Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 | // SPDX-License-Identifier: GPL-2.0-only /* * * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> */ #include <linux/types.h> #include <linux/string.h> #include <linux/kvm.h> #include <linux/kvm_host.h> #include <linux/anon_inodes.h> #include <linux/file.h> #include <linux/debugfs.h> #include <linux/pgtable.h> #include <asm/kvm_ppc.h> #include <asm/kvm_book3s.h> #include "book3s_hv.h" #include <asm/page.h> #include <asm/mmu.h> #include <asm/pgalloc.h> #include <asm/pte-walk.h> #include <asm/ultravisor.h> #include <asm/kvm_book3s_uvmem.h> #include <asm/plpar_wrappers.h> #include <asm/firmware.h> /* * Supported radix tree geometry. * Like p9, we support either 5 or 9 bits at the first (lowest) level, * for a page size of 64k or 4k. */ static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid, gva_t eaddr, void *to, void *from, unsigned long n) { int old_pid, old_lpid; unsigned long quadrant, ret = n; bool is_load = !!to; /* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */ if (kvmhv_on_pseries()) return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr, (to != NULL) ? __pa(to): 0, (from != NULL) ? __pa(from): 0, n); if (eaddr & (0xFFFUL << 52)) return ret; quadrant = 1; if (!pid) quadrant = 2; if (is_load) from = (void *) (eaddr | (quadrant << 62)); else to = (void *) (eaddr | (quadrant << 62)); preempt_disable(); asm volatile("hwsync" ::: "memory"); isync(); /* switch the lpid first to avoid running host with unallocated pid */ old_lpid = mfspr(SPRN_LPID); if (old_lpid != lpid) mtspr(SPRN_LPID, lpid); if (quadrant == 1) { old_pid = mfspr(SPRN_PID); if (old_pid != pid) mtspr(SPRN_PID, pid); } isync(); pagefault_disable(); if (is_load) ret = __copy_from_user_inatomic(to, (const void __user *)from, n); else ret = __copy_to_user_inatomic((void __user *)to, from, n); pagefault_enable(); asm volatile("hwsync" ::: "memory"); isync(); /* switch the pid first to avoid running host with unallocated pid */ if (quadrant == 1 && pid != old_pid) mtspr(SPRN_PID, old_pid); if (lpid != old_lpid) mtspr(SPRN_LPID, old_lpid); isync(); preempt_enable(); return ret; } static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to, void *from, unsigned long n) { int lpid = vcpu->kvm->arch.lpid; int pid = vcpu->arch.pid; /* This would cause a data segment intr so don't allow the access */ if (eaddr & (0x3FFUL << 52)) return -EINVAL; /* Should we be using the nested lpid */ if (vcpu->arch.nested) lpid = vcpu->arch.nested->shadow_lpid; /* If accessing quadrant 3 then pid is expected to be 0 */ if (((eaddr >> 62) & 0x3) == 0x3) pid = 0; eaddr &= ~(0xFFFUL << 52); return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n); } long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to, unsigned long n) { long ret; ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n); if (ret > 0) memset(to + (n - ret), 0, ret); return ret; } long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from, unsigned long n) { return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n); } int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *gpte, u64 root, u64 *pte_ret_p) { struct kvm *kvm = vcpu->kvm; int ret, level, ps; unsigned long rts, bits, offset, index; u64 pte, base, gpa; __be64 rpte; rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | ((root & RTS2_MASK) >> RTS2_SHIFT); bits = root & RPDS_MASK; base = root & RPDB_MASK; offset = rts + 31; /* Current implementations only support 52-bit space */ if (offset != 52) return -EINVAL; /* Walk each level of the radix tree */ for (level = 3; level >= 0; --level) { u64 addr; /* Check a valid size */ if (level && bits != p9_supported_radix_bits[level]) return -EINVAL; if (level == 0 && !(bits == 5 || bits == 9)) return -EINVAL; offset -= bits; index = (eaddr >> offset) & ((1UL << bits) - 1); /* Check that low bits of page table base are zero */ if (base & ((1UL << (bits + 3)) - 1)) return -EINVAL; /* Read the entry from guest memory */ addr = base + (index * sizeof(rpte)); kvm_vcpu_srcu_read_lock(vcpu); ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte)); kvm_vcpu_srcu_read_unlock(vcpu); if (ret) { if (pte_ret_p) *pte_ret_p = addr; return ret; } pte = __be64_to_cpu(rpte); if (!