Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
/*
 * Copyright (c) Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

#include "zstd_ldm.h"

#include "../common/debug.h"
#include <linux/xxhash.h>
#include "zstd_fast.h"          /* ZSTD_fillHashTable() */
#include "zstd_double_fast.h"   /* ZSTD_fillDoubleHashTable() */
#include "zstd_ldm_geartab.h"

#define LDM_BUCKET_SIZE_LOG 3
#define LDM_MIN_MATCH_LENGTH 64
#define LDM_HASH_RLOG 7

typedef struct {
    U64 rolling;
    U64 stopMask;
} ldmRollingHashState_t;

/* ZSTD_ldm_gear_init():
 *
 * Initializes the rolling hash state such that it will honor the
 * settings in params. */
static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params)
{
    unsigned maxBitsInMask = MIN(params->minMatchLength, 64);
    unsigned hashRateLog = params->hashRateLog;

    state->rolling = ~(U32)0;

    /* The choice of the splitting criterion is subject to two conditions:
     *   1. it has to trigger on average every 2^(hashRateLog) bytes;
     *   2. ideally, it has to depend on a window of minMatchLength bytes.
     *
     * In the gear hash algorithm, bit n depends on the last n bytes;
     * so in order to obtain a good quality splitting criterion it is
     * preferable to use bits with high weight.
     *
     * To match condition 1 we use a mask with hashRateLog bits set
     * and, because of the previous remark, we make sure these bits
     * have the highest possible weight while still respecting
     * condition 2.
     */
    if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) {
        state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog);
    } else {
        /* In this degenerate case we simply honor the hash rate. */
        state->stopMask = ((U64)1 << hashRateLog) - 1;
    }
}

/* ZSTD_ldm_gear_reset()
 * Feeds [data, data + minMatchLength) into the hash without registering any
 * splits. This effectively resets the hash state. This is used when skipping
 * over data, either at the beginning of a block, or skipping sections.
 */
static void ZSTD_ldm_gear_reset(ldmRollingHashState_t* state,
                                BYTE const* data, size_t minMatchLength)
{
    U64 hash = state->rolling;
    size_t n = 0;

#define GEAR_ITER_ONCE() do {                                  \
        hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
        n += 1;                                                \
    } while (0)
    while (n + 3 < minMatchLength) {
        GEAR_ITER_ONCE();
        GEAR_ITER_ONCE();
        GEAR_ITER_ONCE();
        GEAR_ITER_ONCE();
    }
    while (n < minMatchLength) {
        GEAR_ITER_ONCE();
    }
#undef GEAR_ITER_ONCE
}

/* ZSTD_ldm_gear_feed():
 *
 * Registers in the splits array all the split points found in the first
 * size bytes following the data pointer. This function terminates when
 * either all the data has been processed or LDM_BATCH_SIZE splits are
 * present in the splits array.
 *
 * Precondition: The splits array must not be full.
 * Returns: The number of bytes processed. */
static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state,
                                 BYTE const* data, size_t size,
                                 size_t* splits, unsigned* numSplits)
{
    size_t n;
    U64 hash, mask;

    hash = state->rolling;
    mask = state->stopMask;
    n = 0;

#define GEAR_ITER_ONCE() do { \
        hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
        n += 1; \
        if (UNLIKELY((hash & mask) == 0)) { \
            splits[*numSplits] = n; \
            *numSplits += 1; \
            if (*numSplits == LDM_BATCH_SIZE) \
                goto done; \
        } \
    } while (0)

    while (n + 3 < size) {
        GEAR_ITER_ONCE();
        GEAR_ITER_ONCE();
        GEAR_ITER_ONCE();
        GEAR_ITER_ONCE();
    }
    while (n < size) {
        GEAR_ITER_ONCE();
    }

