Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | // SPDX-License-Identifier: GPL-2.0 /* * Opening fs-verity files * * Copyright 2019 Google LLC */ #include "fsverity_private.h" #include <linux/mm.h> #include <linux/slab.h> static struct kmem_cache *fsverity_info_cachep; /** * fsverity_init_merkle_tree_params() - initialize Merkle tree parameters * @params: the parameters struct to initialize * @inode: the inode for which the Merkle tree is being built * @hash_algorithm: number of hash algorithm to use * @log_blocksize: log base 2 of block size to use * @salt: pointer to salt (optional) * @salt_size: size of salt, possibly 0 * * Validate the hash algorithm and block size, then compute the tree topology * (num levels, num blocks in each level, etc.) and initialize @params. * * Return: 0 on success, -errno on failure */ int fsverity_init_merkle_tree_params(struct merkle_tree_params *params, const struct inode *inode, unsigned int hash_algorithm, unsigned int log_blocksize, const u8 *salt, size_t salt_size) { const struct fsverity_hash_alg *hash_alg; int err; u64 blocks; u64 blocks_in_level[FS_VERITY_MAX_LEVELS]; u64 offset; int level; memset(params, 0, sizeof(*params)); hash_alg = fsverity_get_hash_alg(inode, hash_algorithm); if (IS_ERR(hash_alg)) return PTR_ERR(hash_alg); params->hash_alg = hash_alg; params->digest_size = hash_alg->digest_size; params->hashstate = fsverity_prepare_hash_state(hash_alg, salt, salt_size); if (IS_ERR(params->hashstate)) { err = PTR_ERR(params->hashstate); params->hashstate = NULL; fsverity_err(inode, "Error %d preparing hash state", err); goto out_err; } /* * fs/verity/ directly assumes that the Merkle tree block size is a * power of 2 less than or equal to PAGE_SIZE. Another restriction * arises from the interaction between fs/verity/ and the filesystems * themselves: filesystems expect to be able to verify a single * filesystem block of data at a time. Therefore, the Merkle tree block * size must also be less than or equal to the filesystem block size. * * The above are the only hard limitations, so in theory the Merkle tree * block size could be as small as twice the digest size. However, * that's not useful, and it would result in some unusually deep and * large Merkle trees. So we currently require that the Merkle tree * block size be at least 1024 bytes. That's small enough to test the * sub-page block case on systems with 4K pages, but not too small. */ if (log_blocksize < 10 || log_blocksize > PAGE_SHIFT || log_blocksize > inode->i_blkbits) { fsverity_warn(inode, "Unsupported log_blocksize: %u", log_blocksize); err = -EINVAL; goto out_err; } params->log_blocksize = log_blocksize; params->block_size = 1 << log_blocksize; params->log_blocks_per_page = PAGE_SHIFT - log_blocksize; params->blocks_per_page = 1 << params->log_blocks_per_page; if (WARN_ON_ONCE(!is_power_of_2(params->digest_size))) { err = -EINVAL; goto out_err; } if (params->block_size < 2 * params->digest_size) { fsverity_warn(inode, "Merkle tree block size (%u) too small for hash algorithm \"%s\"", params->block_size, hash_alg->name); err = -EINVAL; goto out_err; } params->log_digestsize = ilog2(params->digest_size); params->log_arity = log_blocksize - params->log_digestsize; params->hashes_per_block = 1 << params->log_arity; /* * Compute the number of levels in the Merkle tree and create a map from * level to the starting block of that level. Level 'num_levels - 1' is * the root and is stored first. Level 0 is the level directly "above" * the data blocks and is stored last. */ /* Compute number of levels and the number of blocks in each level */ blocks = ((u64)inode->i_size + params->block_size - 1) >> log_blocksize; while (blocks > 1) { if (params->num_levels >= FS_VERITY_MAX_LEVELS) { fsverity_err(inode, "Too many levels in Merkle tree"); err = -EFBIG; goto out_err; } blocks = (blocks + params->hashes_per_block - 1) >> params->log_arity; blocks_in_level[params->num_levels++] = blocks; } /* Compute the starting block of each level */ offset = 0; for (level = (int)params->num_levels - 1; level >= 0; level--) { params->level_start[level] = offset; offset += blocks_in_level[level]; } /* * With block_size != PAGE_SIZE, an in-memory bitmap will need to be * allocated to track the "verified" status of hash blocks. Don't allow * this bitmap to get too large. For now, limit it to 1 MiB, which * limits the file size to about 4.4 TB with SHA-256 and 4K blocks. * * Together with the fact that the data, and thus also the Merkle tree, * cannot have more than ULONG_MAX pages, this implies that hash block * indices can always fit in an 'unsigned long'. But to be safe, we * explicitly check for that too. Note, this is only for hash block * indices; data block indices might not fit in an 'unsigned long'. */ if ((params->block_size != PAGE_SIZE && offset > 1 << 23) || offset > ULONG_MAX) { fsverity_err(inode, "Too many blocks in Merkle tree"); err = -EFBIG; goto out_err; } params->tree_size = offset << log_blocksize; params->tree_pages = PAGE_ALIGN(params->tree_size) >> PAGE_SHIFT; return 0; out_err: kfree(params->hashstate); memset(params, 0, sizeof(*params)); return err; } /* * Compute the file digest by hashing the fsverity_descriptor excluding the * builtin signature and with the sig_size field set to 0. */ static int compute_file_digest(const struct fsverity_hash_alg *hash_alg, struct fsverity_descriptor *desc, u8 *file_digest) { __le32 sig_size = desc->sig_size; int err; desc->sig_size = 0; err = fsverity_hash_buffer(hash_alg, desc, sizeof(*desc), file_digest); desc->sig_size = sig_size; return err; } /* * Create a new fsverity_info from the given fsverity_descriptor (with optional * appended builtin signature), and check the signature if present. The * fsverity_descriptor must have already undergone basic validation. */ struct fsverity_info *fsverity_create_info(const struct inode *inode, struct fsverity_descriptor *desc) { struct fsverity_info *vi; int err; vi = kmem_cache_zalloc(fsverity_info_cachep, GFP_KERNEL); if (!vi) return ERR_PTR(-ENOMEM); vi->inode = inode; err = fsverity_init_merkle_tree_params(&vi->tree_params, inode, desc->hash_algorithm, desc->log_blocksize, desc->salt, desc->salt_size); if (err) { fsverity_err(inode, "Error %d initializing Merkle tree parameters", err); goto fail; } memcpy(vi->root_hash, desc->root_hash, vi->tree_params.digest_size); err = compute_file_digest(vi->tree_params.hash_alg, desc, vi->file_digest); if (err) { fsverity_err(inode, "Error %d computing file digest", err); goto fail; } err = fsverity_verify_signature(vi, desc->signature, le32_to_cpu(desc->sig_size)); if (err) goto fail; if (vi->tree_params.block_size != PAGE_SIZE) { /* * When the Merkle tree block size and page size differ, we use * a bitmap to keep track of which hash blocks have been * verified. This bitmap must contain one bit per hash block, * including alignment to a page boundary at the end. * * Eventually, to support extremely large files in an efficient * way, it might be necessary to make pages of this bitmap * reclaimable. But for now, simply allocating the whole bitmap * is a simple solution that works well on the files on which * fsverity is realistically used. E.g., with SHA-256 and 4K * blocks, a 100MB file only needs a 24-byte bitmap, and the * bitmap for any file under 17GB fits in a 4K page. */ unsigned long num_bits = vi->tree_params.tree_pages << vi->tree_params.log_blocks_per_page; vi->hash_block_verified = kvcalloc(BITS_TO_LONGS(num_bits), sizeof(unsigned long), GFP_KERNEL); if (!vi->hash_block_verified) { err = -ENOMEM; goto fail; } spin_lock_init(&vi->hash_page_init_lock); } return vi; fail: fsverity_free_info(vi); return