(pte & _PAGE_PRESENT)) return -ENOENT; /* Check if a leaf entry */ if (pte & _PAGE_PTE) break; /* Get ready to walk the next level */ base = pte & RPDB_MASK; bits = pte & RPDS_MASK; } /* Need a leaf at lowest level; 512GB pages not supported */ if (level < 0 || level == 3) return -EINVAL; /* We found a valid leaf PTE */ /* Offset is now log base 2 of the page size */ gpa = pte & 0x01fffffffffff000ul; if (gpa & ((1ul << offset) - 1)) return -EINVAL; gpa |= eaddr & ((1ul << offset) - 1); for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) if (offset == mmu_psize_defs[ps].shift) break; gpte->page_size = ps; gpte->page_shift = offset; gpte->eaddr = eaddr; gpte->raddr = gpa; /* Work out permissions */ gpte->may_read = !!(pte & _PAGE_READ); gpte->may_write = !!(pte & _PAGE_WRITE); gpte->may_execute = !!(pte & _PAGE_EXEC); gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY); if (pte_ret_p) *pte_ret_p = pte; return 0; } /* * Used to walk a partition or process table radix tree in guest memory * Note: We exploit the fact that a partition table and a process * table have the same layout, a partition-scoped page table and a * process-scoped page table have the same layout, and the 2nd * doubleword of a partition table entry has the same layout as * the PTCR register. */ int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *gpte, u64 table, int table_index, u64 *pte_ret_p) { struct kvm *kvm = vcpu->kvm; int ret; unsigned long size, ptbl, root; struct prtb_entry entry; if ((table & PRTS_MASK) > 24) return -EINVAL; size = 1ul << ((table & PRTS_MASK) + 12); /* Is the table big enough to contain this entry? */ if ((table_index * sizeof(entry)) >= size) return -EINVAL; /* Read the table to find the root of the radix tree */ ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry)); kvm_vcpu_srcu_read_lock(vcpu); ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry)); kvm_vcpu_srcu_read_unlock(vcpu); if (ret) return ret; /* Root is stored in the first double word */ root = be64_to_cpu(entry.prtb0); return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p); } int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *gpte, bool data, bool iswrite) { u32 pid; u64 pte; int ret; /* Work out effective PID */ switch (eaddr >> 62) { case 0: pid = vcpu->arch.pid; break; case 3: pid = 0; break; default: return -EINVAL; } ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte, vcpu->kvm->arch.process_table, pid, &pte); if (ret) return ret; /* Check privilege (applies only to process scoped translations) */ if (kvmppc_get_msr(vcpu) & MSR_PR) { if (pte & _PAGE_PRIVILEGED) { gpte->may_read = 0; gpte->may_write = 0; gpte->may_execute = 0; } } else { if (!(pte & _PAGE_PRIVILEGED)) { /* Check AMR/IAMR to see if strict mode is in force */ if (kvmppc_get_amr_hv(vcpu) & (1ul << 62)) gpte->may_read = 0; if (kvmppc_get_amr_hv(vcpu) & (1ul << 63)) gpte->may_write = 0; if (vcpu->arch.iamr & (1ul << 62)) gpte->may_execute = 0; } } return 0; } void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, unsigned int pshift, unsigned int lpid) { unsigned long psize = PAGE_SIZE; int psi; long rc; unsigned long rb; if (pshift) psize = 1UL << pshift; else pshift = PAGE_SHIFT; addr &= ~(psize - 1); if (!kvmhv_on_pseries()) { radix__flush_tlb_lpid_page(lpid, addr, psize); return; } psi = shift_to_mmu_psize(pshift); if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) { rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58)); rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1), lpid, rb); } else { rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU, H_RPTI_TYPE_NESTED | H_RPTI_TYPE_TLB, psize_to_rpti_pgsize(psi), addr, addr + psize); } if (rc) pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc); } static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid) { long rc; if (!kvmhv_on_pseries()) { radix__flush_pwc_lpid(lpid); return; } if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1), lpid, TLBIEL_INVAL_SET_LPID); else rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU, H_RPTI_TYPE_NESTED | H_RPTI_TYPE_PWC, H_RPTI_PAGE_ALL, 0, -1UL); if (rc) pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc); } static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, unsigned