Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 | /* * Copyright (c) Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ #include "zstd_ldm.h" #include "../common/debug.h" #include <linux/xxhash.h> #include "zstd_fast.h" /* ZSTD_fillHashTable() */ #include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */ #include "zstd_ldm_geartab.h" #define LDM_BUCKET_SIZE_LOG 3 #define LDM_MIN_MATCH_LENGTH 64 #define LDM_HASH_RLOG 7 typedef struct { U64 rolling; U64 stopMask; } ldmRollingHashState_t; /* ZSTD_ldm_gear_init(): * * Initializes the rolling hash state such that it will honor the * settings in params. */ static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params) { unsigned maxBitsInMask = MIN(params->minMatchLength, 64); unsigned hashRateLog = params->hashRateLog; state->rolling = ~(U32)0; /* The choice of the splitting criterion is subject to two conditions: * 1. it has to trigger on average every 2^(hashRateLog) bytes; * 2. ideally, it has to depend on a window of minMatchLength bytes. * * In the gear hash algorithm, bit n depends on the last n bytes; * so in order to obtain a good quality splitting criterion it is * preferable to use bits with high weight. * * To match condition 1 we use a mask with hashRateLog bits set * and, because of the previous remark, we make sure these bits * have the highest possible weight while still respecting * condition 2. */ if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) { state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog); } else { /* In this degenerate case we simply honor the hash rate. */ state->stopMask = ((U64)1 << hashRateLog) - 1; } } /* ZSTD_ldm_gear_reset() * Feeds [data, data + minMatchLength) into the hash without registering any * splits. This effectively resets the hash state. This is used when skipping * over data, either at the beginning of a block, or skipping sections. */ static void ZSTD_ldm_gear_reset(ldmRollingHashState_t* state, BYTE const* data, size_t minMatchLength) { U64 hash = state->rolling; size_t n = 0; #define GEAR_ITER_ONCE() do { \ hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \ n += 1; \ } while (0) while (n + 3 < minMatchLength) { GEAR_ITER_ONCE(); GEAR_ITER_ONCE(); GEAR_ITER_ONCE(); GEAR_ITER_ONCE(); } while (n < minMatchLength) { GEAR_ITER_ONCE(); } #undef GEAR_ITER_ONCE } /* ZSTD_ldm_gear_feed(): * * Registers in the splits array all the split points found in the first * size bytes following the data pointer. This function terminates when * either all the data has been processed or LDM_BATCH_SIZE splits are * present in the splits array. * * Precondition: The splits array must not be full. * Returns: The number of bytes processed. */ static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state, BYTE const* data, size_t size, size_t* splits, unsigned* numSplits) { size_t n; U64 hash, mask; hash = state->rolling; mask = state->stopMask; n = 0; #define GEAR_ITER_ONCE() do { \ hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \ n += 1; \ if (UNLIKELY((hash & mask) == 0)) { \ splits[*numSplits] = n; \ *numSplits += 1; \ if (*numSplits == LDM_BATCH_SIZE) \ goto done; \ } \ } while (0) while (n + 3 < size) { GEAR_ITER_ONCE(); GEAR_ITER_ONCE(); GEAR_ITER_ONCE(); GEAR_ITER_ONCE(); } while (n < size) { GEAR_ITER_ONCE(); } #undef GEAR_ITER_ONCE done: state->rolling = hash; return n; } void ZSTD_ldm_adjustParameters(ldmParams_t* params, ZSTD_compressionParameters const* cParams) { params->windowLog = cParams->windowLog; ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX); DEBUGLOG(4, "ZSTD_ldm_adjustParameters"); if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG; if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH; if (params->hashLog == 0) { params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG); assert(params->hashLog <= ZSTD_HASHLOG_MAX); } if (params->hashRateLog == 0) { params->hashRateLog = params->windowLog < params->hashLog ? 