Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
// SPDX-License-Identifier: GPL-2.0
/*
 * Arasan NAND Flash Controller Driver
 *
 * Copyright (C) 2014 - 2020 Xilinx, Inc.
 * Author:
 *   Miquel Raynal <miquel.raynal@bootlin.com>
 * Original work (fully rewritten):
 *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
 *   Naga Sureshkumar Relli <nagasure@xilinx.com>
 */

#include <linux/bch.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>

#define PKT_REG				0x00
#define   PKT_SIZE(x)			FIELD_PREP(GENMASK(10, 0), (x))
#define   PKT_STEPS(x)			FIELD_PREP(GENMASK(23, 12), (x))

#define MEM_ADDR1_REG			0x04

#define MEM_ADDR2_REG			0x08
#define   ADDR2_STRENGTH(x)		FIELD_PREP(GENMASK(27, 25), (x))
#define   ADDR2_CS(x)			FIELD_PREP(GENMASK(31, 30), (x))

#define CMD_REG				0x0C
#define   CMD_1(x)			FIELD_PREP(GENMASK(7, 0), (x))
#define   CMD_2(x)			FIELD_PREP(GENMASK(15, 8), (x))
#define   CMD_PAGE_SIZE(x)		FIELD_PREP(GENMASK(25, 23), (x))
#define   CMD_DMA_ENABLE		BIT(27)
#define   CMD_NADDRS(x)			FIELD_PREP(GENMASK(30, 28), (x))
#define   CMD_ECC_ENABLE		BIT(31)

#define PROG_REG			0x10
#define   PROG_PGRD			BIT(0)
#define   PROG_ERASE			BIT(2)
#define   PROG_STATUS			BIT(3)
#define   PROG_PGPROG			BIT(4)
#define   PROG_RDID			BIT(6)
#define   PROG_RDPARAM			BIT(7)
#define   PROG_RST			BIT(8)
#define   PROG_GET_FEATURE		BIT(9)
#define   PROG_SET_FEATURE		BIT(10)
#define   PROG_CHG_RD_COL_ENH		BIT(14)

#define INTR_STS_EN_REG			0x14
#define INTR_SIG_EN_REG			0x18
#define INTR_STS_REG			0x1C
#define   WRITE_READY			BIT(0)
#define   READ_READY			BIT(1)
#define   XFER_COMPLETE			BIT(2)
#define   DMA_BOUNDARY			BIT(6)
#define   EVENT_MASK			GENMASK(7, 0)

#define READY_STS_REG			0x20

#define DMA_ADDR0_REG			0x50
#define DMA_ADDR1_REG			0x24

#define FLASH_STS_REG			0x28

#define TIMING_REG			0x2C
#define   TCCS_TIME_500NS		0
#define   TCCS_TIME_300NS		3
#define   TCCS_TIME_200NS		2
#define   TCCS_TIME_100NS		1
#define   FAST_TCAD			BIT(2)
#define   DQS_BUFF_SEL_IN(x)		FIELD_PREP(GENMASK(6, 3), (x))
#define   DQS_BUFF_SEL_OUT(x)		FIELD_PREP(GENMASK(18, 15), (x))

#define DATA_PORT_REG			0x30

#define ECC_CONF_REG			0x34
#define   ECC_CONF_COL(x)		FIELD_PREP(GENMASK(15, 0), (x))
#define   ECC_CONF_LEN(x)		FIELD_PREP(GENMASK(26, 16), (x))
#define   ECC_CONF_BCH_EN		BIT(27)

#define ECC_ERR_CNT_REG			0x38
#define   GET_PKT_ERR_CNT(x)		FIELD_GET(GENMASK(7, 0), (x))
#define   GET_PAGE_ERR_CNT(x)		FIELD_GET(GENMASK(16, 8), (x))

#define ECC_SP_REG			0x3C
#define   ECC_SP_CMD1(x)		FIELD_PREP(GENMASK(7, 0), (x))
#define   ECC_SP_CMD2(x)		FIELD_PREP(GENMASK(15, 8), (x))
#define   ECC_SP_ADDRS(x)		FIELD_PREP(GENMASK(30, 28), (x))