long clr, unsigned long set, unsigned long addr, unsigned int shift) { return __radix_pte_update(ptep, clr, set); } static void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, pte_t *ptep, pte_t pte) { radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); } static struct kmem_cache *kvm_pte_cache; static struct kmem_cache *kvm_pmd_cache; static pte_t *kvmppc_pte_alloc(void) { pte_t *pte; pte = kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); /* pmd_populate() will only reference _pa(pte). */ kmemleak_ignore(pte); return pte; } static void kvmppc_pte_free(pte_t *ptep) { kmem_cache_free(kvm_pte_cache, ptep); } static pmd_t *kvmppc_pmd_alloc(void) { pmd_t *pmd; pmd = kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL); /* pud_populate() will only reference _pa(pmd). */ kmemleak_ignore(pmd); return pmd; } static void kvmppc_pmd_free(pmd_t *pmdp) { kmem_cache_free(kvm_pmd_cache, pmdp); } /* Called with kvm->mmu_lock held */ void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa, unsigned int shift, const struct kvm_memory_slot *memslot, unsigned int lpid) { unsigned long old; unsigned long gfn = gpa >> PAGE_SHIFT; unsigned long page_size = PAGE_SIZE; unsigned long hpa; old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift); kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); /* The following only applies to L1 entries */ if (lpid != kvm->arch.lpid) return; if (!memslot) { memslot = gfn_to_memslot(kvm, gfn); if (!memslot) return; } if (shift) { /* 1GB or 2MB page */ page_size = 1ul << shift; if (shift == PMD_SHIFT) kvm->stat.num_2M_pages--; else if (shift == PUD_SHIFT) kvm->stat.num_1G_pages--; } gpa &= ~(page_size - 1); hpa = old & PTE_RPN_MASK; kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size); if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) kvmppc_update_dirty_map(memslot, gfn, page_size); } /* * kvmppc_free_p?d are used to free existing page tables, and recursively * descend and clear and free children. * Callers are responsible for flushing the PWC. * * When page tables are being unmapped/freed as part of page fault path * (full == false), valid ptes are generally not expected; however, there * is one situation where they arise, which is when dirty page logging is * turned off for a memslot while the VM is running. The new memslot * becomes visible to page faults before the memslot commit function * gets to flush the memslot, which can lead to a 2MB page mapping being * installed for a guest physical address where there are already 64kB * (or 4kB) mappings (of sub-pages of the same 2MB page). */ static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full, unsigned int lpid) { if (full) { memset(pte, 0, sizeof(long) << RADIX_PTE_INDEX_SIZE); } else { pte_t *p = pte; unsigned long it; for (it = 0; it < PTRS_PER_PTE; ++it, ++p) { if (pte_val(*p) == 0) continue; kvmppc_unmap_pte(kvm, p, pte_pfn(*p) << PAGE_SHIFT, PAGE_SHIFT, NULL, lpid); } } kvmppc_pte_free(pte); } static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full, unsigned int lpid) { unsigned long im; pmd_t *p = pmd; for (im = 0; im < PTRS_PER_PMD; ++im, ++p) { if (!pmd_present(*p)) continue; if (pmd_is_leaf(*p)) { if (full) { pmd_clear(p); } else { WARN_ON_ONCE(1); kvmppc_unmap_pte(kvm, (pte_t *)p, pte_pfn(*(pte_t *)p) << PAGE_SHIFT, PMD_SHIFT, NULL, lpid); } } else { pte_t *pte; pte = pte_offset_kernel(p, 0); kvmppc_unmap_free_pte(kvm, pte, full, lpid); pmd_clear(p); } } kvmppc_pmd_free(pmd); } static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud, unsigned int lpid) { unsigned long iu; pud_t *p = pud; for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) { if (!pud_present(*p)) continue; if (pud_is_leaf(*p)) { pud_clear(p); } else { pmd_t *pmd; pmd = pmd_offset(p, 0); kvmppc_unmap_free_pmd(kvm, pmd, true, lpid); pud_clear(p); } } pud_free(kvm->mm, pud); } void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid) { unsigned long ig; for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { p4d_t *p4d = p4d_offset(pgd, 0); pud_t *pud; if (!p4d_present(*p4d)) continue; pud = pud_offset(p4d, 0); kvmppc_unmap_free_pud(kvm, pud, lpid); p4d_clear(p4d); } } void