Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2017 Free Electrons * Copyright (C) 2017 NextThing Co * * Author: Boris Brezillon <boris.brezillon@free-electrons.com> */ #include <linux/sizes.h> #include <linux/slab.h> #include "internals.h" #define NAND_HYNIX_CMD_SET_PARAMS 0x36 #define NAND_HYNIX_CMD_APPLY_PARAMS 0x16 #define NAND_HYNIX_1XNM_RR_REPEAT 8 /** * struct hynix_read_retry - read-retry data * @nregs: number of register to set when applying a new read-retry mode * @regs: register offsets (NAND chip dependent) * @values: array of values to set in registers. The array size is equal to * (nregs * nmodes) */ struct hynix_read_retry { int nregs; const u8 *regs; u8 values[]; }; /** * struct hynix_nand - private Hynix NAND struct * @nand_technology: manufacturing process expressed in picometer * @read_retry: read-retry information */ struct hynix_nand { const struct hynix_read_retry *read_retry; }; /** * struct hynix_read_retry_otp - structure describing how the read-retry OTP * area * @nregs: number of hynix private registers to set before reading the reading * the OTP area * @regs: registers that should be configured * @values: values that should be set in regs * @page: the address to pass to the READ_PAGE command. Depends on the NAND * chip * @size: size of the read-retry OTP section */ struct hynix_read_retry_otp { int nregs; const u8 *regs; const u8 *values; int page; int size; }; static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip) { u8 jedecid[5] = { }; int ret; ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid)); if (ret) return false; return !strncmp("JEDEC", jedecid, sizeof(jedecid)); } static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd) { if (nand_has_exec_op(chip)) { struct nand_op_instr instrs[] = { NAND_OP_CMD(cmd, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, cmd, -1, -1); return 0; } static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val) { u16 column = ((u16)addr << 8) | addr; if (nand_has_exec_op(chip)) { struct nand_op_instr instrs[] = { NAND_OP_ADDR(1, &addr, 0), NAND_OP_8BIT_DATA_OUT(1, &val, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1); chip->legacy.write_byte(chip, val); return 0; } static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode) { struct hynix_nand *hynix = nand_get_manufacturer_data(chip); const u8 *values; int i, ret; values = hynix->read_retry->values + (retry_mode * hynix->read_retry->nregs); /* Enter 'Set Hynix Parameters' mode */ ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); if (ret) return ret; /* * Configure the NAND in the requested read-retry mode. * This is done by setting pre-defined values in internal NAND * registers. * * The set of registers is NAND specific, and the values are either * predefined or extracted from an OTP area on the NAND (values are * probably tweaked at production in this case). */ for (i = 0; i < hynix->read_retry->nregs; i++) { ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i], values[i]); if (ret) return ret; } /* Apply the new settings. */ return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); } /** * hynix_get_majority - get the value that is occurring the most in a given * set of values * @in: the array of values to test * @repeat: the size of the in array * @out: pointer used to store the output value * * This function implements the 'majority check' logic that is supposed to * overcome the unreliability of MLC NANDs when reading the OTP area storing * the read-retry parameters. * * It's based on a pretty simple assumption: if we repeat the same value * several times and then take the one that is occurring the most, we should * find the correct value. * Let's hope this dummy algorithm prevents us from losing the read-retry * parameters. */ static int hynix_get_majority(const u8 *in, int repeat, u8 *out) { int i, j, half = repeat / 2; /* * We only test the first half of the in array because we must ensure * that the value is at least occurring repeat / 2 times. * * This loop is suboptimal since we may count the occurrences of the * same value several time, but we are doing that on small sets, which * makes it acceptable. */ for (i = 0; i < half; i++) { int cnt = 0; u8 val = in[i]; /* Count all values that are matching the one at index i. */ for (j = i + 1; j < repeat; j++) { if (in[j] == val) cnt++; } /* We found a value occurring more than repeat / 2. */ if (cnt > half) { *out = val; return 0; } } return -EIO; } static int hynix_read_rr_otp(struct nand_chip *chip, const struct hynix_read_retry_otp *info, void *buf) { int i, ret; ret = nand_reset_op(chip); if (ret) return ret; ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); if (ret) return ret; for (i = 0; i < info->nregs; i++) { ret = hynix_nand_reg_write_op(chip, info->regs[i], info->values[i]); if (ret) return ret; } ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); if (ret) return ret; /* Sequence to enter OTP mode? */ ret = hynix_nand_cmd_op(chip, 0x17); if (ret) return ret; ret = hynix_nand_cmd_op(chip, 0x4); if (ret) return ret; ret = hynix_nand_cmd_op(chip, 0x19); if (ret) return ret; /* Now read the page */ ret = nand_read_page_op(chip, info->page, 0, buf, info->size); if (ret) return ret; /* Put everything back to normal */ ret = nand_reset_op(chip); if (ret) return ret; ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); if (ret) return ret; ret = hynix_nand_reg_write_op(chip, 0x38, 0); if (ret) return ret; ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); if (ret) return ret; return nand_read_page_op(chip, 0, 0, NULL, 0); } #define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \ (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize))) static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs, int mode, int reg, bool inv, u8 *val) { u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT]; int val_offs = (mode * nregs) + reg; int set_size = nmodes * nregs; int i, ret; for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) { int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv); tmp[i] = buf[val_offs + set_offs]; } ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val); if (ret) return ret; if (inv) *val = ~*val; return 0; } static u8 hynix_1xnm_mlc_read_retry_regs[] = { 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf }; static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip, const struct hynix_read_retry_otp *info) { struct hynix_nand *hynix = nand_get_manufacturer_data(chip); struct hynix_read_retry *rr = NULL; int ret, i, j; u8 nregs, nmodes; u8 *buf; buf = kmalloc(info->size, GFP_KERNEL); if (!buf) return -ENOMEM; ret = hynix_read_rr_otp(chip, info, buf); if (ret) goto out; ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT, &nmodes); if (ret) goto out; ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT, NAND_HYNIX_1XNM_RR_REPEAT, &nregs); if (ret) goto out; rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL); if (!rr) { ret = -ENOMEM; goto out; } for (i = 0; i < nmodes; i++) { for (j = 0; j < nregs; j++) { u8 *val = rr->values + (i * nregs); ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, false, val); if (!ret) continue; ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, true, val); if (ret) goto out; } } rr->nregs = nregs; rr->regs = hynix_1xnm_mlc_read_retry_regs; hynix->read_retry = rr; chip->ops.setup_read_retry = hynix_nand_setup_read_retry; chip->read_retries = nmodes; out: kfree(buf); if (ret) kfree(rr); return ret; } static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 }; static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 }; static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = { { .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), .regs = hynix_mlc_1xnm_rr_otp_regs, .values = hynix_mlc_1xnm_rr_otp_values, .page = 0x21f, .size = 784 }, { .