#undef GEAR_ITER_ONCE

done:
    state->rolling = hash;
    return n;
}

void ZSTD_ldm_adjustParameters(ldmParams_t* params,
                               ZSTD_compressionParameters const* cParams)
{
    params->windowLog = cParams->windowLog;
    ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
    DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
    if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
    if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
    if (params->hashLog == 0) {
        params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG);
        assert(params->hashLog <= ZSTD_HASHLOG_MAX);
    }
    if (params->hashRateLog == 0) {
        params->hashRateLog = params->windowLog < params->hashLog
                                   ? 0
                                   : params->windowLog - params->hashLog;
    }
    params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
}

size_t ZSTD_ldm_getTableSize(ldmParams_t params)
{
    size_t const ldmHSize = ((size_t)1) << params.hashLog;
    size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
    size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog);
    size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize)
                           + ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t));
    return params.enableLdm == ZSTD_ps_enable ? totalSize : 0;
}

size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
{
    return params.enableLdm == ZSTD_ps_enable ? (maxChunkSize / params.minMatchLength) : 0;
}

/* ZSTD_ldm_getBucket() :
 *  Returns a pointer to the start of the bucket associated with hash. */
static ldmEntry_t* ZSTD_ldm_getBucket(
        ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams)
{
    return ldmState->hashTable + (hash << ldmParams.bucketSizeLog);
}

/* ZSTD_ldm_insertEntry() :
 *  Insert the entry with corresponding hash into the hash table */
static void ZSTD_ldm_insertEntry(ldmState_t* ldmState,
                                 size_t const hash, const ldmEntry_t entry,
                                 ldmParams_t const ldmParams)
{
    BYTE* const pOffset = ldmState->bucketOffsets + hash;
    unsigned const offset = *pOffset;

    *(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + offset) = entry;
    *pOffset = (BYTE)((offset + 1) & ((1u << ldmParams.bucketSizeLog) - 1));

}

/* ZSTD_ldm_countBackwardsMatch() :
 *  Returns the number of bytes that match backwards before pIn and pMatch.
 *
 *  We count only bytes where pMatch >= pBase and pIn >= pAnchor. */
static size_t ZSTD_ldm_countBackwardsMatch(
            const BYTE* pIn, const BYTE* pAnchor,
            const BYTE* pMatch, const BYTE* pMatchBase)
{
    size_t matchLength = 0;
    while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) {
        pIn--;
        pMatch--;
        matchLength++;
    }
    return matchLength;
}

/* ZSTD_ldm_countBackwardsMatch_2segments() :
 *  Returns the number of bytes that match backwards from pMatch,
 *  even with the backwards match spanning 2 different segments.
 *
 *  On reaching `pMatchBase`, start counting from mEnd */
static size_t ZSTD_ldm_countBackwardsMatch_2segments(
                    const BYTE* pIn, const BYTE* pAnchor,
                    const BYTE* pMatch, const BYTE* pMatchBase,
                    const BYTE* pExtDictStart, const BYTE* pExtDictEnd)
{
    size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase);
    if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) {
        /* If backwards match is entirely in the extDict or prefix, immediately return */
        return matchLength;
    }
    DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength);
    matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart);
    DEBUGLOG(7, "final backwards match length = %zu", matchLength);
    return matchLength;
}

/* ZSTD_ldm_fillFastTables() :
 *
 *  Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies.
 *  This is similar to ZSTD_loadDictionaryContent.
 *
 *  The tables for the other strategies are filled within their
 *  block compressors. */
static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
                                      void const* end)
{
    const BYTE* const iend = (const BYTE*)end;

    switch(ms->cParams.strategy)
    {
    case ZSTD_fast:
        ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast);
        break;

    case ZSTD_dfast:
        ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast);
        break;

    case ZSTD_greedy:
    case ZSTD_lazy:
    case ZSTD_lazy2:
    case ZSTD_btlazy2:
    case ZSTD_btopt:
    case ZSTD_btultra:
    case ZSTD_btultra2:
        break;
    default:
        assert(0);  /* not possible : not a valid strategy id */
    }

    return 0;
}

void ZSTD_ldm_fillHashTable(
            ldmState_t* ldmState, const BYTE* ip,
            const BYTE* iend, ldmParams_t const* params)
{
    U32 const minMatchLength = params->minMatchLength;
    U32 const hBits = params->hashLog - params->bucketSizeLog;
    BYTE const* const base = ldmState->window.base;
    BYTE const* const istart = ip;
    ldmRollingHashState_t hashState;
    size_t* const splits = ldmState->splitIndices;
    unsigned numSplits;

