Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019, Intel Corporation. */ #include <linux/filter.h> #include "ice_txrx_lib.h" #include "ice_eswitch.h" #include "ice_lib.h" /** * ice_release_rx_desc - Store the new tail and head values * @rx_ring: ring to bump * @val: new head index */ void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val) { u16 prev_ntu = rx_ring->next_to_use & ~0x7; rx_ring->next_to_use = val; /* update next to alloc since we have filled the ring */ rx_ring->next_to_alloc = val; /* QRX_TAIL will be updated with any tail value, but hardware ignores * the lower 3 bits. This makes it so we only bump tail on meaningful * boundaries. Also, this allows us to bump tail on intervals of 8 up to * the budget depending on the current traffic load. */ val &= ~0x7; if (prev_ntu != val) { /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); writel(val, rx_ring->tail); } } /** * ice_ptype_to_htype - get a hash type * @ptype: the ptype value from the descriptor * * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of * Rx desc. */ static enum pkt_hash_types ice_ptype_to_htype(u16 ptype) { struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype); if (!decoded.known) return PKT_HASH_TYPE_NONE; if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4) return PKT_HASH_TYPE_L4; if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3) return PKT_HASH_TYPE_L3; if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2) return PKT_HASH_TYPE_L2; return PKT_HASH_TYPE_NONE; } /** * ice_rx_hash - set the hash value in the skb * @rx_ring: descriptor ring * @rx_desc: specific descriptor * @skb: pointer to current skb * @rx_ptype: the ptype value from the descriptor */ static void ice_rx_hash(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb, u16 rx_ptype) { struct ice_32b_rx_flex_desc_nic *nic_mdid; u32 hash; if (!(rx_ring->netdev->features & NETIF_F_RXHASH)) return; if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC) return; nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; hash = le32_to_cpu(nic_mdid->rss_hash); skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype)); } /** * ice_rx_csum - Indicate in skb if checksum is good * @ring: the ring we care about * @skb: skb currently being received and modified * @rx_desc: the receive descriptor * @ptype: the packet type decoded by hardware * * skb->protocol must be set before this function is called */ static void ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb, union ice_32b_rx_flex_desc *rx_desc, u16 ptype) { struct ice_rx_ptype_decoded decoded; u16 rx_status0, rx_status1; bool ipv4, ipv6; rx_status0 = le16_to_cpu(rx_desc->wb.status_error0); rx_status1 = le16_to_cpu(rx_desc->wb.status_error1); decoded = ice_decode_rx_desc_ptype(ptype); /* Start with CHECKSUM_NONE and by default csum_level = 0 */ skb->ip_summed = CHECKSUM_NONE; skb_checksum_none_assert(skb); /* check if Rx checksum is enabled */ if (!(ring->netdev->features & NETIF_F_RXCSUM)) return; /* check if HW has decoded the packet and checksum */ if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) return; if (!(decoded.known && decoded.outer_ip)) return; ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4); ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6); if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) goto checksum_fail; if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) goto checksum_fail; /* check for L4 errors and handle packets that were not able to be * checksummed due to arrival speed */ if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) goto checksum_fail; /* check for outer UDP checksum error in tunneled packets */ if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) && (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S))) goto