Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org> */ #include <linux/efi.h> #include <linux/log2.h> #include <asm/efi.h> #include "efistub.h" /* * Return the number of slots covered by this entry, i.e., the number of * addresses it covers that are suitably aligned and supply enough room * for the allocation. */ static unsigned long get_entry_num_slots(efi_memory_desc_t *md, unsigned long size, unsigned long align_shift, u64 alloc_limit) { unsigned long align = 1UL << align_shift; u64 first_slot, last_slot, region_end; if (md->type != EFI_CONVENTIONAL_MEMORY) return 0; if (efi_soft_reserve_enabled() && (md->attribute & EFI_MEMORY_SP)) return 0; region_end = min(md->phys_addr + md->num_pages * EFI_PAGE_SIZE - 1, alloc_limit); if (region_end < size) return 0; first_slot = round_up(md->phys_addr, align); last_slot = round_down(region_end - size + 1, align); if (first_slot > last_slot) return 0; return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1; } /* * The UEFI memory descriptors have a virtual address field that is only used * when installing the virtual mapping using SetVirtualAddressMap(). Since it * is unused here, we can reuse it to keep track of each descriptor's slot * count. */ #define MD_NUM_SLOTS(md) ((md)->virt_addr) efi_status_t efi_random_alloc(unsigned long size, unsigned long align, unsigned long *addr, unsigned long random_seed, int memory_type, unsigned long alloc_limit) { unsigned long total_slots = 0, target_slot; unsigned long total_mirrored_slots = 0; struct efi_boot_memmap *map; efi_status_t status; int map_offset; status = efi_get_memory_map(&map, false); if (status != EFI_SUCCESS) return status; if (align < EFI_ALLOC_ALIGN) align = EFI_ALLOC_ALIGN; size = round_up(size, EFI_ALLOC_ALIGN); /* count the suitable slots in each memory map entry */ for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) { efi_memory_desc_t *md = (void *)map->map + map_offset; unsigned long slots; slots = get_entry_num_slots(md, size, ilog2(align), alloc_limit); MD_NUM_SLOTS(md) = slots; total_slots += slots; if (md->attribute & EFI_MEMORY_MORE_RELIABLE) total_mirrored_slots += slots; } /* consider only mirrored slots for randomization if any exist */ if (total_mirrored_slots > 0) total_slots = total_mirrored_slots; /* find a random number between 0 and total_slots */ target_slot = (total_slots * (u64)(random_seed & U32_MAX)) >> 32; /* * target_slot is now a value in the range [0, total_slots), and so * it corresponds with exactly one of the suitable slots we recorded * when iterating over the memory map the first time around. * * So iterate over the memory map again, subtracting the number of * slots of each entry at each iteration, until we have found the entry * that covers our chosen slot. Use the residual value of target_slot * to calculate the randomly chosen address, and allocate it directly * using EFI_ALLOCATE_ADDRESS. */ status = EFI_OUT_OF_RESOURCES; for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) { efi_memory_desc_t *md = (void *)map->map + map_offset; efi_physical_addr_t target; unsigned long pages; if (total_mirrored_slots > 0 && !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) continue; if (target_slot >= MD_NUM_SLOTS(md)) { target_slot -= MD_NUM_SLOTS(md); continue; } target = round_up(md->phys_addr, align) + target_slot * align; pages = size / EFI_PAGE_SIZE; status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS, memory_type, pages, &target); if (status == EFI_SUCCESS) *addr = target; break; } efi_bs_call(free_pool, map); return status; } |