#define ECC_1ERR_CNT_REG		0x40
#define ECC_2ERR_CNT_REG		0x44

#define DATA_INTERFACE_REG		0x6C
#define   DIFACE_SDR_MODE(x)		FIELD_PREP(GENMASK(2, 0), (x))
#define   DIFACE_DDR_MODE(x)		FIELD_PREP(GENMASK(5, 3), (x))
#define   DIFACE_SDR			0
#define   DIFACE_NVDDR			BIT(9)

#define ANFC_MAX_CS			2
#define ANFC_DFLT_TIMEOUT_US		1000000
#define ANFC_MAX_CHUNK_SIZE		SZ_1M
#define ANFC_MAX_PARAM_SIZE		SZ_4K
#define ANFC_MAX_STEPS			SZ_2K
#define ANFC_MAX_PKT_SIZE		(SZ_2K - 1)
#define ANFC_MAX_ADDR_CYC		5U
#define ANFC_RSVD_ECC_BYTES		21

#define ANFC_XLNX_SDR_DFLT_CORE_CLK	100000000
#define ANFC_XLNX_SDR_HS_CORE_CLK	80000000

static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL};

/**
 * struct anfc_op - Defines how to execute an operation
 * @pkt_reg: Packet register
 * @addr1_reg: Memory address 1 register
 * @addr2_reg: Memory address 2 register
 * @cmd_reg: Command register
 * @prog_reg: Program register
 * @steps: Number of "packets" to read/write
 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
 * @len: Data transfer length
 * @read: Data transfer direction from the controller point of view
 * @buf: Data buffer
 */
struct anfc_op {
	u32 pkt_reg;
	u32 addr1_reg;
	u32 addr2_reg;
	u32 cmd_reg;
	u32 prog_reg;
	int steps;
	unsigned int rdy_timeout_ms;
	unsigned int len;
	bool read;
	u8 *buf;
};

/**
 * struct anand - Defines the NAND chip related information
 * @node:		Used to store NAND chips into a list
 * @chip:		NAND chip information structure
 * @rb:			Ready-busy line
 * @page_sz:		Register value of the page_sz field to use
 * @clk:		Expected clock frequency to use
 * @data_iface:		Data interface timing mode to use
 * @timings:		NV-DDR specific timings to use
 * @ecc_conf:		Hardware ECC configuration value
 * @strength:		Register value of the ECC strength
 * @raddr_cycles:	Row address cycle information
 * @caddr_cycles:	Column address cycle information
 * @ecc_bits:		Exact number of ECC bits per syndrome
 * @ecc_total:		Total number of ECC bytes
 * @errloc:		Array of errors located with soft BCH
 * @hw_ecc:		Buffer to store syndromes computed by hardware
 * @bch:		BCH structure
 * @cs_idx:		Array of chip-select for this device, values are indexes
 *			of the controller structure @gpio_cs array
 * @ncs_idx:		Size of the @cs_idx array
 */
struct anand {
	struct list_head node;
	struct nand_chip chip;
	unsigned int rb;
	unsigned int page_sz;
	unsigned long clk;
	u32 data_iface;
	u32 timings;
	u32 ecc_conf;
	u32 strength;
	u16 raddr_cycles;
	u16 caddr_cycles;
	unsigned int ecc_bits;
	unsigned int ecc_total;
	unsigned int *errloc;
	u8 *hw_ecc;
	struct bch_control *bch;
	int *cs_idx;
	int ncs_idx;
};