0 : params->windowLog - params->hashLog; } params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog); } size_t ZSTD_ldm_getTableSize(ldmParams_t params) { size_t const ldmHSize = ((size_t)1) << params.hashLog; size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog); size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog); size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize) + ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t)); return params.enableLdm == ZSTD_ps_enable ? totalSize : 0; } size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize) { return params.enableLdm == ZSTD_ps_enable ? (maxChunkSize / params.minMatchLength) : 0; } /* ZSTD_ldm_getBucket() : * Returns a pointer to the start of the bucket associated with hash. */ static ldmEntry_t* ZSTD_ldm_getBucket( ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams) { return ldmState->hashTable + (hash << ldmParams.bucketSizeLog); } /* ZSTD_ldm_insertEntry() : * Insert the entry with corresponding hash into the hash table */ static void ZSTD_ldm_insertEntry(ldmState_t* ldmState, size_t const hash, const ldmEntry_t entry, ldmParams_t const ldmParams) { BYTE* const pOffset = ldmState->bucketOffsets + hash; unsigned const offset = *pOffset; *(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + offset) = entry; *pOffset = (BYTE)((offset + 1) & ((1u << ldmParams.bucketSizeLog) - 1)); } /* ZSTD_ldm_countBackwardsMatch() : * Returns the number of bytes that match backwards before pIn and pMatch. * * We count only bytes where pMatch >= pBase and pIn >= pAnchor. */ static size_t ZSTD_ldm_countBackwardsMatch( const BYTE* pIn, const BYTE* pAnchor, const BYTE* pMatch, const BYTE* pMatchBase) { size_t matchLength = 0; while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) { pIn--; pMatch--; matchLength++; } return matchLength; } /* ZSTD_ldm_countBackwardsMatch_2segments() : * Returns the number of bytes that match backwards from pMatch, * even with the backwards match spanning 2 different segments. * * On reaching `pMatchBase`, start counting from mEnd */ static size_t ZSTD_ldm_countBackwardsMatch_2segments( const BYTE* pIn, const BYTE* pAnchor, const BYTE* pMatch, const BYTE* pMatchBase, const BYTE* pExtDictStart, const BYTE* pExtDictEnd) { size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase); if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) { /* If backwards match is entirely in the extDict or prefix, immediately return */ return matchLength; } DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength); matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart); DEBUGLOG(7, "final backwards match length = %zu", matchLength); return matchLength; } /* ZSTD_ldm_fillFastTables() : * * Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies. * This is similar to ZSTD_loadDictionaryContent. * * The tables for the other strategies are filled within their * block compressors. */ static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms, void const* end) { const BYTE* const iend = (const BYTE*)end; switch(ms->cParams.strategy) { case ZSTD_fast: ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast); break; case ZSTD_dfast: ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast); break; case ZSTD_greedy: case ZSTD_lazy: case ZSTD_lazy2: case ZSTD_btlazy2: case ZSTD_btopt: case ZSTD_btultra: case ZSTD_btultra2: break; default: assert(0); /* not possible : not a valid strategy id */ } return 0; } void ZSTD_ldm_fillHashTable( ldmState_t* ldmState, const BYTE* ip, const BYTE* iend, ldmParams_t const* params) { U32 const minMatchLength = params->minMatchLength; U32 const hBits = params->hashLog - params->bucketSizeLog; BYTE const* const base = ldmState->window.base; BYTE const* const istart = ip; ldmRollingHashState_t hashState; size_t* const splits = ldmState->splitIndices; unsigned numSplits; DEBUGLOG(5, "ZSTD_ldm_fillHashTable"); ZSTD_ldm_gear_init(&hashState, params); while (ip < iend) { size_t hashed; unsigned n; numSplits = 0; hashed = ZSTD_ldm_gear_feed(&hashState, ip, iend - ip, splits, &numSplits); for (n = 0; n < numSplits; n++) { if (ip + splits[n] >= istart + minMatchLength) { BYTE const* const split = ip + splits[n] - minMatchLength; U64 const xxhash = xxh64(split, minMatchLength, 0); U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1)); ldmEntry_t entry; entry.offset = (U32)(split - base); entry.checksum = (U32)(xxhash >> 32); ZSTD_ldm_insertEntry(ldmState, hash, entry, *params); } } ip += hashed; } } /* ZSTD_ldm_limitTableUpdate() : * * Sets cctx->nextToUpdate to a position corresponding closer to anchor * if it is far way * (after a long match, only update tables a limited amount). */ static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor) { U32 const curr = (U32)(anchor - ms->window.base); if (curr > ms->nextToUpdate + 1024) { ms->nextToUpdate = curr - MIN(512, curr - ms->nextToUpdate - 1024); } } static size_t ZSTD_ldm_generateSequences_internal( ldmState_t* ldmState, rawSeqStore_t* rawSeqStore, ldmParams_t