    DEBUGLOG(5, "ZSTD_ldm_fillHashTable");

    ZSTD_ldm_gear_init(&hashState, params);
    while (ip < iend) {
        size_t hashed;
        unsigned n;

        numSplits = 0;
        hashed = ZSTD_ldm_gear_feed(&hashState, ip, iend - ip, splits, &numSplits);

        for (n = 0; n < numSplits; n++) {
            if (ip + splits[n] >= istart + minMatchLength) {
                BYTE const* const split = ip + splits[n] - minMatchLength;
                U64 const xxhash = xxh64(split, minMatchLength, 0);
                U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
                ldmEntry_t entry;

                entry.offset = (U32)(split - base);
                entry.checksum = (U32)(xxhash >> 32);
                ZSTD_ldm_insertEntry(ldmState, hash, entry, *params);
            }
        }

        ip += hashed;
    }
}


/* ZSTD_ldm_limitTableUpdate() :
 *
 *  Sets cctx->nextToUpdate to a position corresponding closer to anchor
 *  if it is far way
 *  (after a long match, only update tables a limited amount). */
static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
{
    U32 const curr = (U32)(anchor - ms->window.base);
    if (curr > ms->nextToUpdate + 1024) {
        ms->nextToUpdate =
            curr - MIN(512, curr - ms->nextToUpdate - 1024);
    }
}

static size_t ZSTD_ldm_generateSequences_internal(
        ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
        ldmParams_t const* params, void const* src, size_t srcSize)
{
    /* LDM parameters */
    int const extDict = ZSTD_window_hasExtDict(ldmState->window);
    U32 const minMatchLength = params->minMatchLength;
    U32 const entsPerBucket = 1U << params->bucketSizeLog;
    U32 const hBits = params->hashLog - params->bucketSizeLog;
    /* Prefix and extDict parameters */
    U32 const dictLimit = ldmState->window.dictLimit;
    U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
    BYTE const* const base = ldmState->window.base;
    BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
    BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
    BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
    BYTE const* const lowPrefixPtr = base + dictLimit;
    /* Input bounds */
    BYTE const* const istart = (BYTE const*)src;
    BYTE const* const iend = istart + srcSize;
    BYTE const* const ilimit = iend - HASH_READ_SIZE;
    /* Input positions */
    BYTE const* anchor = istart;
    BYTE const* ip = istart;
    /* Rolling hash state */
    ldmRollingHashState_t hashState;
    /* Arrays for staged-processing */
    size_t* const splits = ldmState->splitIndices;
    ldmMatchCandidate_t* const candidates = ldmState->matchCandidates;
    unsigned numSplits;

    if (srcSize < minMatchLength)
        return iend - anchor;

    /* Initialize the rolling hash state with the first minMatchLength bytes */
    ZSTD_ldm_gear_init(&hashState, params);
    ZSTD_ldm_gear_reset(&hashState, ip, minMatchLength);
    ip += minMatchLength;

    while (ip < ilimit) {
        size_t hashed;
        unsigned n;

        numSplits = 0;
        hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip,
                                    splits, &numSplits);

        for (n = 0; n < numSplits; n++) {
            BYTE const* const split = ip + splits[n] - minMatchLength;
            U64 const xxhash = xxh64(split, minMatchLength, 0);
            U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));

            candidates[n].split = split;
            candidates[n].hash = hash;
            candidates[n].checksum = (U32)(xxhash >> 32);
            candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, *params);
            PREFETCH_L1(candidates[n].bucket);
        }