checksum_fail; /* If there is an outer header present that might contain a checksum * we need to bump the checksum level by 1 to reflect the fact that * we are indicating we validated the inner checksum. */ if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT) skb->csum_level = 1; /* Only report checksum unnecessary for TCP, UDP, or SCTP */ switch (decoded.inner_prot) { case ICE_RX_PTYPE_INNER_PROT_TCP: case ICE_RX_PTYPE_INNER_PROT_UDP: case ICE_RX_PTYPE_INNER_PROT_SCTP: skb->ip_summed = CHECKSUM_UNNECESSARY; break; default: break; } return; checksum_fail: ring->vsi->back->hw_csum_rx_error++; } /** * ice_process_skb_fields - Populate skb header fields from Rx descriptor * @rx_ring: Rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being populated * @ptype: the packet type decoded by hardware * * This function checks the ring, descriptor, and packet information in * order to populate the hash, checksum, VLAN, protocol, and * other fields within the skb. */ void ice_process_skb_fields(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb, u16 ptype) { ice_rx_hash(rx_ring, rx_desc, skb, ptype); /* modifies the skb - consumes the enet header */ skb->protocol = eth_type_trans(skb, rx_ring->netdev); ice_rx_csum(rx_ring, skb, rx_desc, ptype); if (rx_ring->ptp_rx) ice_ptp_rx_hwtstamp(rx_ring, rx_desc, skb); } /** * ice_receive_skb - Send a completed packet up the stack * @rx_ring: Rx ring in play * @skb: packet to send up * @vlan_tag: VLAN tag for packet * * This function sends the completed packet (via. skb) up the stack using * gro receive functions (with/without VLAN tag) */ void ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag) { netdev_features_t features = rx_ring->netdev->features; bool non_zero_vlan = !!(vlan_tag & VLAN_VID_MASK); if ((features & NETIF_F_HW_VLAN_CTAG_RX) && non_zero_vlan) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); else if ((features & NETIF_F_HW_VLAN_STAG_RX) && non_zero_vlan) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag); napi_gro_receive(&rx_ring->q_vector->napi, skb); } /** * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer * @dev: device for DMA mapping * @tx_buf: Tx buffer to clean * @bq: XDP bulk flush struct */ static void ice_clean_xdp_tx_buf(struct device *dev, struct ice_tx_buf *tx_buf, struct xdp_frame_bulk *bq) { dma_unmap_single(dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buf, len, 0); switch (tx_buf->type) { case ICE_TX_BUF_XDP_TX: page_frag_free(tx_buf->raw_buf); break; case ICE_TX_BUF_XDP_XMIT: xdp_return_frame_bulk(tx_buf->xdpf, bq); break; } tx_buf->type = ICE_TX_BUF_EMPTY; } /** * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring * @xdp_ring: XDP ring to clean */ static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring) { int total_bytes = 0, total_pkts = 0; struct device *dev = xdp_ring->dev; u32 ntc = xdp_ring->next_to_clean; struct ice_tx_desc *tx_desc; u32 cnt = xdp_ring->count; struct xdp_frame_bulk bq; u32 frags, xdp_tx = 0; u32 ready_frames = 0; u32 idx; u32 ret; idx = xdp_ring->tx_buf[ntc].rs_idx; tx_desc = ICE_TX_DESC(xdp_ring, idx); if (tx_desc->cmd_type_offset_bsz & cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { if (idx >= ntc) ready_frames = idx - ntc + 1; else ready_frames = idx + cnt - ntc + 1; } if (unlikely(!ready_frames)) return 0; ret = ready_frames; xdp_frame_bulk_init(&bq); rcu_read_lock(); /* xdp_return_frame_bulk() */ while (ready_frames) { struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; struct ice_tx_buf *head = tx_buf; /* bytecount holds size of head + frags */ total_bytes += tx_buf->bytecount; frags = tx_buf->nr_frags; total_pkts++; /* count head + frags */ ready_frames -= frags + 1; xdp_tx++; ntc++; if (ntc == cnt) ntc = 0; for (int i = 0; i < frags; i++) { tx_buf = &xdp_ring->tx_buf[ntc]; ice_clean_xdp_tx_buf(dev, tx_buf, &bq); ntc++; if (ntc == cnt) ntc = 0; } ice_clean_xdp_tx_buf(dev, head, &bq); } xdp_flush_frame_bulk(&bq); rcu_read_unlock(); tx_desc->cmd_type_offset_bsz = 0; xdp_ring->next_to_clean = ntc; xdp_ring->xdp_tx_active -= xdp_tx; ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes); return ret; } /** * __ice_xmit_xdp_ring - submit frame to XDP ring for transmission * @xdp: XDP buffer to be placed onto Tx descriptors * @xdp_ring: XDP ring for transmission * @frame: whether this comes from .ndo_xdp_xmit() */ int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring, bool frame) { struct skb_shared_info *sinfo = NULL; u32 size = xdp->data_end - xdp->data; struct device *dev = xdp_ring->dev; u32 ntu = xdp_ring->next_to_use; struct ice_tx_desc *tx_desc; struct ice_tx_buf *tx_head; struct ice_tx_buf *tx_buf; u32 cnt = xdp_ring->count; void *data = xdp->data; u32 nr_frags = 0; u32 free_space; u32 frag = 0; free_space = ICE_DESC_UNUSED(xdp_ring); if (free_space < ICE_RING_QUARTER(xdp_ring)) free_space += ice_clean_xdp_irq(xdp_ring); if (unlikely(!free_space)) goto busy; if (unlikely(xdp_buff_has_frags(xdp))) { sinfo = xdp_get_shared_info_from_buff(xdp); nr_frags = sinfo->nr_frags; if (free_space < nr_frags + 1) goto busy; } tx_desc = ICE_TX_DESC(xdp_ring, ntu); tx_head = &xdp_ring->tx_buf[ntu]; tx_buf = tx_head; for (;;) { dma_addr_t dma; dma = dma_map_single(dev, data, size, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma)) goto dma_unmap; /* record length, and DMA address */ dma_unmap_len_set(tx_buf, len, size); dma_unmap_addr_set(tx_buf, dma, dma); if (frame) { tx_buf->type = ICE_TX_BUF_FRAG; } else { tx_buf->type = ICE_TX_BUF_XDP_TX; tx_buf->raw_buf = data; } tx_desc->buf_addr = cpu_to_le64(dma); tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); ntu++; if (ntu == cnt) ntu = 0; if (frag == nr_frags) break; tx_desc = ICE_TX_DESC(xdp_ring, ntu); tx_buf = &xdp_ring->tx_buf[ntu]; data = skb_frag_address(&sinfo->frags[frag]); size = skb_frag_size(&sinfo->frags[frag]); frag++; } /* store info about bytecount and frag count in first desc */ tx_head->bytecount = xdp_get_buff_len(xdp); tx_head->nr_frags = nr_frags; if (frame) { tx_head->type = ICE_TX_BUF_XDP_XMIT; tx_head->xdpf = xdp->data_hard_start; } /* update last descriptor from a frame with EOP */ tx_desc->cmd_type_offset_bsz |= cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); xdp_ring->xdp_tx_active++; xdp_ring->next_to_use = ntu; return ICE_XDP_TX; dma_unmap: for (;;) { tx_buf = &xdp_ring->tx_buf[ntu]; dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buf, len, 0); if (tx_buf == tx_head) break; if (!ntu) ntu += cnt; ntu--; } return ICE_XDP_CONSUMED; busy: xdp_ring->ring_stats->tx_stats.tx_busy++; return ICE_XDP_CONSUMED; } /** * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map * @xdp_ring: XDP ring * @xdp_res: Result of the receive batch * @first_idx: index to write from caller * * This function bumps XDP Tx tail and/or flush redirect map, and * should be called when a batch of packets has been processed in the * napi loop. */ void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res, u32 first_idx) { struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx]; if (xdp_res & ICE_XDP_REDIR) xdp_do_flush_map(); if (xdp_res & ICE_XDP_TX) { if (static_branch_unlikely(&ice_xdp_locking_key)) spin_lock(&xdp_ring->tx_lock); /* store index of descriptor with RS bit set in the first * ice_tx_buf of given NAPI batch */ tx_buf->rs_idx = ice_set_rs_bit(xdp_ring); ice_xdp_ring_update_tail(xdp_ring); if (static_branch_unlikely(&ice_xdp_locking_key)) spin_unlock(&xdp_ring->tx_lock); } } |