const* params, void const* src, size_t srcSize) { /* LDM parameters */ int const extDict = ZSTD_window_hasExtDict(ldmState->window); U32 const minMatchLength = params->minMatchLength; U32 const entsPerBucket = 1U << params->bucketSizeLog; U32 const hBits = params->hashLog - params->bucketSizeLog; /* Prefix and extDict parameters */ U32 const dictLimit = ldmState->window.dictLimit; U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit; BYTE const* const base = ldmState->window.base; BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL; BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL; BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL; BYTE const* const lowPrefixPtr = base + dictLimit; /* Input bounds */ BYTE const* const istart = (BYTE const*)src; BYTE const* const iend = istart + srcSize; BYTE const* const ilimit = iend - HASH_READ_SIZE; /* Input positions */ BYTE const* anchor = istart; BYTE const* ip = istart; /* Rolling hash state */ ldmRollingHashState_t hashState; /* Arrays for staged-processing */ size_t* const splits = ldmState->splitIndices; ldmMatchCandidate_t* const candidates = ldmState->matchCandidates; unsigned numSplits; if (srcSize < minMatchLength) return iend - anchor; /* Initialize the rolling hash state with the first minMatchLength bytes */ ZSTD_ldm_gear_init(&hashState, params); ZSTD_ldm_gear_reset(&hashState, ip, minMatchLength); ip += minMatchLength; while (ip < ilimit) { size_t hashed; unsigned n; numSplits = 0; hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip, splits, &numSplits); for (n = 0; n < numSplits; n++) { BYTE const* const split = ip + splits[n] - minMatchLength; U64 const xxhash = xxh64(split, minMatchLength, 0); U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1)); candidates[n].split = split; candidates[n].hash = hash; candidates[n].checksum = (U32)(xxhash >> 32); candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, *params); PREFETCH_L1(candidates[n].bucket); } for (n = 0; n < numSplits; n++) { size_t forwardMatchLength = 0, backwardMatchLength = 0, bestMatchLength = 0, mLength; U32 offset; BYTE const* const split = candidates[n].split; U32 const checksum = candidates[n].checksum; U32 const hash = candidates[n].hash; ldmEntry_t* const bucket = candidates[n].bucket; ldmEntry_t const* cur; ldmEntry_t const* bestEntry = NULL; ldmEntry_t newEntry; newEntry.offset = (U32)(split - base); newEntry.checksum = checksum; /* If a split point would generate a sequence overlapping with * the previous one, we merely register it in the hash table and * move on */ if (split < anchor) { ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params); continue; } for (cur = bucket; cur < bucket + entsPerBucket; cur++) { size_t curForwardMatchLength, curBackwardMatchLength, curTotalMatchLength; if (cur->checksum != checksum || cur->offset <= lowestIndex) { continue; } if (extDict) { BYTE const* const curMatchBase = cur->offset < dictLimit ? dictBase : base; BYTE const* const pMatch = curMatchBase + cur->offset; BYTE const* const matchEnd = cur->offset < dictLimit ? dictEnd : iend; BYTE const* const lowMatchPtr = cur->offset < dictLimit ? dictStart : lowPrefixPtr; curForwardMatchLength = ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr); if (curForwardMatchLength < minMatchLength) { continue; } curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments( split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd); } else { /* !extDict */ BYTE const* const pMatch = base + cur->offset; curForwardMatchLength = ZSTD_count(split, pMatch, iend); if (curForwardMatchLength < minMatchLength) { continue; } curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr); } curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength; if (curTotalMatchLength > bestMatchLength) { bestMatchLength = curTotalMatchLength; forwardMatchLength = curForwardMatchLength; backwardMatchLength = curBackwardMatchLength; bestEntry = cur; } } /* No match found -- insert an entry into the hash table * and process the next candidate match */ if (bestEntry == NULL) { ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params); continue; } /* Match found */ offset = (U32)(split - base) - bestEntry->offset; mLength = forwardMatchLength + backwardMatchLength; { rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size; /* Out of sequence storage */ if (rawSeqStore->size == rawSeqStore->capacity) return ERROR(dstSize_tooSmall); seq->litLength = (U32)(split - backwardMatchLength - anchor); seq->matchLength = (U32)mLength; seq->offset = offset; rawSeqStore->size++; } /* Insert the current entry into the hash table --- it must be * done after the previous block to avoid clobbering bestEntry */ ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params); anchor = split + forwardMatchLength; /* If we find a match that ends after the data that we've hashed * then we have a repeating, overlapping, pattern. E.g. all zeros. * If one repetition of the pattern matches our `stopMask` then all * repetitions will. We don't need to insert them all into out table, * only the first one. So skip over overlapping matches. * This is a major speed boost (20x) for compressing a single byte * repeated, when that byte ends up in the table. */ if (anchor > ip + hashed) { ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength); /* Continue the outer loop at anchor (ip + hashed == anchor). */ ip = anchor - hashed; break; } } ip += hashed; } return iend - anchor; } /*! ZSTD_ldm_reduceTable() : * reduce table indexes by `reducerValue` */ static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size, U32 const reducerValue) { U32 u; for (u = 0; u < size; u++) { if (table[u].offset < reducerValue) table[u].offset = 0; else table[u].offset -= reducerValue; } } size_t ZSTD_ldm_generateSequences( ldmState_t* ldmState, rawSeqStore_t* sequences, ldmParams_t const* params, void const* src, size_t srcSize) { U32 const maxDist = 1U << params->windowLog; BYTE const* const istart = (BYTE const*)src; BYTE const* const iend = istart + srcSize; size_t const kMaxChunkSize = 1 << 20; size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0); size_t chunk; size_t leftoverSize = 0; assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize); /* Check that ZSTD_window_update() has been called for this chunk prior * to passing it to this function. */ assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize); /* The input could be very large (in zstdmt), so it must be broken up into * chunks to enforce the maximum distance and handle overflow correction. */ assert(sequences->pos <= sequences->size); assert(sequences->size <= sequences->capacity); for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) { BYTE const* const chunkStart = istart + chunk * kMaxChunkSize; size_t const remaining = (size_t)(iend - chunkStart); BYTE const *const chunkEnd = (remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize; size_t const chunkSize = chunkEnd - chunkStart; size_t newLeftoverSize; size_t const prevSize = sequences->size; assert(chunkStart < iend); /* 1. Perform overflow correction if necessary. */ if (ZSTD_window_needOverflowCorrection(ldmState->window, 0, maxDist, ldmState->loadedDictEnd, chunkStart, chunkEnd)) { U32 const ldmHSize = 1U << params->hashLog; U32 const correction = ZSTD_window_correctOverflow( &ldmState->window, /* cycleLog */ 0, maxDist, chunkStart); ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction); /* invalidate dictionaries on overflow correction */ ldmState->loadedDictEnd = 0; } /* 2. We enforce the maximum offset allowed. * * kMaxChunkSize should be small enough that we don't lose too much of * the window through early invalidation. * TODO: * Test the chunk size. * * Try invalidation after the sequence generation and test the * the offset against maxDist directly. * * NOTE: Because of dictionaries + sequence splitting we MUST make sure * that any offset used is valid at the END of the sequence, since it may * be split into two sequences. This condition holds when using * ZSTD_window_enforceMaxDist(), but if we move to checking offsets * against maxDist directly, we'll have to carefully handle that case. */ ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL); /* 3. Generate the sequences for the chunk, and get newLeftoverSize. */ newLeftoverSize = ZSTD_ldm_generateSequences_internal( ldmState, sequences, params, chunkStart, chunkSize); if (ZSTD_isError(newLeftoverSize)) return newLeftoverSize; /* 4. We add the leftover literals from previous iterations to the first * newly generated sequence, or add the `newLeftoverSize` if none are * generated. */ /* Prepend the leftover literals from the last call */ if (prevSize < sequences->size) { sequences->seq[prevSize].litLength += (U32)leftoverSize; leftoverSize = newLeftoverSize; } else { assert(newLeftoverSize == chunkSize); leftoverSize += chunkSize; } } return 