/**
 * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
 * @dev:		Pointer to the device structure
 * @base:		Remapped register area
 * @controller_clk:		Pointer to the system clock
 * @bus_clk:		Pointer to the flash clock
 * @controller:		Base controller structure
 * @chips:		List of all NAND chips attached to the controller
 * @cur_clk:		Current clock rate
 * @cs_array:		CS array. Native CS are left empty, the other cells are
 *			populated with their corresponding GPIO descriptor.
 * @ncs:		Size of @cs_array
 * @cur_cs:		Index in @cs_array of the currently in use CS
 * @native_cs:		Currently selected native CS
 * @spare_cs:		Native CS that is not wired (may be selected when a GPIO
 *			CS is in use)
 */
struct arasan_nfc {
	struct device *dev;
	void __iomem *base;
	struct clk *controller_clk;
	struct clk *bus_clk;
	struct nand_controller controller;
	struct list_head chips;
	unsigned int cur_clk;
	struct gpio_desc **cs_array;
	unsigned int ncs;
	int cur_cs;
	unsigned int native_cs;
	unsigned int spare_cs;
};

static struct anand *to_anand(struct nand_chip *nand)
{
	return container_of(nand, struct anand, chip);
}

static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
{
	return container_of(ctrl, struct arasan_nfc, controller);
}

static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
{
	u32 val;
	int ret;

	ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
					 val & event, 0,
					 ANFC_DFLT_TIMEOUT_US);
	if (ret) {
		dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
		return -ETIMEDOUT;
	}

	writel_relaxed(event, nfc->base + INTR_STS_REG);

	return 0;
}

static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
			    unsigned int timeout_ms)
{
	struct anand *anand = to_anand(chip);
	u32 val;
	int ret;

	/* There is no R/B interrupt, we must poll a register */
	ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
					 val & BIT(anand->rb),
					 1, timeout_ms * 1000);
	if (ret) {
		dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
			readl_relaxed(nfc->base + READY_STS_REG));
		return -ETIMEDOUT;
	}

	return 0;
}

static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
{
	writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
	writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
	writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
	writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
	writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
}

static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
			       unsigned int *pktsize)
{
	unsigned int nb, sz;

	for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
		sz = len / nb;
		if (sz <= ANFC_MAX_PKT_SIZE)
			break;
	}

	if (sz * nb != len)
		return -ENOTSUPP;

	if (steps)
		*steps = nb;

	if (pktsize)
		*pktsize = sz;

	return 0;
}

static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs)
{
	return nfc_cs >= 0 && nfc->cs_array[nfc_cs];
}

static int anfc_relative_to_absolute_cs(struct anand *anand, int num)
{
	return anand->cs_idx[num];
}

static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx)
{
	/* CS did not change: do nothing */
	if (nfc->cur_cs == nfc_cs_idx)
		return;

	/* Deassert the previous CS if it was a GPIO */
	if (anfc_is_gpio_cs(nfc, nfc->cur_cs))
		gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1);

	/* Assert the new one */
	if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) {
		nfc->native_cs = nfc->spare_cs;
		gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0);
	} else {
		nfc->native_cs = nfc_cs_idx;
	}

	nfc->cur_cs = nfc_cs_idx;
}

static int anfc_select_target(struct nand_chip *chip, int target)
{
	struct anand *anand = to_anand(chip);
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target);
	int ret;

	anfc_assert_cs(nfc, nfc_cs_idx);

	/* Update the controller timings and the potential ECC configuration */
	writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG);
	writel_relaxed(anand->timings, nfc->base + TIMING_REG);

	/* Update clock frequency */
	if (nfc->cur_clk != anand->clk) {
		clk_disable_unprepare(nfc->bus_clk);
		ret = clk_set_rate(nfc->bus_clk, anand->clk);
		if (ret) {
			dev_err(nfc->dev, "Failed to change clock rate\n");
			return ret;
		}

		ret = clk_prepare_enable(nfc->bus_clk);
		if (ret) {
			dev_err(nfc->dev,
				"Failed to re-enable the bus clock\n");
			return ret;
		}