        for (n = 0; n < numSplits; n++) {
            size_t forwardMatchLength = 0, backwardMatchLength = 0,
                   bestMatchLength = 0, mLength;
            U32 offset;
            BYTE const* const split = candidates[n].split;
            U32 const checksum = candidates[n].checksum;
            U32 const hash = candidates[n].hash;
            ldmEntry_t* const bucket = candidates[n].bucket;
            ldmEntry_t const* cur;
            ldmEntry_t const* bestEntry = NULL;
            ldmEntry_t newEntry;

            newEntry.offset = (U32)(split - base);
            newEntry.checksum = checksum;

            /* If a split point would generate a sequence overlapping with
             * the previous one, we merely register it in the hash table and
             * move on */
            if (split < anchor) {
                ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
                continue;
            }

            for (cur = bucket; cur < bucket + entsPerBucket; cur++) {
                size_t curForwardMatchLength, curBackwardMatchLength,
                       curTotalMatchLength;
                if (cur->checksum != checksum || cur->offset <= lowestIndex) {
                    continue;
                }
                if (extDict) {
                    BYTE const* const curMatchBase =
                        cur->offset < dictLimit ? dictBase : base;
                    BYTE const* const pMatch = curMatchBase + cur->offset;
                    BYTE const* const matchEnd =
                        cur->offset < dictLimit ? dictEnd : iend;
                    BYTE const* const lowMatchPtr =
                        cur->offset < dictLimit ? dictStart : lowPrefixPtr;
                    curForwardMatchLength =
                        ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr);
                    if (curForwardMatchLength < minMatchLength) {
                        continue;
                    }
                    curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments(
                            split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd);
                } else { /* !extDict */
                    BYTE const* const pMatch = base + cur->offset;
                    curForwardMatchLength = ZSTD_count(split, pMatch, iend);
                    if (curForwardMatchLength < minMatchLength) {
                        continue;
                    }
                    curBackwardMatchLength =
                        ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr);
                }
                curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength;

                if (curTotalMatchLength > bestMatchLength) {
                    bestMatchLength = curTotalMatchLength;
                    forwardMatchLength = curForwardMatchLength;
                    backwardMatchLength = curBackwardMatchLength;
                    bestEntry = cur;
                }
            }

            /* No match found -- insert an entry into the hash table
             * and process the next candidate match */
            if (bestEntry == NULL) {
                ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
                continue;
            }

            /* Match found */
            offset = (U32)(split - base) - bestEntry->offset;
            mLength = forwardMatchLength + backwardMatchLength;
            {
                rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;

                /* Out of sequence storage */
                if (rawSeqStore->size == rawSeqStore->capacity)
                    return ERROR(dstSize_tooSmall);
                seq->litLength = (U32)(split - backwardMatchLength - anchor);
                seq->matchLength = (U32)mLength;
                seq->offset = offset;
                rawSeqStore->size++;
            }

            /* Insert the current entry into the hash table --- it must be
             * done after the previous block to avoid clobbering bestEntry */
            ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);

            anchor = split + forwardMatchLength;

            /* If we find a match that ends after the data that we've hashed
             * then we have a repeating, overlapping, pattern. E.g. all zeros.
             * If one repetition of the pattern matches our `stopMask` then all
             * repetitions will. We don't need to insert them all into out table,
             * only the first one. So skip over overlapping matches.
             * This is a major speed boost (20x) for compressing a single byte
             * repeated, when that byte ends up in the table.
             */
            if (anchor > ip + hashed) {
                ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength);
                /* Continue the outer loop at anchor (ip + hashed == anchor). */
                ip = anchor - hashed;
                break;
            }
        }

        ip += hashed;
    }

    return iend - anchor;
}

/*! ZSTD_ldm_reduceTable() :
 *  reduce table indexes by `reducerValue` */
static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
                                 U32 const reducerValue)
{
    U32 u;
    for (u = 0; u < size; u++) {
        if (table[u].offset < reducerValue) table[u].offset = 0;
        else table[u].offset -= reducerValue;
    }
}

