Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 | // SPDX-License-Identifier: GPL-2.0-only /* * arch/arm/probes/kprobes/actions-arm.c * * Copyright (C) 2006, 2007 Motorola Inc. */ /* * We do not have hardware single-stepping on ARM, This * effort is further complicated by the ARM not having a * "next PC" register. Instructions that change the PC * can't be safely single-stepped in a MP environment, so * we have a lot of work to do: * * In the prepare phase: * *) If it is an instruction that does anything * with the CPU mode, we reject it for a kprobe. * (This is out of laziness rather than need. The * instructions could be simulated.) * * *) Otherwise, decode the instruction rewriting its * registers to take fixed, ordered registers and * setting a handler for it to run the instruction. * * In the execution phase by an instruction's handler: * * *) If the PC is written to by the instruction, the * instruction must be fully simulated in software. * * *) Otherwise, a modified form of the instruction is * directly executed. Its handler calls the * instruction in insn[0]. In insn[1] is a * "mov pc, lr" to return. * * Before calling, load up the reordered registers * from the original instruction's registers. If one * of the original input registers is the PC, compute * and adjust the appropriate input register. * * After call completes, copy the output registers to * the original instruction's original registers. * * We don't use a real breakpoint instruction since that * would have us in the kernel go from SVC mode to SVC * mode losing the link register. Instead we use an * undefined instruction. To simplify processing, the * undefined instruction used for kprobes must be reserved * exclusively for kprobes use. * * TODO: ifdef out some instruction decoding based on architecture. */ #include <linux/kernel.h> #include <linux/kprobes.h> #include <linux/ptrace.h> #include "../decode-arm.h" #include "core.h" #include "checkers.h" #if __LINUX_ARM_ARCH__ >= 6 #define BLX(reg) "blx "reg" \n\t" #else #define BLX(reg) "mov lr, pc \n\t" \ "mov pc, "reg" \n\t" #endif static void __kprobes emulate_ldrdstrd(probes_opcode_t insn, struct arch_probes_insn *asi, struct pt_regs *regs) { unsigned long pc = regs->ARM_pc + 4; int rt = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; register unsigned long rtv asm("r0") = regs->uregs[rt]; register unsigned long rt2v asm("r1") = regs->uregs[rt+1]; register unsigned long rnv asm("r2") = (rn == 15) ? pc : regs->uregs[rn]; register unsigned long rmv asm("r3") = regs->uregs[rm]; __asm__ __volatile__ ( BLX("%[fn]") : "=r" (rtv), "=r" (rt2v), "=r" (rnv) : "0" (rtv), "1" (rt2v), "2" (rnv), "r" (rmv), [fn] "r" (asi->insn_fn) : "lr", "memory", "cc" ); regs->uregs[rt] = rtv; regs->uregs[rt+1] = rt2v; if (is_writeback(insn)) regs->uregs[rn] = rnv; } static void __kprobes emulate_ldr(probes_opcode_t insn, struct arch_probes_insn *asi, struct pt_regs *regs) { unsigned long pc = regs->ARM_pc + 4; int rt = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; register unsigned long rtv asm("r0"); register unsigned long rnv asm("r2") = (rn == 15) ? pc : regs->uregs[rn]; register unsigned long rmv asm("r3") = regs->uregs[rm]; __asm__ __volatile__ ( BLX("%[fn]") : "=r" (rtv), "=r" (rnv) : "1" (rnv), "r" (rmv), [fn] "r" (asi->insn_fn) : "lr", "memory", "cc" ); if (rt == 15) load_write_pc(rtv, regs); else regs->uregs[rt] = rtv; if (is_writeback(insn)) regs->uregs[rn] = rnv; } static void __kprobes emulate_str(probes_opcode_t insn, struct arch_probes_insn *asi, struct pt_regs *regs) { unsigned long rtpc = regs->ARM_pc - 4 + str_pc_offset; unsigned long rnpc = regs->ARM_pc + 4; int rt = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; register unsigned long rtv asm("r0") = (rt == 15) ? rtpc : regs->uregs[rt]; register unsigned long rnv asm("r2") = (rn == 15) ? rnpc : regs->uregs[rn]; register unsigned long rmv asm("r3") = regs->uregs[rm]; __asm__ __volatile__ ( BLX("%[fn]") : "=r" (rnv) : "r" (rtv), "0" (rnv), "r" (rmv), [fn] "r" (asi->insn_fn) : "lr", "memory", "cc" ); if (is_writeback(insn)) regs->uregs[rn] = rnv; } static void __kprobes emulate_rd12rn16rm0rs8_rwflags(probes_opcode_t insn, struct arch_probes_insn *asi, struct pt_regs *regs) { unsigned long pc = regs->ARM_pc + 4; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; int rs = (insn >> 8) & 0xf; register unsigned long rdv asm("r0") = regs->uregs[rd]; register unsigned long rnv asm("r2") = (rn == 15) ? pc : regs->uregs[rn]; register unsigned long rmv asm("r3") = (rm == 15) ? pc : regs->uregs[rm]; register unsigned long rsv asm("r1") = regs->uregs[rs]; unsigned long cpsr = regs->ARM_cpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" BLX("%[fn]") "mrs %[cpsr], cpsr \n\t" : "=r" (rdv), [cpsr] "=r" (cpsr) : "0" (rdv), "r" (rnv), "r" (rmv), "r" (rsv), "1" (cpsr), [fn] "r" (asi->insn_fn) : "lr", "memory", "cc" ); if (rd == 15) alu_write_pc(rdv, regs); else regs->uregs[rd] = rdv; regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK); } static void __kprobes emulate_rd12rn16rm0_rwflags_nopc(probes_opcode_t insn, struct arch_probes_insn *asi, struct pt_regs *regs) { int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; register unsigned long rdv asm("r0") = regs->uregs[rd]; register unsigned long rnv asm("r2") = regs->uregs[rn]; register unsigned long rmv asm("r3") = regs->uregs[rm]; unsigned long cpsr = regs->ARM_cpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" BLX("%[fn]") "mrs %[cpsr], cpsr \n\t" : "=r" (rdv), [cpsr] "=r" (cpsr) : "0" (rdv), "r" (rnv), "r" (rmv), "1" (cpsr), [fn] "r" (asi->insn_fn) : "lr", "memory", "cc" ); regs->uregs[rd] = rdv; regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK); } static void __kprobes emulate_rd16rn12rm0rs8_rwflags_nopc(probes_opcode_t insn, struct arch_probes_insn *asi, struct pt_regs *regs) { int rd = (insn >> 16) & 0xf; int rn = (insn >> 12) & 0xf; int rm = insn & 0xf; int rs = (insn >> 8) & 0xf; register unsigned long rdv asm("r2") = regs->uregs[rd]; register unsigned long rnv asm("r0") = regs->uregs[rn]; register unsigned long rmv asm("r3") = regs->uregs[rm]; register unsigned long rsv asm("r1") = regs->uregs[rs]; unsigned long cpsr = regs->ARM_cpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" BLX("%[fn]") "mrs %[cpsr], cpsr \n\t" : "=r" (rdv), [cpsr] "=r" (cpsr) : "0" (rdv), "r" (rnv), "r" (rmv), "r" (rsv), "1" (cpsr), [fn] "r" (asi->insn_fn) : "lr", "memory", "cc" ); regs->uregs[rd] = rdv; regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK); } static void __kprobes emulate_rd12rm0_noflags_nopc(probes_opcode_t insn, struct