		nfc->cur_clk = anand->clk;
	}

	return 0;
}

/*
 * When using the embedded hardware ECC engine, the controller is in charge of
 * feeding the engine with, first, the ECC residue present in the data array.
 * A typical read operation is:
 * 1/ Assert the read operation by sending the relevant command/address cycles
 *    but targeting the column of the first ECC bytes in the OOB area instead of
 *    the main data directly.
 * 2/ After having read the relevant number of ECC bytes, the controller uses
 *    the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
 *    Register" to move the pointer back at the beginning of the main data.
 * 3/ It will read the content of the main area for a given size (pktsize) and
 *    will feed the ECC engine with this buffer again.
 * 4/ The ECC engine derives the ECC bytes for the given data and compare them
 *    with the ones already received. It eventually trigger status flags and
 *    then set the "Buffer Read Ready" flag.
 * 5/ The corrected data is then available for reading from the data port
 *    register.
 *
 * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
 * reports uncorrectable errors. Because of this bug, we have to use the
 * software BCH implementation in the read path.
 */
static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
				 int oob_required, int page)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct anand *anand = to_anand(chip);
	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
	unsigned int max_bitflips = 0;
	dma_addr_t dma_addr;
	int step, ret;
	struct anfc_op nfc_op = {
		.pkt_reg =
			PKT_SIZE(chip->ecc.size) |
			PKT_STEPS(chip->ecc.steps),
		.addr1_reg =
			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
		.addr2_reg =
			((page >> 16) & 0xFF) |
			ADDR2_STRENGTH(anand->strength) |
			ADDR2_CS(nfc->native_cs),
		.cmd_reg =
			CMD_1(NAND_CMD_READ0) |
			CMD_2(NAND_CMD_READSTART) |
			CMD_PAGE_SIZE(anand->page_sz) |
			CMD_DMA_ENABLE |
			CMD_NADDRS(anand->caddr_cycles +
				   anand->raddr_cycles),
		.prog_reg = PROG_PGRD,
	};

	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
	if (dma_mapping_error(nfc->dev, dma_addr)) {
		dev_err(nfc->dev, "Buffer mapping error");
		return -EIO;
	}

	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);

	anfc_trigger_op(nfc, &nfc_op);

	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
	dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
	if (ret) {
		dev_err(nfc->dev, "Error reading page %d\n", page);
		return ret;
	}

	/* Store the raw OOB bytes as well */
	ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
					 mtd->oobsize, 0);
	if (ret)
		return ret;

	/*
	 * For each step, compute by softare the BCH syndrome over the raw data.
	 * Compare the theoretical amount of errors and compare with the
	 * hardware engine feedback.
	 */
	for (step = 0; step < chip->ecc.steps; step++) {
		u8 *raw_buf = &buf[step * chip->ecc.size];
		unsigned int bit, byte;
		int bf, i;

		/* Extract the syndrome, it is not necessarily aligned */
		memset(anand->hw_ecc, 0, chip->ecc.bytes);
		nand_extract_bits(anand->hw_ecc, 0,
				  &chip->oob_poi[mtd->oobsize - anand->ecc_total],
				  anand->ecc_bits * step, anand->ecc_bits);

		bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
				anand->hw_ecc, NULL, NULL, anand->errloc);
		if (!bf) {
			continue;
		} else if (bf > 0) {
			for (i = 0; i < bf; i++) {
				/* Only correct the data, not the syndrome */
				if (anand->errloc[i] < (chip->ecc.size * 8)) {
					bit = BIT(anand->errloc[i] & 7);
					byte = anand->errloc[i] >> 3;
					raw_buf[byte] ^= bit;
				}
			}

			mtd->ecc_stats.corrected += bf;
			max_bitflips = max_t(unsigned int, max_bitflips, bf);

			continue;
		}

		bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
						 NULL, 0, NULL, 0,
						 chip->ecc.strength);
		if (bf > 0) {
			mtd->ecc_stats.corrected += bf;
			max_bitflips = max_t(unsigned int, max_bitflips, bf);
			memset(raw_buf, 0xFF, chip->ecc.size);
		} else if (bf < 0) {
			mtd->ecc_stats.failed++;
		}
	}

	return 0;
}

static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
				     int oob_required, int page)
{
	int ret;

	ret = anfc_select_target(chip, chip->cur_cs);
	if (ret)
		return ret;

	return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
};

