Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 | // SPDX-License-Identifier: GPL-2.0-or-later /* * cx18 ADEC audio functions * * Derived from cx25840-audio.c * * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl> * Copyright (C) 2008 Andy Walls <awalls@md.metrocast.net> */ #include "cx18-driver.h" static int set_audclk_freq(struct cx18 *cx, u32 freq) { struct cx18_av_state *state = &cx->av_state; if (freq != 32000 && freq != 44100 && freq != 48000) return -EINVAL; /* * The PLL parameters are based on the external crystal frequency that * would ideally be: * * NTSC Color subcarrier freq * 8 = * 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz * * The accidents of history and rationale that explain from where this * combination of magic numbers originate can be found in: * * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80 * * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83 * * As Mike Bradley has rightly pointed out, it's not the exact crystal * frequency that matters, only that all parts of the driver and * firmware are using the same value (close to the ideal value). * * Since I have a strong suspicion that, if the firmware ever assumes a * crystal value at all, it will assume 28.636360 MHz, the crystal * freq used in calculations in this driver will be: * * xtal_freq = 28.636360 MHz * * an error of less than 0.13 ppm which is way, way better than any off * the shelf crystal will have for accuracy anyway. * * Below I aim to run the PLLs' VCOs near 400 MHz to minimize error. * * Many thanks to Jeff Campbell and Mike Bradley for their extensive * investigation, experimentation, testing, and suggested solutions of * audio/video sync problems with SVideo and CVBS captures. */ if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { switch (freq) { case 32000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20 */ cx18_av_write4(cx, 0x108, 0x200d040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x176740c */ /* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x0176740c); /* src3/4/6_ctl */ /* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */ cx18_av_write4(cx, 0x900, 0x0801f77f); cx18_av_write4(cx, 0x904, 0x0801f77f); cx18_av_write4(cx, 0x90c, 0x0801f77f); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */ cx18_av_write(cx, 0x127, 0x60); /* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x11202fff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa00d2ef8); break; case 44100: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18 */ cx18_av_write4(cx, 0x108, 0x180e040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x062a1f2 */ /* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x0062a1f2); /* src3/4/6_ctl */ /* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */ cx18_av_write4(cx, 0x900, 0x08016d59); cx18_av_write4(cx, 0x904, 0x08016d59); cx18_av_write4(cx, 0x90c, 0x08016d59); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */ cx18_av_write(cx, 0x127, 0x58); /* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x112092ff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa01d4bf8); break; case 48000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16 */ cx18_av_write4(cx, 0x108, 0x160e040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x05227ad */ /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x005227ad); /* src3/4/6_ctl */ /* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */ cx18_av_write4(cx, 0x900, 0x08014faa); cx18_av_write4(cx, 0x904, 0x08014faa); cx18_av_write4(cx, 0x90c, 0x08014faa); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */ cx18_av_write(cx, 0x127, 0x56); /* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x11205fff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x1193f8 = 143999.000 * 8 = * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa01193f8); break; } } else { switch (freq) { case 32000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30 */ cx18_av_write4(cx, 0x108, 0x300d040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x176740c */ /* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x0176740c); /* src1_ctl */ /* 0x1.0000 = 32000/32000 */ cx18_av_write4(cx, 0x8f8, 0x08010000); /* src3/4/6_ctl */ /* 0x2.0000 = 2 * (32000/32000) */ cx18_av_write4(cx, 0x900, 0x08020000); cx18_av_write4(cx, 0x904, 0x08020000); cx18_av_write4(cx, 0x90c, 0x08020000); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */ cx18_av_write(cx, 0x127, 0x70); /* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x11201fff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa00d2ef8); break; case 44100: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24 */ cx18_av_write4(cx, 0x108, 0x240e040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x062a1f2 */ /* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x0062a1f2); /* src1_ctl */ /* 0x1.60cd = 44100/32000 */ cx18_av_write4(cx, 0x8f8, 0x080160cd); /* src3/4/6_ctl */ /* 0x1.7385 = 2 * (32000/44100) */ cx18_av_write4(cx, 0x900, 0x08017385); cx18_av_write4(cx, 0x904, 0x08017385); cx18_av_write4(cx, 0x90c, 0x08017385); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */ cx18_av_write(cx, 0x127, 0x64); /* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x112061ff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa01d4bf8); break; case 48000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20 */ cx18_av_write4(cx, 0x108, 0x200d040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x176740c */ /* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x0176740c); /* src1_ctl */ /* 0x1.8000 = 48000/32000 */ cx18_av_write4(cx, 0x8f8, 0x08018000); /* src3/4/6_ctl */ /* 0x1.5555 = 2 * (32000/48000) */ cx18_av_write4(cx, 0x900, 0x08015555); cx18_av_write4(cx, 0x904, 0x08015555); cx18_av_write4(cx, 0x90c, 0x08015555); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */ cx18_av_write(cx, 0x127, 0x60); /* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x11203fff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x1193f8 = 143999.000 * 8 = * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa01193f8); break; } } state->audclk_freq = freq; return 0; } void cx18_av_audio_set_path(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; u8 v; /* stop microcontroller */ v = cx18_av_read(cx, 0x803) & ~0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); /* assert soft reset */ v = cx18_av_read(cx, 0x810) | 0x01; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); /* Mute everything to prevent the PFFT! */ cx18_av_write(cx, 0x8d3, 0x1f); if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) { /* Set Path1 to Serial Audio Input */ cx18_av_write4(cx, 0x8d0, 0x01011012); /* The microcontroller should not be started for the * non-tuner inputs: autodetection is specific for * TV audio. */ } else { /* Set Path1 to Analog Demod Main Channel */ cx18_av_write4(cx, 0x8d0, 0x1f063870); } set_audclk_freq(cx, state->audclk_freq); /* deassert soft reset */ v = cx18_av_read(cx, 0x810) & ~0x01; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { /* When the microcontroller detects the * audio format, it will unmute the lines */ v = cx18_av_read(cx, 0x803) | 0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } } static void set_volume(struct cx18 *cx, int volume) { /* First convert the volume to msp3400 values (0-127) */ int vol = volume >> 9; /* now scale it up to cx18_av values * -114dB to -96dB maps to 0 * this should be 19, but in my testing that was 4dB too loud */ if (vol <= 23) vol = 0; else vol -= 23; /* PATH1_VOLUME */ cx18_av_write(cx, 0x8d4, 228 - (vol * 2)); } static void set_bass(struct cx18 *cx, int bass) { /* PATH1_EQ_BASS_VOL */ cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff)); } static void set_treble(struct cx18 *cx, int treble) { /* PATH1_EQ_TREBLE_VOL */ cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff)); } static void set_balance(struct cx18 *cx, int balance) { int bal = balance >> 8; if (bal > 0x80) { /* PATH1_BAL_LEFT */ cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80); /* PATH1_BAL_LEVEL */ cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f); } else { /* PATH1_BAL_LEFT */ cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00); /* PATH1_BAL_LEVEL */ cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal); } } static void set_mute(struct cx18 *cx, int mute) { struct cx18_av_state *state = &cx->av_state; u8 v; if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { /* Must turn off microcontroller in order to mute sound. * Not sure if this is the best method, but it does work. * If the microcontroller is running, then it will undo any * changes to the mute register. */ v = cx18_av_read(cx, 0x803); if (mute) { /* disable microcontroller */ v &= ~0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); cx18_av_write(cx, 0x8d3, 0x1f); } else { /* enable microcontroller */ v |= 0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } } else { /* SRC1_MUTE_EN */ cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00); } } int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq) { struct cx18 *cx = v4l2_get_subdevdata(sd); struct cx18_av_state *state = &cx->av_state; int retval; u8 v; if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { v = cx18_av_read(cx, 0x803) & ~0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); cx18_av_write(cx, 0x8d3, 0x1f); } v = cx18_av_read(cx, 0x810) | 0x1; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); retval = set_audclk_freq(cx, freq); v = cx18_av_read(cx, 0x810) & ~0x1; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { v = cx18_av_read(cx, 0x803) | 0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } return retval; } static int cx18_av_audio_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct cx18 *cx = v4l2_get_subdevdata(sd); switch (ctrl->id) { case V4L2_CID_AUDIO_VOLUME: set_volume(cx, ctrl->val); break; case V4L2_CID_AUDIO_BASS: set_bass(cx, ctrl->val); break; case V4L2_CID_AUDIO_TREBLE: set_treble(cx, ctrl->val); break; case V4L2_CID_AUDIO_BALANCE: set_balance(cx, ctrl->val); break; case V4L2_CID_AUDIO_MUTE: set_mute(cx, ctrl->val); break; default: return -EINVAL; } return 0; } const struct v4l2_ctrl_ops cx18_av_audio_ctrl_ops = { .s_ctrl = cx18_av_audio_s_ctrl, }; |