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), .regs = hynix_mlc_1xnm_rr_otp_regs, .values = hynix_mlc_1xnm_rr_otp_values, .page = 0x200, .size = 528, }, }; static int hynix_nand_rr_init(struct nand_chip *chip) { int i, ret = 0; bool valid_jedecid; valid_jedecid = hynix_nand_has_valid_jedecid(chip); /* * We only support read-retry for 1xnm NANDs, and those NANDs all * expose a valid JEDEC ID. */ if (valid_jedecid) { u8 nand_tech = chip->id.data[5] >> 4; /* 1xnm technology */ if (nand_tech == 4) { for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps); i++) { /* * FIXME: Hynix recommend to copy the * read-retry OTP area into a normal page. */ ret = hynix_mlc_1xnm_rr_init(chip, hynix_mlc_1xnm_rr_otps); if (!ret) break; } } } if (ret) pr_warn("failed to initialize read-retry infrastructure"); return 0; } static void hynix_nand_extract_oobsize(struct nand_chip *chip, bool valid_jedecid) { struct mtd_info *mtd = nand_to_mtd(chip); struct nand_memory_organization *memorg; u8 oobsize; memorg = nanddev_get_memorg(&chip->base); oobsize = ((chip->id.data[3] >> 2) & 0x3) | ((chip->id.data[3] >> 4) & 0x4); if (valid_jedecid) { switch (oobsize) { case 0: memorg->oobsize = 2048; break; case 1: memorg->oobsize = 1664; break; case 2: memorg->oobsize = 1024; break; case 3: memorg->oobsize = 640; break; default: /* * We should never reach this case, but if that * happens, this probably means Hynix decided to use * a different extended ID format, and we should find * a way to support it. */ WARN(1, "Invalid OOB size"); break; } } else { switch (oobsize) { case 0: memorg->oobsize = 128; break; case 1: memorg->oobsize = 224; break; case 2: memorg->oobsize = 448; break; case 3: memorg->oobsize = 64; break; case 4: memorg->oobsize = 32; break; case 5: memorg->oobsize = 16; break; case 6: memorg->oobsize = 640; break; default: /* * We should never reach this case, but if that * happens, this probably means Hynix decided to use * a different extended ID format, and we should find * a way to support it. */ WARN(1, "Invalid OOB size"); break; } /* * The datasheet of H27UCG8T2BTR mentions that the "Redundant * Area Size" is encoded "per 8KB" (page size). This chip uses * a page size of 16KiB. The datasheet mentions an OOB size of * 1.280 bytes, but the OOB size encoded in the ID bytes (using * the existing logic above) is 640 bytes. * Update the OOB size for this chip by taking the value * determined above and scaling it to the actual page size (so * the actual OOB size for this chip is: 640 * 16k / 8k). */ if (chip->id.data[1] == 0xde) memorg->oobsize *= memorg->pagesize / SZ_8K; } mtd->oobsize = memorg->oobsize; } static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip, bool valid_jedecid) { struct nand_device *base = &chip->base; struct nand_ecc_props requirements = {}; u8 ecc_level = (chip->id.data[4] >> 4) & 0x7; if (valid_jedecid) { /* Reference: H27UCG8T2E datasheet */ requirements.step_size = 1024; switch (ecc_level) { case 0: requirements.step_size = 0; requirements.strength = 0; break; case 1: requirements.strength = 4; break; case 2: requirements.strength = 24; break; case 3: requirements.strength = 32; break; case 4: requirements.strength = 40; break; case 5: requirements.strength = 50; break; case 6: requirements.strength = 60; break; default: /* * We should never reach this case, but if that * happens, this probably means Hynix decided to use * a different extended ID format, and we should find * a way to support it. */ WARN(1, "Invalid ECC requirements"); } } else { /* * The ECC requirements field meaning depends on the * NAND technology. */ u8 nand_tech = chip->id.data[5] & 0x7; if (nand_tech < 3) { /* > 26nm, reference: H27UBG8T2A datasheet */ if (ecc_level < 5) { requirements.step_size = 512; requirements.strength = 1 << ecc_level; } else if (ecc_level < 7) { if (ecc_level == 5) requirements.step_size = 2048; else requirements.step_size = 1024; requirements.strength = 24; } else { /* * We should never reach this case, but if that * happens, this probably means Hynix decided * to use a different extended ID format, and * we should find a way to support it. */ WARN(1, "Invalid ECC requirements"); } } else { /* <= 26nm, reference: H27UBG8T2B datasheet */ if (!ecc_level) { requirements.step_size = 0; requirements.strength = 0; } else if (ecc_level < 5) { requirements.step_size = 512; requirements.strength = 1 << (ecc_level - 1); } else { requirements.step_size = 1024; requirements.strength = 24 + (8 * (ecc_level - 5)); } } } nanddev_set_ecc_requirements(base, &requirements); } static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip, bool