static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
				  int oob_required, int page)
{
	struct anand *anand = to_anand(chip);
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
	dma_addr_t dma_addr;
	u8 status;
	int ret;
	struct anfc_op nfc_op = {
		.pkt_reg =
			PKT_SIZE(chip->ecc.size) |
			PKT_STEPS(chip->ecc.steps),
		.addr1_reg =
			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
		.addr2_reg =
			((page >> 16) & 0xFF) |
			ADDR2_STRENGTH(anand->strength) |
			ADDR2_CS(nfc->native_cs),
		.cmd_reg =
			CMD_1(NAND_CMD_SEQIN) |
			CMD_2(NAND_CMD_PAGEPROG) |
			CMD_PAGE_SIZE(anand->page_sz) |
			CMD_DMA_ENABLE |
			CMD_NADDRS(anand->caddr_cycles +
				   anand->raddr_cycles) |
			CMD_ECC_ENABLE,
		.prog_reg = PROG_PGPROG,
	};

	writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
	writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
		       ECC_SP_ADDRS(anand->caddr_cycles),
		       nfc->base + ECC_SP_REG);

	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
	if (dma_mapping_error(nfc->dev, dma_addr)) {
		dev_err(nfc->dev, "Buffer mapping error");
		return -EIO;
	}

	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);

	anfc_trigger_op(nfc, &nfc_op);
	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
	dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
	if (ret) {
		dev_err(nfc->dev, "Error writing page %d\n", page);
		return ret;
	}

	/* Spare data is not protected */
	if (oob_required) {
		ret = nand_write_oob_std(chip, page);
		if (ret)
			return ret;
	}

	/* Check write status on the chip side */
	ret = nand_status_op(chip, &status);
	if (ret)
		return ret;

	if (status & NAND_STATUS_FAIL)
		return -EIO;

	return 0;
}

static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
				      int oob_required, int page)
{
	int ret;

	ret = anfc_select_target(chip, chip->cur_cs);
	if (ret)
		return ret;

	return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
};

/* NAND framework ->exec_op() hooks and related helpers */
static int anfc_parse_instructions(struct nand_chip *chip,
				   const struct nand_subop *subop,
				   struct anfc_op *nfc_op)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct anand *anand = to_anand(chip);
	const struct nand_op_instr *instr = NULL;
	bool first_cmd = true;
	unsigned int op_id;
	int ret, i;

	memset(nfc_op, 0, sizeof(*nfc_op));
	nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs);
	nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);

	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
		unsigned int offset, naddrs, pktsize;
		const u8 *addrs;
		u8 *buf;

		instr = &subop->instrs[op_id];

		switch (instr->type) {
		case NAND_OP_CMD_INSTR:
			if (first_cmd)
				nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
			else
				nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);

			first_cmd = false;
			break;

		case NAND_OP_ADDR_INSTR:
			offset = nand_subop_get_addr_start_off(subop, op_id);
			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
			addrs = &instr->ctx.addr.addrs[offset];
			nfc_op->cmd_reg |= CMD_NADDRS(naddrs);

			for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
				if (i < 4)
					nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
				else
					nfc_op->addr2_reg |= addrs[i];
			}

			break;
		case NAND_OP_DATA_IN_INSTR:
			nfc_op->read = true;
			fallthrough;
		case NAND_OP_DATA_OUT_INSTR:
			offset = nand_subop_get_data_start_off(subop, op_id);
			buf = instr->ctx.data.buf.in;
			nfc_op->buf = &buf[offset];
			nfc_op->len = nand_subop_get_data_len(subop, op_id);
			ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
						  &pktsize);
			if (ret)
				return ret;

			/*
			 * Number of DATA cycles must be aligned on 4, this
			 * means the controller might read/write more than
			 * requested. This is harmless most of the time as extra
			 * DATA are discarded in the write path and read pointer
			 * adjusted in the read path.
			 *
			 * FIXME: The core should mark operations where
			 * reading/writing more is allowed so the exec_op()
			 * implementation can take the right decision when the
			 * alignment constraint is not met: adjust the number of
			 * DATA cycles when it's allowed, reject the operation
			 * otherwise.
			 */
			nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
					   PKT_STEPS(nfc_op->steps);
			break;
		case NAND_OP_WAITRDY_INSTR:
			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
			break;
		}
	}

	return 0;
}

static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
{
	unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
	unsigned int last_len = nfc_op->len % 4;
	unsigned int offset, dir;
	u8 *buf = nfc_op->buf;
	int ret, i;