arch_probes_insn *asi, struct pt_regs *regs) { int rd = (insn >> 12) & 0xf; int rm = insn & 0xf; register unsigned long rdv asm("r0") = regs->uregs[rd]; register unsigned long rmv asm("r3") = regs->uregs[rm]; __asm__ __volatile__ ( BLX("%[fn]") : "=r" (rdv) : "0" (rdv), "r" (rmv), [fn] "r" (asi->insn_fn) : "lr", "memory", "cc" ); regs->uregs[rd] = rdv; } static void __kprobes emulate_rdlo12rdhi16rn0rm8_rwflags_nopc(probes_opcode_t insn, struct arch_probes_insn *asi, struct pt_regs *regs) { int rdlo = (insn >> 12) & 0xf; int rdhi = (insn >> 16) & 0xf; int rn = insn & 0xf; int rm = (insn >> 8) & 0xf; register unsigned long rdlov asm("r0") = regs->uregs[rdlo]; register unsigned long rdhiv asm("r2") = regs->uregs[rdhi]; register unsigned long rnv asm("r3") = regs->uregs[rn]; register unsigned long rmv asm("r1") = regs->uregs[rm]; unsigned long cpsr = regs->ARM_cpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" BLX("%[fn]") "mrs %[cpsr], cpsr \n\t" : "=r" (rdlov), "=r" (rdhiv), [cpsr] "=r" (cpsr) : "0" (rdlov), "1" (rdhiv), "r" (rnv), "r" (rmv), "2" (cpsr), [fn] "r" (asi->insn_fn) : "lr", "memory", "cc" ); regs->uregs[rdlo] = rdlov; regs->uregs[rdhi] = rdhiv; regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK); } const union decode_action kprobes_arm_actions[NUM_PROBES_ARM_ACTIONS] = { [PROBES_PRELOAD_IMM] = {.handler = probes_simulate_nop}, [PROBES_PRELOAD_REG] = {.handler = probes_simulate_nop}, [PROBES_BRANCH_IMM] = {.handler = simulate_blx1}, [PROBES_MRS] = {.handler = simulate_mrs}, [PROBES_BRANCH_REG] = {.handler = simulate_blx2bx}, [PROBES_CLZ] = {.handler = emulate_rd12rm0_noflags_nopc}, [PROBES_SATURATING_ARITHMETIC] = { .handler = emulate_rd12rn16rm0_rwflags_nopc}, [PROBES_MUL1] = {.handler = emulate_rdlo12rdhi16rn0rm8_rwflags_nopc}, [PROBES_MUL2] = {.handler = emulate_rd16rn12rm0rs8_rwflags_nopc}, [PROBES_SWP] = {.handler = emulate_rd12rn16rm0_rwflags_nopc}, [PROBES_LDRSTRD] = {.handler = emulate_ldrdstrd}, [PROBES_LOAD_EXTRA] = {.handler = emulate_ldr}, [PROBES_LOAD] = {.handler = emulate_ldr}, [PROBES_STORE_EXTRA] = {.handler = emulate_str}, [PROBES_STORE] = {.handler = emulate_str}, [PROBES_MOV_IP_SP] = {.handler = simulate_mov_ipsp}, [PROBES_DATA_PROCESSING_REG] = { .handler = emulate_rd12rn16rm0rs8_rwflags}, [PROBES_DATA_PROCESSING_IMM] = { .handler = emulate_rd12rn16rm0rs8_rwflags}, [PROBES_MOV_HALFWORD] = {.handler = emulate_rd12rm0_noflags_nopc}, [PROBES_SEV] = {.handler = probes_emulate_none}, [PROBES_WFE] = {.handler = probes_simulate_nop}, [PROBES_SATURATE] = {.handler = emulate_rd12rn16rm0_rwflags_nopc}, [PROBES_REV] = {.handler = emulate_rd12rm0_noflags_nopc}, [PROBES_MMI] = {.handler = emulate_rd12rn16rm0_rwflags_nopc}, [PROBES_PACK] = {.handler = emulate_rd12rn16rm0_rwflags_nopc}, [PROBES_EXTEND] = {.handler = emulate_rd12rm0_noflags_nopc}, [PROBES_EXTEND_ADD] = {.handler = emulate_rd12rn16rm0_rwflags_nopc}, [PROBES_MUL_ADD_LONG] = { .handler = emulate_rdlo12rdhi16rn0rm8_rwflags_nopc}, [PROBES_MUL_ADD] = {.handler = emulate_rd16rn12rm0rs8_rwflags_nopc}, [PROBES_BITFIELD] = {.handler = emulate_rd12rm0_noflags_nopc}, [PROBES_BRANCH] = {.handler = simulate_bbl}, [PROBES_LDMSTM] = {.decoder = kprobe_decode_ldmstm} }; const struct decode_checker *kprobes_arm_checkers[] = {arm_stack_checker, arm_regs_checker, NULL}; |