valid_jedecid) { u8 nand_tech; /* We need scrambling on all TLC NANDs*/ if (nanddev_bits_per_cell(&chip->base) > 2) chip->options |= NAND_NEED_SCRAMBLING; /* And on MLC NANDs with sub-3xnm process */ if (valid_jedecid) { nand_tech = chip->id.data[5] >> 4; /* < 3xnm */ if (nand_tech > 0) chip->options |= NAND_NEED_SCRAMBLING; } else { nand_tech = chip->id.data[5] & 0x7; /* < 32nm */ if (nand_tech > 2) chip->options |= NAND_NEED_SCRAMBLING; } } static void hynix_nand_decode_id(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct nand_memory_organization *memorg; bool valid_jedecid; u8 tmp; memorg = nanddev_get_memorg(&chip->base); /* * Exclude all SLC NANDs from this advanced detection scheme. * According to the ranges defined in several datasheets, it might * appear that even SLC NANDs could fall in this extended ID scheme. * If that the case rework the test to let SLC NANDs go through the * detection process. */ if (chip->id.len < 6 || nand_is_slc(chip)) { nand_decode_ext_id(chip); return; } /* Extract pagesize */ memorg->pagesize = 2048 << (chip->id.data[3] & 0x03); mtd->writesize = memorg->pagesize; tmp = (chip->id.data[3] >> 4) & 0x3; /* * When bit7 is set that means we start counting at 1MiB, otherwise * we start counting at 128KiB and shift this value the content of * ID[3][4:5]. * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in * this case the erasesize is set to 768KiB. */ if (chip->id.data[3] & 0x80) { memorg->pages_per_eraseblock = (SZ_1M << tmp) / memorg->pagesize; mtd->erasesize = SZ_1M << tmp; } else if (tmp == 3) { memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) / memorg->pagesize; mtd->erasesize = SZ_512K + SZ_256K; } else { memorg->pages_per_eraseblock = (SZ_128K << tmp) / memorg->pagesize; mtd->erasesize = SZ_128K << tmp; } /* * Modern Toggle DDR NANDs have a valid JEDECID even though they are * not exposing a valid JEDEC parameter table. * These NANDs use a different NAND ID scheme. */ valid_jedecid = hynix_nand_has_valid_jedecid(chip); hynix_nand_extract_oobsize(chip, valid_jedecid); hynix_nand_extract_ecc_requirements(chip, valid_jedecid); hynix_nand_extract_scrambling_requirements(chip, valid_jedecid); } static void hynix_nand_cleanup(struct nand_chip *chip) { struct hynix_nand *hynix = nand_get_manufacturer_data(chip); if (!hynix) return; kfree(hynix->read_retry); kfree(hynix); nand_set_manufacturer_data(chip, NULL); } static int h27ucg8t2atrbc_choose_interface_config(struct nand_chip *chip, struct nand_interface_config *iface) { onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 4); return nand_choose_best_sdr_timings(chip, iface, NULL); } static int h27ucg8t2etrbc_init(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); chip->options |= NAND_NEED_SCRAMBLING; mtd_set_pairing_scheme(mtd, &dist3_pairing_scheme); return 0; } static int hynix_nand_init(struct nand_chip *chip) { struct hynix_nand *hynix; int ret; if (!nand_is_slc(chip)) chip->options |= NAND_BBM_LASTPAGE; else chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE; hynix = kzalloc(sizeof(*hynix), GFP_KERNEL); if (!hynix) return -ENOMEM; nand_set_manufacturer_data(chip, hynix); if (!strncmp("H27UCG8T2ATR-BC", chip->parameters.model, sizeof("H27UCG8T2ATR-BC") - 1)) chip->ops.choose_interface_config = h27ucg8t2atrbc_choose_interface_config; if (!strncmp("H27UCG8T2ETR-BC", chip->parameters.model, sizeof("H27UCG8T2ETR-BC") - 1)) h27ucg8t2etrbc_init(chip); ret = hynix_nand_rr_init(chip); if (ret) hynix_nand_cleanup(chip); return ret; } static void hynix_fixup_onfi_param_page(struct nand_chip *chip, struct nand_onfi_params *p) { /* * Certain chips might report a 0 on sdr_timing_mode field * (bytes 129-130). This has been seen on H27U4G8F2GDA-BI. * According to ONFI specification, bit 0 of this field "shall be 1". * Forcibly set this bit. */ p->sdr_timing_modes |= cpu_to_le16(BIT(0)); } const struct nand_manufacturer_ops hynix_nand_manuf_ops = { .detect = hynix_nand_decode_id, .init = hynix_nand_init, .cleanup = hynix_nand_cleanup, .fixup_onfi_param_page = hynix_fixup_onfi_param_page, }; |