kvmppc_free_radix(struct kvm *kvm) { if (kvm->arch.pgtable) { kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable, kvm->arch.lpid); pgd_free(kvm->mm, kvm->arch.pgtable); kvm->arch.pgtable = NULL; } } static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, unsigned long gpa, unsigned int lpid) { pte_t *pte = pte_offset_kernel(pmd, 0); /* * Clearing the pmd entry then flushing the PWC ensures that the pte * page no longer be cached by the MMU, so can be freed without * flushing the PWC again. */ pmd_clear(pmd); kvmppc_radix_flush_pwc(kvm, lpid); kvmppc_unmap_free_pte(kvm, pte, false, lpid); } static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, unsigned long gpa, unsigned int lpid) { pmd_t *pmd = pmd_offset(pud, 0); /* * Clearing the pud entry then flushing the PWC ensures that the pmd * page and any children pte pages will no longer be cached by the MMU, * so can be freed without flushing the PWC again. */ pud_clear(pud); kvmppc_radix_flush_pwc(kvm, lpid); kvmppc_unmap_free_pmd(kvm, pmd, false, lpid); } /* * There are a number of bits which may differ between different faults to * the same partition scope entry. RC bits, in the course of cleaning and * aging. And the write bit can change, either the access could have been * upgraded, or a read fault could happen concurrently with a write fault * that sets those bits first. */ #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)) int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, unsigned long gpa, unsigned int level, unsigned long mmu_seq, unsigned int lpid, unsigned long *rmapp, struct rmap_nested **n_rmap) { pgd_t *pgd; p4d_t *p4d; pud_t *pud, *new_pud = NULL; pmd_t *pmd, *new_pmd = NULL; pte_t *ptep, *new_ptep = NULL; int ret; /* Traverse the guest's 2nd-level tree, allocate new levels needed */ pgd = pgtable + pgd_index(gpa); p4d = p4d_offset(pgd, gpa); pud = NULL; if (p4d_present(*p4d)) pud = pud_offset(p4d, gpa); else new_pud = pud_alloc_one(kvm->mm, gpa); pmd = NULL; if (pud && pud_present(*pud) && !pud_is_leaf(*pud)) pmd = pmd_offset(pud, gpa); else if (level <= 1) new_pmd = kvmppc_pmd_alloc(); if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd))) new_ptep = kvmppc_pte_alloc(); /* Check if we might have been invalidated; let the guest retry if so */ spin_lock(&kvm->mmu_lock); ret = -EAGAIN; if (mmu_invalidate_retry(kvm, mmu_seq)) goto out_unlock; /* Now traverse again under the lock and change the tree */ ret = -ENOMEM; if (p4d_none(*p4d)) { if (!new_pud) goto out_unlock; p4d_populate(kvm->mm, p4d, new_pud); new_pud = NULL; } pud = pud_offset(p4d, gpa); if (pud_is_leaf(*pud)) { unsigned long hgpa = gpa & PUD_MASK; /* Check if we raced and someone else has set the same thing */ if (level == 2) { if (pud_raw(*pud) == pte_raw(pte)) { ret = 0; goto out_unlock; } /* Valid 1GB page here already, add our extra bits */ WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) & PTE_BITS_MUST_MATCH); kvmppc_radix_update_pte(kvm, (pte_t *)pud, 0, pte_val(pte), hgpa, PUD_SHIFT); ret = 0; goto out_unlock; } /* * If we raced with another CPU which has just put * a 1GB pte in after we saw a pmd page, try again. */ if (!new_pmd) { ret = -EAGAIN; goto out_unlock; } /* Valid 1GB page here already, remove it */ kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL, lpid); } if (level == 2) { if (!pud_none(*pud)) { /* * There's a page table page here, but we wanted to * install a large page, so remove and free the page * table page. */ kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid); } kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte); if (rmapp && n_rmap) kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); ret = 0; goto out_unlock; } if (pud_none(*pud)) { if (!new_pmd) goto out_unlock; pud_populate(kvm->mm, pud, new_pmd); new_pmd = NULL; } pmd = pmd_offset(pud, gpa); if (pmd_is_leaf(*pmd)) { unsigned long lgpa = gpa & PMD_MASK; /* Check if we raced and someone else has set the same thing */ if (level == 1) { if (pmd_raw(*pmd) == pte_raw(pte)) { ret = 0; goto out_unlock; } /* Valid 2MB page here already, add our extra bits */ WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) & PTE_BITS_MUST_MATCH); kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd), 