	for (i = 0; i < nfc_op->steps; i++) {
		dir = nfc_op->read ? READ_READY : WRITE_READY;
		ret = anfc_wait_for_event(nfc, dir);
		if (ret) {
			dev_err(nfc->dev, "PIO %s ready signal not received\n",
				nfc_op->read ? "Read" : "Write");
			return ret;
		}

		offset = i * (dwords * 4);
		if (nfc_op->read)
			ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
				     dwords);
		else
			iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
				      dwords);
	}

	if (last_len) {
		u32 remainder;

		offset = nfc_op->len - last_len;

		if (nfc_op->read) {
			remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
			memcpy(&buf[offset], &remainder, last_len);
		} else {
			memcpy(&remainder, &buf[offset], last_len);
			writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
		}
	}

	return anfc_wait_for_event(nfc, XFER_COMPLETE);
}

static int anfc_misc_data_type_exec(struct nand_chip *chip,
				    const struct nand_subop *subop,
				    u32 prog_reg)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct anfc_op nfc_op = {};
	int ret;

	ret = anfc_parse_instructions(chip, subop, &nfc_op);
	if (ret)
		return ret;

	nfc_op.prog_reg = prog_reg;
	anfc_trigger_op(nfc, &nfc_op);

	if (nfc_op.rdy_timeout_ms) {
		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
		if (ret)
			return ret;
	}

	return anfc_rw_pio_op(nfc, &nfc_op);
}

static int anfc_param_read_type_exec(struct nand_chip *chip,
				     const struct nand_subop *subop)
{
	return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
}

static int anfc_data_read_type_exec(struct nand_chip *chip,
				    const struct nand_subop *subop)
{
	u32 prog_reg = PROG_PGRD;

	/*
	 * Experience shows that while in SDR mode sending a CHANGE READ COLUMN
	 * command through the READ PAGE "type" always works fine, when in
	 * NV-DDR mode the same command simply fails. However, it was also
	 * spotted that any CHANGE READ COLUMN command sent through the CHANGE
	 * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR
	 * and NV-DDR). So, for simplicity, let's program the controller with
	 * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to
	 * perform a CHANGE READ COLUMN operation.
	 */
	if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT &&
	    subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART)
		prog_reg = PROG_CHG_RD_COL_ENH;

	return anfc_misc_data_type_exec(chip, subop, prog_reg);
}

static int anfc_param_write_type_exec(struct nand_chip *chip,
				      const struct nand_subop *subop)
{
	return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
}

static int anfc_data_write_type_exec(struct nand_chip *chip,
				     const struct nand_subop *subop)
{
	return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
}

static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
				       const struct nand_subop *subop,
				       u32 prog_reg)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct anfc_op nfc_op = {};
	int ret;

	ret = anfc_parse_instructions(chip, subop, &nfc_op);
	if (ret)
		return ret;

	nfc_op.prog_reg = prog_reg;
	anfc_trigger_op(nfc, &nfc_op);

	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
	if (ret)
		return ret;

	if (nfc_op.rdy_timeout_ms)
		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);

	return ret;
}

static int anfc_status_type_exec(struct nand_chip *chip,
				 const struct nand_subop *subop)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	u32 tmp;
	int ret;

	/* See anfc_check_op() for details about this constraint */
	if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
		return -ENOTSUPP;

	ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
	if (ret)
		return ret;

	tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
	memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);

	return 0;
}

static int anfc_reset_type_exec(struct nand_chip *chip,
				const struct nand_subop *subop)
{
	return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
}

static int anfc_erase_type_exec(struct nand_chip *chip,
				const struct nand_subop *subop)
{
	return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
}

static int anfc_wait_type_exec(struct nand_chip *chip,
			       const struct nand_subop *subop)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct anfc_op nfc_op = {};
	int ret;

	ret = anfc_parse_instructions(chip, subop, &nfc_op);
	if (ret)
		return ret;

	return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
}

static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
	NAND_OP_PARSER_PATTERN(
		anfc_param_read_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		anfc_param_write_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
	NAND_OP_PARSER_PATTERN(
		anfc_data_read_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		anfc_data_write_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		anfc_reset_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		anfc_erase_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		anfc_status_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		anfc_wait_type_exec,
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	);

static int anfc_check_op(struct nand_chip *chip,
			 const struct nand_operation *op)
{
	const struct nand_op_instr *instr;
	int op_id;