ERR_PTR(err); } void fsverity_set_info(struct inode *inode, struct fsverity_info *vi) { /* * Multiple tasks may race to set ->i_verity_info, so use * cmpxchg_release(). This pairs with the smp_load_acquire() in * fsverity_get_info(). I.e., here we publish ->i_verity_info with a * RELEASE barrier so that other tasks can ACQUIRE it. */ if (cmpxchg_release(&inode->i_verity_info, NULL, vi) != NULL) { /* Lost the race, so free the fsverity_info we allocated. */ fsverity_free_info(vi); /* * Afterwards, the caller may access ->i_verity_info directly, * so make sure to ACQUIRE the winning fsverity_info. */ (void)fsverity_get_info(inode); } } void fsverity_free_info(struct fsverity_info *vi) { if (!vi) return; kfree(vi->tree_params.hashstate); kvfree(vi->hash_block_verified); kmem_cache_free(fsverity_info_cachep, vi); } static bool validate_fsverity_descriptor(struct inode *inode, const struct fsverity_descriptor *desc, size_t desc_size) { if (desc_size < sizeof(*desc)) { fsverity_err(inode, "Unrecognized descriptor size: %zu bytes", desc_size); return false; } if (desc->version != 1) { fsverity_err(inode, "Unrecognized descriptor version: %u", desc->version); return false; } if (memchr_inv(desc->__reserved, 0, sizeof(desc->__reserved))) { fsverity_err(inode, "Reserved bits set in descriptor"); return false; } if (desc->salt_size > sizeof(desc->salt)) { fsverity_err(inode, "Invalid salt_size: %u", desc->salt_size); return false; } if (le64_to_cpu(desc->data_size) != inode->i_size) { fsverity_err(inode, "Wrong data_size: %llu (desc) != %lld (inode)", le64_to_cpu(desc->data_size), inode->i_size); return false; } if (le32_to_cpu(desc->sig_size) > desc_size - sizeof(*desc)) { fsverity_err(inode, "Signature overflows verity descriptor"); return false; } return true; } /* * Read the inode's fsverity_descriptor (with optional appended builtin * signature) from the filesystem, and do basic validation of it. */ int fsverity_get_descriptor(struct inode *inode, struct fsverity_descriptor **desc_ret) { int res; struct fsverity_descriptor *desc; res = inode->i_sb->s_vop->get_verity_descriptor(inode, NULL, 0); if (res < 0) { fsverity_err(inode, "Error %d getting verity descriptor size", res); return res; } if (res > FS_VERITY_MAX_DESCRIPTOR_SIZE) { fsverity_err(inode, "Verity descriptor is too large (%d bytes)", res); return -EMSGSIZE; } desc = kmalloc(res, GFP_KERNEL); if (!desc) return -ENOMEM; res = inode->i_sb->s_vop->get_verity_descriptor(inode, desc, res); if (res < 0) { fsverity_err(inode, "Error %d reading verity descriptor", res); kfree(desc); return res; } if (!validate_fsverity_descriptor(inode, desc, res)) { kfree(desc); return -EINVAL; } *desc_ret = desc; return 0; } /* Ensure the inode has an ->i_verity_info */ static int ensure_verity_info(struct inode *inode) { struct fsverity_info *vi = fsverity_get_info(inode); struct fsverity_descriptor *desc; int err; if (vi) return 0; err = fsverity_get_descriptor(inode, &desc); if (err) return err; vi = fsverity_create_info(inode, desc); if (IS_ERR(vi)) { err = PTR_ERR(vi); goto out_free_desc; } fsverity_set_info(inode, vi); err = 0; out_free_desc: kfree(desc); return err; } int __fsverity_file_open(struct inode *inode, struct file *filp) { if (filp->f_mode & FMODE_WRITE) return -EPERM; return ensure_verity_info(inode); } EXPORT_SYMBOL_GPL(__fsverity_file_open); int __fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr) { if (attr->ia_valid & ATTR_SIZE) return -EPERM; return 0; } EXPORT_SYMBOL_GPL(__fsverity_prepare_setattr); void __fsverity_cleanup_inode(struct inode *inode) { fsverity_free_info(inode->i_verity_info); inode->i_verity_info = NULL; } EXPORT_SYMBOL_GPL(__fsverity_cleanup_inode); void __init fsverity_init_info_cache(void) { fsverity_info_cachep = KMEM_CACHE_USERCOPY( fsverity_info, SLAB_RECLAIM_ACCOUNT | SLAB_PANIC, file_digest); } |