size_t ZSTD_ldm_generateSequences(
        ldmState_t* ldmState, rawSeqStore_t* sequences,
        ldmParams_t const* params, void const* src, size_t srcSize)
{
    U32 const maxDist = 1U << params->windowLog;
    BYTE const* const istart = (BYTE const*)src;
    BYTE const* const iend = istart + srcSize;
    size_t const kMaxChunkSize = 1 << 20;
    size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
    size_t chunk;
    size_t leftoverSize = 0;

    assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
    /* Check that ZSTD_window_update() has been called for this chunk prior
     * to passing it to this function.
     */
    assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
    /* The input could be very large (in zstdmt), so it must be broken up into
     * chunks to enforce the maximum distance and handle overflow correction.
     */
    assert(sequences->pos <= sequences->size);
    assert(sequences->size <= sequences->capacity);
    for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
        BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
        size_t const remaining = (size_t)(iend - chunkStart);
        BYTE const *const chunkEnd =
            (remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
        size_t const chunkSize = chunkEnd - chunkStart;
        size_t newLeftoverSize;
        size_t const prevSize = sequences->size;

        assert(chunkStart < iend);
        /* 1. Perform overflow correction if necessary. */
        if (ZSTD_window_needOverflowCorrection(ldmState->window, 0, maxDist, ldmState->loadedDictEnd, chunkStart, chunkEnd)) {
            U32 const ldmHSize = 1U << params->hashLog;
            U32 const correction = ZSTD_window_correctOverflow(
                &ldmState->window, /* cycleLog */ 0, maxDist, chunkStart);
            ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
            /* invalidate dictionaries on overflow correction */
            ldmState->loadedDictEnd = 0;
        }
        /* 2. We enforce the maximum offset allowed.
         *
         * kMaxChunkSize should be small enough that we don't lose too much of
         * the window through early invalidation.
         * TODO: * Test the chunk size.
         *       * Try invalidation after the sequence generation and test the
         *         the offset against maxDist directly.
         *
         * NOTE: Because of dictionaries + sequence splitting we MUST make sure
         * that any offset used is valid at the END of the sequence, since it may
         * be split into two sequences. This condition holds when using
         * ZSTD_window_enforceMaxDist(), but if we move to checking offsets
         * against maxDist directly, we'll have to carefully handle that case.
         */
        ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL);
        /* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
        newLeftoverSize = ZSTD_ldm_generateSequences_internal(
            ldmState, sequences, params, chunkStart, chunkSize);
        if (ZSTD_isError(newLeftoverSize))
            return newLeftoverSize;
        /* 4. We add the leftover literals from previous iterations to the first
         *    newly generated sequence, or add the `newLeftoverSize` if none are
         *    generated.
         */
        /* Prepend the leftover literals from the last call */
        if (prevSize < sequences->size) {
            sequences->seq[prevSize].litLength += (U32)leftoverSize;
            leftoverSize = newLeftoverSize;
        } else {
            assert(newLeftoverSize == chunkSize);
            leftoverSize += chunkSize;
        }
    }
    return 0;
}

void
ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch)
{
    while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
        rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
        if (srcSize <= seq->litLength) {
            /* Skip past srcSize literals */
            seq->litLength -= (U32)srcSize;
            return;
        }
        srcSize -= seq->litLength;
        seq->litLength = 0;
        if (srcSize < seq->matchLength) {
            /* Skip past the first srcSize of the match */
            seq->matchLength -= (U32)srcSize;
            if (seq->matchLength < minMatch) {
                /* The match is too short, omit it */
                if (rawSeqStore->pos + 1 < rawSeqStore->size) {
                    seq[1].litLength += seq[0].matchLength;
                }
                rawSeqStore->pos++;
            }
            return;
        }
        srcSize -= seq->matchLength;
        seq->matchLength = 0;
        rawSeqStore->pos++;
    }
}