0, pte_val(pte), lgpa, PMD_SHIFT); ret = 0; goto out_unlock; } /* * If we raced with another CPU which has just put * a 2MB pte in after we saw a pte page, try again. */ if (!new_ptep) { ret = -EAGAIN; goto out_unlock; } /* Valid 2MB page here already, remove it */ kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL, lpid); } if (level == 1) { if (!pmd_none(*pmd)) { /* * There's a page table page here, but we wanted to * install a large page, so remove and free the page * table page. */ kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid); } kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); if (rmapp && n_rmap) kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); ret = 0; goto out_unlock; } if (pmd_none(*pmd)) { if (!new_ptep) goto out_unlock; pmd_populate(kvm->mm, pmd, new_ptep); new_ptep = NULL; } ptep = pte_offset_kernel(pmd, gpa); if (pte_present(*ptep)) { /* Check if someone else set the same thing */ if (pte_raw(*ptep) == pte_raw(pte)) { ret = 0; goto out_unlock; } /* Valid page here already, add our extra bits */ WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) & PTE_BITS_MUST_MATCH); kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0); ret = 0; goto out_unlock; } kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); if (rmapp && n_rmap) kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); ret = 0; out_unlock: spin_unlock(&kvm->mmu_lock); if (new_pud) pud_free(kvm->mm, new_pud); if (new_pmd) kvmppc_pmd_free(new_pmd); if (new_ptep) kvmppc_pte_free(new_ptep); return ret; } bool kvmppc_hv_handle_set_rc(struct kvm *kvm, bool nested, bool writing, unsigned long gpa, unsigned int lpid) { unsigned long pgflags; unsigned int shift; pte_t *ptep; /* * Need to set an R or C bit in the 2nd-level tables; * since we are just helping out the hardware here, * it is sufficient to do what the hardware does. */ pgflags = _PAGE_ACCESSED; if (writing) pgflags |= _PAGE_DIRTY; if (nested) ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); else ptep = find_kvm_secondary_pte(kvm, gpa, &shift); if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) { kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift); return true; } return false; } int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, unsigned long gpa, struct kvm_memory_slot *memslot, bool writing, bool kvm_ro, pte_t *inserted_pte, unsigned int *levelp) { struct kvm *kvm = vcpu->kvm; struct page *page = NULL; unsigned long mmu_seq; unsigned long hva, gfn = gpa >> PAGE_SHIFT; bool upgrade_write = false; bool *upgrade_p = &upgrade_write; pte_t pte, *ptep; unsigned int shift, level; int ret; bool large_enable; /* used to check for invalidations in progress */ mmu_seq = kvm->mmu_invalidate_seq; smp_rmb(); /* * Do a fast check first, since __gfn_to_pfn_memslot doesn't * do it with !atomic && !async, which is how we call it. * We always ask for write permission since the common case * is that the page is writable. */ hva = gfn_to_hva_memslot(memslot, gfn); if (!kvm_ro && get_user_page_fast_only(hva, FOLL_WRITE, &page)) { upgrade_write = true; } else { unsigned long pfn; /* Call KVM generic code to do the slow-path check */ pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, writing, upgrade_p, NULL); if (is_error_noslot_pfn(pfn)) return -EFAULT; page = NULL; if (pfn_valid(pfn)) { page = pfn_to_page(pfn); if (PageReserved(page)) page = NULL; } } /* * Read the PTE from the process' radix tree and use that * so we get the shift and attribute bits. */ spin_lock(&kvm->mmu_lock); ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); pte = __pte(0); if (ptep) pte = READ_ONCE(*ptep); spin_unlock(&kvm->mmu_lock); /* * If the PTE disappeared temporarily due to a THP * collapse, just return and let the guest try again. */ if (!pte_present(pte)) { if (page) put_page(page); return RESUME_GUEST; } /* If we're logging dirty pages, always map single pages */ large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES); /* Get pte level from shift/size */ if (large_enable && shift == PUD_SHIFT && (gpa & (PUD_SIZE - PAGE_SIZE)) == (hva & (PUD_SIZE - PAGE_SIZE))) { level = 2; } else if (large_enable && shift == PMD_SHIFT && (gpa & (PMD_SIZE - PAGE_SIZE)) == (hva & (PMD_SIZE - PAGE_SIZE))) { level = 1; } else { level = 0; if (shift > PAGE_SHIFT) { /* * If the pte maps more than one page, bring over * bits from the virtual address to get the real * address of the specific single page we want. */ unsigned long rpnmask = (1ul << shift) - PAGE_SIZE; pte = __pte(pte_val(pte) | (hva & rpnmask)); } } pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED); if (writing || upgrade_write) { if (pte_val(pte) & _PAGE_WRITE) pte = __pte(pte_val(pte) | _PAGE_DIRTY); } else { pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY)); } /* Allocate space in the tree and write the PTE */ ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level, mmu_seq, kvm->arch.lpid, NULL, NULL); if (inserted_pte) *inserted_pte = pte; if (levelp) *levelp = level; if (page) { if (!ret && (pte_val(pte) & _PAGE_WRITE)) set_page_dirty_lock(page); put_page(page); } /* Increment number of large pages if we (successfully) inserted one */ if (!ret) { if (level == 1) kvm->stat.num_2M_pages++; else if (level == 2) kvm->stat.num_1G_pages++; } return ret; } int kvmppc_book3s_radix_page_fault(struct kvm_vcpu *vcpu, unsigned long ea, unsigned long dsisr) { struct kvm *kvm = vcpu->kvm; unsigned long gpa, gfn; struct kvm_memory_slot *memslot; long ret; bool writing = !!(dsisr & DSISR_ISSTORE); bool kvm_ro = false; /* Check for unusual errors */ if (dsisr & DSISR_UNSUPP_MMU) { pr_err("KVM: Got unsupported MMU fault\n"); return -EFAULT; } if (dsisr & DSISR_BADACCESS) { /* Reflect to the guest as DSI */ pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); kvmppc_core_queue_data_storage(vcpu, kvmppc_get_msr(vcpu) & SRR1_PREFIXED, ea, dsisr); return RESUME_GUEST; } /* Translate the logical address */ gpa = vcpu->arch.fault_gpa & ~0xfffUL; gpa &= ~0xF000000000000000ul; gfn = gpa >> PAGE_SHIFT; if (!(dsisr & DSISR_PRTABLE_FAULT)) gpa |= ea & 0xfff; if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) return kvmppc_send_page_to_uv(kvm, gfn); /* Get the corresponding memslot */ memslot = gfn_to_memslot(kvm, gfn); /* No memslot means it's an emulated MMIO region */ if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | DSISR_SET_RC)) { /* * Bad address in guest page table tree, or other * unusual error - reflect it to the guest as DSI. */ kvmppc_core_queue_data_storage(vcpu, kvmppc_get_msr(vcpu) & SRR1_PREFIXED, ea, dsisr); return RESUME_GUEST; } return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); } if (memslot->flags & KVM_MEM_READONLY) { if (writing) { /* give the guest a DSI */ kvmppc_core_queue_data_storage(vcpu, kvmppc_get_msr(vcpu) & SRR1_PREFIXED, ea, DSISR_ISSTORE | DSISR_PROTFAULT); return RESUME_GUEST; } kvm_ro = true; } /* Failed to set the reference/change bits */ if (dsisr & DSISR_SET_RC) { spin_lock(&kvm->mmu_lock); if (kvmppc_hv_handle_set_rc(kvm, false, writing, gpa, kvm->arch.lpid)) dsisr &= ~DSISR_SET_RC; spin_unlock(&kvm->mmu_lock); if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | DSISR_PROTFAULT | DSISR_SET_RC))) return RESUME_GUEST; } /* Try to insert a pte */ ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing, kvm_ro, NULL, NULL); if (ret == 0 || ret == -EAGAIN) ret = RESUME_GUEST; return ret; } /* Called with kvm->mmu_lock held */ void kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn) { pte_t *ptep; unsigned long gpa = gfn << PAGE_SHIFT; unsigned int shift; if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) { uv_page_inval(kvm->arch.lpid, gpa, PAGE_SHIFT); return; } ptep = find_kvm_secondary_pte(kvm, gpa, &shift); if (ptep && pte_present(*ptep)) kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, kvm->arch.lpid); } /* Called with kvm->mmu_lock held */ bool kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn) { pte_t *ptep; unsigned long gpa = gfn << PAGE_SHIFT; unsigned int shift; bool ref = false; unsigned long old, *rmapp; if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) return ref; ptep = find_kvm_secondary_pte(kvm, gpa, &shift); if (ptep && pte_present(*ptep) && pte_young(*ptep)) { old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, gpa, shift); /* XXX need to flush tlb here? */ /* Also clear bit in ptes in shadow pgtable for nested guests */ rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0, old & PTE_RPN_MASK, 1UL << shift); ref = true; } return ref; } /* Called with kvm->mmu_lock held */ bool kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn) { pte_t *ptep; unsigned long gpa = gfn << PAGE_SHIFT; unsigned int shift; bool ref = false; if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) return ref; ptep = find_kvm_secondary_pte(kvm, gpa, &shift); if (ptep && pte_present(*ptep) && pte_young(*ptep)) ref = true; return ref; } /* Returns the number of PAGE_SIZE pages that are dirty */ static int kvm_radix_test_clear_dirty(struct kvm *kvm, struct kvm_memory_slot *memslot, int pagenum) { unsigned long gfn = memslot->base_gfn + pagenum; unsigned long gpa = gfn << PAGE_SHIFT; pte_t *ptep, pte; unsigned int shift; int ret = 0; unsigned long old, *rmapp; if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) return ret; /* * For performance reasons we don't hold kvm->mmu_lock while walking the * partition scoped table. */ ptep = find_kvm_secondary_pte_unlocked(kvm, gpa, &shift); if (!ptep) return 0; pte = READ_ONCE(*ptep); if (pte_present(pte) && pte_dirty(pte)) { spin_lock(&kvm->mmu_lock); /* * Recheck the pte again */ if (pte_val(pte) != pte_val(*ptep)) { /* * We have KVM_MEM_LOG_DIRTY_PAGES enabled. Hence we can * only find PAGE_SIZE pte entries here. We can continue * to use the pte addr returned by above page table * walk. */ if (!pte_present(*ptep) || !pte_dirty(*ptep)) { spin_unlock(&kvm->mmu_lock); return 0; } } ret = 1; VM_BUG_ON(shift); old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, gpa, shift); kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid); /* Also clear bit in ptes in shadow pgtable for nested guests */ rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0, old & PTE_RPN_MASK, 1UL << shift); spin_unlock(&kvm->mmu_lock); } return ret; } long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long *map) { unsigned long i, j; int npages; for (i = 0; i < memslot->npages; i = j) { npages = kvm_radix_test_clear_dirty(kvm, memslot, i); /* * Note that if npages > 0 then i must be a multiple of npages, * since huge pages are only used to back the guest at guest * real addresses that are a multiple of their size. * Since we have at most one PTE covering any given guest * real address, if npages > 1 we can skip to i + npages. */ j = i + 1; if (npages) { set_dirty_bits(map, i, npages); j = i + npages; } } return 0; } void kvmppc_radix_flush_memslot(struct kvm *kvm, const struct kvm_memory_slot *memslot) { unsigned long n; pte_t *ptep; unsigned long gpa; unsigned int shift; if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START) kvmppc_uvmem_drop_pages(memslot, kvm, true); if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) return; gpa = memslot->base_gfn << PAGE_SHIFT; spin_lock(&kvm->mmu_lock); for (n = memslot->npages; n; --n) { ptep = find_kvm_secondary_pte(kvm, gpa, &shift); if (ptep && pte_present(*ptep)) kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, kvm->arch.lpid); gpa += PAGE_SIZE; } /* * Increase the mmu notifier sequence number to prevent any page * fault that read the memslot earlier from writing a PTE. */ kvm->mmu_invalidate_seq++; spin_unlock(&kvm->mmu_lock); } static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, int psize, int *indexp) { if (!mmu_psize_defs[psize].shift) return; info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | (mmu_psize_defs[psize].ap << 29); ++(*indexp); } int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) { int i; if (!radix_enabled()) return -EINVAL; memset(info, 0, sizeof(*info)); /* 4k page size */ info->geometries[0].page_shift = 12; info->geometries[0].level_bits[0] = 9; for (i = 1; i < 4; ++i) info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; /* 64k page size */ info->geometries[1].page_shift = 16; for (i = 0; i < 4; ++i) info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; i = 0; add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); return 0; } int kvmppc_init_vm_radix(struct kvm *kvm) { kvm->arch.pgtable = pgd_alloc(kvm->mm); if (!kvm->arch.pgtable) return -ENOMEM; return 0; } static void pte_ctor(void *addr) { memset(addr, 0, RADIX_PTE_TABLE_SIZE); } static void pmd_ctor(void *addr) { memset(addr, 0, RADIX_PMD_TABLE_SIZE); } struct debugfs_radix_state { struct kvm *kvm; struct mutex mutex; unsigned long gpa; int lpid; int chars_left; int buf_index; char buf[128]; u8 hdr; }; static int debugfs_radix_open(struct inode *inode, struct file *file) { struct kvm *kvm = inode->i_private; struct debugfs_radix_state *p; p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; kvm_get_kvm(kvm); p->kvm = kvm; mutex_init(&p->mutex); file->private_data = p; return nonseekable_open(inode, file); } static int debugfs_radix_release(struct inode *inode, struct file *file) { struct debugfs_radix_state *p = file->private_data; kvm_put_kvm(p->kvm); kfree(p); return 0; } static ssize_t debugfs_radix_read(struct file *file, char __user *buf, size_t len, loff_t *ppos) { struct debugfs_radix_state *p = file->private_data; ssize_t ret, r; unsigned long n; struct kvm *kvm; unsigned long gpa; pgd_t *pgt; struct kvm_nested_guest *nested; pgd_t *pgdp; p4d_t p4d, *p4dp; pud_t pud, *pudp; pmd_t pmd, *pmdp; pte_t *ptep; int shift; unsigned long pte; kvm = p->kvm; if (!kvm_is_radix(kvm)) return 0; ret = mutex_lock_interruptible(&p->mutex); if (ret) return ret; if (p->chars_left) { n = p->chars_left; if (n > len) n = len; r = copy_to_user(buf, p->buf + p->buf_index, n); n -= r; p->chars_left -= n; p->buf_index += n; buf += n; len -= n; ret = n; if (r) { if (!n) ret = -EFAULT; goto out; } } gpa = p->gpa; nested = NULL; pgt = NULL; while (len != 0 && p->lpid >= 0) { if (gpa >= RADIX_PGTABLE_RANGE) { gpa = 0; pgt = NULL; if (nested) { kvmhv_put_nested(nested); nested = NULL; } p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid); p->hdr = 0; if (p->lpid < 0) break; } if (!pgt) { if (p->lpid == 0) { pgt = kvm->arch.pgtable; } else { nested = kvmhv_get_nested(kvm, p->lpid, false); if (!nested) { gpa = RADIX_PGTABLE_RANGE; continue; } pgt = nested->shadow_pgtable; } } n = 0; if (!p->hdr) { if (p->lpid > 0) n = scnprintf(p->buf, sizeof(p->buf), "\nNested LPID %d: ", p->lpid); n += scnprintf(p->buf + n, sizeof(p->buf) - n, "pgdir: %lx\n", (unsigned long)pgt); p->hdr = 1; goto copy; } pgdp = pgt + pgd_index(gpa); p4dp = p4d_offset(pgdp, gpa); p4d = READ_ONCE(*p4dp); if (!(p4d_val(p4d) & _PAGE_PRESENT)) { gpa = (gpa & P4D_MASK) + P4D_SIZE; continue; } pudp = pud_offset(&p4d, gpa); pud = READ_ONCE(*pudp); if (!(pud_val(pud) & _PAGE_PRESENT)) { gpa = (gpa & PUD_MASK) + PUD_SIZE; continue; } if (pud_val(pud) & _PAGE_PTE) { pte = pud_val(pud); shift = PUD_SHIFT; goto leaf; } pmdp = pmd_offset(&pud, gpa); pmd = READ_ONCE(*pmdp); if (!(pmd_val(pmd) & _PAGE_PRESENT)) { gpa = (gpa & PMD_MASK) + PMD_SIZE; continue; } if (pmd_val(pmd) & _PAGE_PTE) { pte = pmd_val(pmd); shift = PMD_SHIFT; goto leaf; } ptep = pte_offset_kernel(&pmd, gpa); pte = pte_val(READ_ONCE(*ptep)); if (!(pte & _PAGE_PRESENT)) { gpa += PAGE_SIZE; continue; } shift = PAGE_SHIFT; leaf: n = scnprintf(p->buf, sizeof(p->buf), " %lx: %lx %d\n", gpa, pte, shift); gpa += 1ul << shift; copy: p->chars_left = n; if (n > len) n = len; r = copy_to_user(buf, p->buf, n); n -= r; p->chars_left -= n; p->buf_index = n; buf += n; len -= n; ret += n; if (r) { if (!ret) ret = -EFAULT; break; } } p->gpa = gpa; if (nested) kvmhv_put_nested(nested); out: mutex_unlock(&p->mutex); return ret; } static ssize_t debugfs_radix_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos) { return -EACCES; } static const struct file_operations debugfs_radix_fops = { .owner = THIS_MODULE, .open = debugfs_radix_open, .release = debugfs_radix_release, .read = debugfs_radix_read, .write = debugfs_radix_write, .llseek = generic_file_llseek, }; void kvmhv_radix_debugfs_init(struct kvm *kvm) { debugfs_create_file("radix", 0400, kvm->debugfs_dentry, kvm, &debugfs_radix_fops); } int kvmppc_radix_init(void) { unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE; kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); if (!kvm_pte_cache) return -ENOMEM; size = sizeof(void *) << RADIX_PMD_INDEX_SIZE; kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor); if (!kvm_pmd_cache) { kmem_cache_destroy(kvm_pte_cache); return -ENOMEM; } return 0; } void kvmppc_radix_exit(void) { kmem_cache_destroy(kvm_pte_cache); kmem_cache_destroy(kvm_pmd_cache); } |