0; } void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) { while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) { rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos; if (srcSize <= seq->litLength) { /* Skip past srcSize literals */ seq->litLength -= (U32)srcSize; return; } srcSize -= seq->litLength; seq->litLength = 0; if (srcSize < seq->matchLength) { /* Skip past the first srcSize of the match */ seq->matchLength -= (U32)srcSize; if (seq->matchLength < minMatch) { /* The match is too short, omit it */ if (rawSeqStore->pos + 1 < rawSeqStore->size) { seq[1].litLength += seq[0].matchLength; } rawSeqStore->pos++; } return; } srcSize -= seq->matchLength; seq->matchLength = 0; rawSeqStore->pos++; } } /* * If the sequence length is longer than remaining then the sequence is split * between this block and the next. * * Returns the current sequence to handle, or if the rest of the block should * be literals, it returns a sequence with offset == 0. */ static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore, U32 const remaining, U32 const minMatch) { rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos]; assert(sequence.offset > 0); /* Likely: No partial sequence */ if (remaining >= sequence.litLength + sequence.matchLength) { rawSeqStore->pos++; return sequence; } /* Cut the sequence short (offset == 0 ==> rest is literals). */ if (remaining <= sequence.litLength) { sequence.offset = 0; } else if (remaining < sequence.litLength + sequence.matchLength) { sequence.matchLength = remaining - sequence.litLength; if (sequence.matchLength < minMatch) { sequence.offset = 0; } } /* Skip past `remaining` bytes for the future sequences. */ ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch); return sequence; } void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) { U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes); while (currPos && rawSeqStore->pos < rawSeqStore->size) { rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos]; if (currPos >= currSeq.litLength + currSeq.matchLength) { currPos -= currSeq.litLength + currSeq.matchLength; rawSeqStore->pos++; } else { rawSeqStore->posInSequence = currPos; break; } } if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) { rawSeqStore->posInSequence = 0; } } size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore, ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_paramSwitch_e useRowMatchFinder, void const* src, size_t srcSize) { const ZSTD_compressionParameters* const cParams = &ms->cParams; unsigned const minMatch = cParams->minMatch; ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(cParams->strategy, useRowMatchFinder, ZSTD_matchState_dictMode(ms)); /* Input bounds */ BYTE const* const istart = (BYTE const*)src; BYTE const* const iend = istart + srcSize; /* Input positions */ BYTE const* ip = istart; DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize); /* If using opt parser, use LDMs only as candidates rather than always accepting them */ if (cParams->strategy >= ZSTD_btopt) { size_t lastLLSize; ms->ldmSeqStore = rawSeqStore; lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize); ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize); return lastLLSize; } assert(rawSeqStore->pos <= rawSeqStore->size); assert(rawSeqStore->size <= rawSeqStore->capacity); /* Loop through each sequence and apply the block compressor to the literals */ while (rawSeqStore->pos < rawSeqStore->size && ip < iend) { /* maybeSplitSequence updates rawSeqStore->pos */ rawSeq const sequence = maybeSplitSequence(rawSeqStore, (U32)(iend - ip), minMatch); int i; /* End signal */ if (sequence.offset == 0) break; assert(ip + sequence.litLength + sequence.matchLength <= iend); /* Fill tables for block compressor */ ZSTD_ldm_limitTableUpdate(ms, ip); ZSTD_ldm_fillFastTables(ms, ip); /* Run the block compressor */ DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength); { size_t const newLitLength = blockCompressor(ms, seqStore, rep, ip, sequence.litLength); ip += sequence.litLength; /* Update the repcodes */ for (i = ZSTD_REP_NUM - 1; i > 0; i--) rep[i] = rep[i-1]; rep[0] = sequence.offset; /* Store the sequence */ ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend, STORE_OFFSET(sequence.offset), sequence.matchLength); ip += sequence.matchLength; } } /* Fill the tables for the block compressor */ ZSTD_ldm_limitTableUpdate(ms, ip); ZSTD_ldm_fillFastTables(ms, ip); /* Compress the last literals */ return blockCompressor(ms, seqStore, rep, ip, iend - ip); } |