/*
 * If the sequence length is longer than remaining then the sequence is split
 * between this block and the next.
 *
 * Returns the current sequence to handle, or if the rest of the block should
 * be literals, it returns a sequence with offset == 0.
 */
static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
                                 U32 const remaining, U32 const minMatch)
{
    rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
    assert(sequence.offset > 0);
    /* Likely: No partial sequence */
    if (remaining >= sequence.litLength + sequence.matchLength) {
        rawSeqStore->pos++;
        return sequence;
    }
    /* Cut the sequence short (offset == 0 ==> rest is literals). */
    if (remaining <= sequence.litLength) {
        sequence.offset = 0;
    } else if (remaining < sequence.litLength + sequence.matchLength) {
        sequence.matchLength = remaining - sequence.litLength;
        if (sequence.matchLength < minMatch) {
            sequence.offset = 0;
        }
    }
    /* Skip past `remaining` bytes for the future sequences. */
    ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
    return sequence;
}

void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
    U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
    while (currPos && rawSeqStore->pos < rawSeqStore->size) {
        rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
        if (currPos >= currSeq.litLength + currSeq.matchLength) {
            currPos -= currSeq.litLength + currSeq.matchLength;
            rawSeqStore->pos++;
        } else {
            rawSeqStore->posInSequence = currPos;
            break;
        }
    }
    if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) {
        rawSeqStore->posInSequence = 0;
    }
}

size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
    ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
    ZSTD_paramSwitch_e useRowMatchFinder,
    void const* src, size_t srcSize)
{
    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    unsigned const minMatch = cParams->minMatch;
    ZSTD_blockCompressor const blockCompressor =
        ZSTD_selectBlockCompressor(cParams->strategy, useRowMatchFinder, ZSTD_matchState_dictMode(ms));
    /* Input bounds */
    BYTE const* const istart = (BYTE const*)src;
    BYTE const* const iend = istart + srcSize;
    /* Input positions */
    BYTE const* ip = istart;

    DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize);
    /* If using opt parser, use LDMs only as candidates rather than always accepting them */
    if (cParams->strategy >= ZSTD_btopt) {
        size_t lastLLSize;
        ms->ldmSeqStore = rawSeqStore;
        lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize);
        ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize);
        return lastLLSize;
    }

    assert(rawSeqStore->pos <= rawSeqStore->size);
    assert(rawSeqStore->size <= rawSeqStore->capacity);
    /* Loop through each sequence and apply the block compressor to the literals */
    while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
        /* maybeSplitSequence updates rawSeqStore->pos */
        rawSeq const sequence = maybeSplitSequence(rawSeqStore,
                                                   (U32)(iend - ip), minMatch);
        int i;
        /* End signal */
        if (sequence.offset == 0)
            break;

        assert(ip + sequence.litLength + sequence.matchLength <= iend);

        /* Fill tables for block compressor */
        ZSTD_ldm_limitTableUpdate(ms, ip);
        ZSTD_ldm_fillFastTables(ms, ip);
        /* Run the block compressor */
        DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength);
        {
            size_t const newLitLength =
                blockCompressor(ms, seqStore, rep, ip, sequence.litLength);
            ip += sequence.litLength;
            /* Update the repcodes */
            for (i = ZSTD_REP_NUM - 1; i > 0; i--)
                rep[i] = rep[i-1];
            rep[0] = sequence.offset;
            /* Store the sequence */
            ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend,
                          STORE_OFFSET(sequence.offset),
                          sequence.matchLength);
            ip += sequence.matchLength;
        }
    }
    /* Fill the tables for the block compressor */
    ZSTD_ldm_limitTableUpdate(ms, ip);
    ZSTD_ldm_fillFastTables(ms, ip);
    /* Compress the last literals */
    return blockCompressor(ms, seqStore, rep, ip, iend - ip);
}