_DECOMPRESS) if (flags & MODULE_INIT_COMPRESSED_FILE) atomic_long_add(info->compressed_len, &invalid_becoming_bytes); #endif } int try_add_failed_module(const char *name, enum fail_dup_mod_reason reason) { struct mod_fail_load *mod_fail; list_for_each_entry_rcu(mod_fail, &dup_failed_modules, list, lockdep_is_held(&module_mutex)) { if (!strcmp(mod_fail->name, name)) { atomic_long_inc(&mod_fail->count); __set_bit(reason, &mod_fail->dup_fail_mask); goto out; } } mod_fail = kzalloc(sizeof(*mod_fail), GFP_KERNEL); if (!mod_fail) return -ENOMEM; memcpy(mod_fail->name, name, strlen(name)); __set_bit(reason, &mod_fail->dup_fail_mask); atomic_long_inc(&mod_fail->count); list_add_rcu(&mod_fail->list, &dup_failed_modules); out: return 0; } /* * At 64 bytes per module and assuming a 1024 bytes preamble we can fit the * 112 module prints within 8k. * * 1024 + (64*112) = 8k */ #define MAX_PREAMBLE 1024 #define MAX_FAILED_MOD_PRINT 112 #define MAX_BYTES_PER_MOD 64 static ssize_t read_file_mod_stats(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct mod_fail_load *mod_fail; unsigned int len, size, count_failed = 0; char *buf; int ret; u32 live_mod_count, fkreads, fdecompress, fbecoming, floads; unsigned long total_size, text_size, ikread_bytes, ibecoming_bytes, idecompress_bytes, imod_bytes, total_virtual_lost; live_mod_count = atomic_read(&modcount); fkreads = atomic_read(&failed_kreads); fdecompress = atomic_read(&failed_decompress); fbecoming = atomic_read(&failed_becoming); floads = atomic_read(&failed_load_modules); total_size = atomic_long_read(&total_mod_size); text_size = atomic_long_read(&total_text_size); ikread_bytes = atomic_long_read(&invalid_kread_bytes); idecompress_bytes = atomic_long_read(&invalid_decompress_bytes); ibecoming_bytes = atomic_long_read(&invalid_becoming_bytes); imod_bytes = atomic_long_read(&invalid_mod_bytes); total_virtual_lost = ikread_bytes + idecompress_bytes + ibecoming_bytes + imod_bytes; size = MAX_PREAMBLE + min((unsigned int)(floads + fbecoming), (unsigned int)MAX_FAILED_MOD_PRINT) * MAX_BYTES_PER_MOD; buf = kzalloc(size, GFP_KERNEL); if (buf == NULL) return -ENOMEM; /* The beginning of our debug preamble */ len = scnprintf(buf, size, "%25s\t%u\n", "Mods ever loaded", live_mod_count); len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on kread", fkreads); len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on decompress", fdecompress); len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on becoming", fbecoming); len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on load", floads); len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Total module size", total_size); len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Total mod text size", text_size); len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed kread bytes", ikread_bytes); len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed decompress bytes", idecompress_bytes); len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed becoming bytes", ibecoming_bytes); len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed kmod bytes", imod_bytes); len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Virtual mem wasted bytes", total_virtual_lost); if (live_mod_count && total_size) { len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Average mod size", DIV_ROUND_UP(total_size, live_mod_count)); } if (live_mod_count && text_size) { len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Average mod text size", DIV_ROUND_UP(text_size, live_mod_count)); } /* * We use WARN_ON_ONCE() for the counters to ensure we always have parity * for keeping tabs on a type of failure with one type of byte counter. * The counters for imod_bytes does not increase for fkreads failures * for example, and so on. */ WARN_ON_ONCE(ikread_bytes && !fkreads); if (fkreads && ikread_bytes) { len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Avg fail kread bytes", DIV_ROUND_UP(ikread_bytes, fkreads)); } WARN_ON_ONCE(ibecoming_bytes && !fbecoming); if (fbecoming && ibecoming_bytes) { len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Avg fail becoming bytes", DIV_ROUND_UP(ibecoming_bytes, fbecoming)); } WARN_ON_ONCE(idecompress_bytes && !fdecompress); if (fdecompress && idecompress_bytes) { len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Avg fail decomp bytes", DIV_ROUND_UP(idecompress_bytes, fdecompress)); } WARN_ON_ONCE(imod_bytes && !floads); if (floads && imod_bytes) { len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Average fail load bytes", DIV_ROUND_UP(imod_bytes, floads)); } /* End of our debug preamble header. */ /* Catch when we've gone beyond our expected preamble */ WARN_ON_ONCE(len >= MAX_PREAMBLE); if (list_empty(&dup_failed_modules)) goto out; len += scnprintf(buf + len, size - len, "Duplicate failed modules:\n"); len += scnprintf(buf + len, size - len, "%25s\t%15s\t%25s\n", "Module-name", "How-many-times", "Reason"); mutex_lock(&module_mutex); list_for_each_entry_rcu(mod_fail, &dup_failed_modules, list) { if (WARN_ON_ONCE(++count_failed >= MAX_FAILED_MOD_PRINT)) goto out_unlock; len += scnprintf(buf + len, size - len, "%25s\t%15lu\t%25s\n", mod_fail->name, atomic_long_read(&mod_fail->count), mod_fail_to_str(mod_fail)); } out_unlock: mutex_unlock(&module_mutex); out: ret = simple_read_from_buffer(user_buf, count, ppos, buf, len); kfree(buf); return ret; } #undef MAX_PREAMBLE #undef MAX_FAILED_MOD_PRINT #undef MAX_BYTES_PER_MOD static const struct file_operations fops_mod_stats = { .read = read_file_mod_stats, .open = simple_open, .owner = THIS_MODULE, .llseek = default_llseek, }; #define mod_debug_add_ulong(name) debugfs_create_ulong(#name, 0400, mod_debugfs_root, (unsigned long *) &name.counter) #define mod_debug_add_atomic(name) debugfs_create_atomic_t(#name, 0400, mod_debugfs_root, &name) static int __init module_stats_init(void) { mod_debug_add_ulong(total_mod_size); mod_debug_add_ulong(total_text_size); mod_debug_add_ulong(invalid_kread_bytes); mod_debug_add_ulong(invalid_decompress_bytes); mod_debug_add_ulong(invalid_becoming_bytes); mod_debug_add_ulong(invalid_mod_bytes); mod_debug_add_atomic(modcount); mod_debug_add_atomic(failed_kreads); mod_debug_add_atomic(failed_decompress); mod_debug_add_atomic(failed_becoming); mod_debug_add_atomic(failed_load_modules); debugfs_create_file("stats", 0400, mod_debugfs_root, mod_debugfs_root, &fops_mod_stats); return 0; } #undef mod_debug_add_ulong #undef mod_debug_add_atomic module_init(module_stats_init); |