	/*
	 * The controller abstracts all the NAND operations and do not support
	 * data only operations.
	 *
	 * TODO: The nand_op_parser framework should be extended to
	 * support custom checks on DATA instructions.
	 */
	for (op_id = 0; op_id < op->ninstrs; op_id++) {
		instr = &op->instrs[op_id];

		switch (instr->type) {
		case NAND_OP_ADDR_INSTR:
			if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
				return -ENOTSUPP;

			break;
		case NAND_OP_DATA_IN_INSTR:
		case NAND_OP_DATA_OUT_INSTR:
			if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
				return -ENOTSUPP;

			if (anfc_pkt_len_config(instr->ctx.data.len, NULL, NULL))
				return -ENOTSUPP;

			break;
		default:
			break;
		}
	}

	/*
	 * The controller does not allow to proceed with a CMD+DATA_IN cycle
	 * manually on the bus by reading data from the data register. Instead,
	 * the controller abstract a status read operation with its own status
	 * register after ordering a read status operation. Hence, we cannot
	 * support any CMD+DATA_IN operation other than a READ STATUS.
	 *
	 * TODO: The nand_op_parser() framework should be extended to describe
	 * fixed patterns instead of open-coding this check here.
	 */
	if (op->ninstrs == 2 &&
	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
	    op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
	    op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
		return -ENOTSUPP;

	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
}

static int anfc_exec_op(struct nand_chip *chip,
			const struct nand_operation *op,
			bool check_only)
{
	int ret;

	if (check_only)
		return anfc_check_op(chip, op);

	ret = anfc_select_target(chip, op->cs);
	if (ret)
		return ret;

	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
}

static int anfc_setup_interface(struct nand_chip *chip, int target,
				const struct nand_interface_config *conf)
{
	struct anand *anand = to_anand(chip);
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct device_node *np = nfc->dev->of_node;
	const struct nand_sdr_timings *sdr;
	const struct nand_nvddr_timings *nvddr;
	unsigned int tccs_min, dqs_mode, fast_tcad;

	if (nand_interface_is_nvddr(conf)) {
		nvddr = nand_get_nvddr_timings(conf);
		if (IS_ERR(nvddr))
			return PTR_ERR(nvddr);
	} else {
		sdr = nand_get_sdr_timings(conf);
		if (IS_ERR(sdr))
			return PTR_ERR(sdr);
	}

	if (target < 0)
		return 0;

	if (nand_interface_is_sdr(conf)) {
		anand->data_iface = DIFACE_SDR |
				    DIFACE_SDR_MODE(conf->timings.mode);
		anand->timings = 0;
	} else {
		anand->data_iface = DIFACE_NVDDR |
				    DIFACE_DDR_MODE(conf->timings.mode);

		if (conf->timings.nvddr.tCCS_min <= 100000)
			tccs_min = TCCS_TIME_100NS;
		else if (conf->timings.nvddr.tCCS_min <= 200000)
			tccs_min = TCCS_TIME_200NS;
		else if (conf->timings.nvddr.tCCS_min <= 300000)
			tccs_min = TCCS_TIME_300NS;
		else
			tccs_min = TCCS_TIME_500NS;

		fast_tcad = 0;
		if (conf->timings.nvddr.tCAD_min < 45000)
			fast_tcad = FAST_TCAD;

		switch (conf->timings.mode) {
		case 5:
		case 4:
			dqs_mode = 2;
			break;
		case 3:
			dqs_mode = 3;
			break;
		case 2:
			dqs_mode = 4;
			break;
		case 1:
			dqs_mode = 5;
			break;
		case 0:
		default:
			dqs_mode = 6;
			break;
		}

		anand->timings = tccs_min | fast_tcad |
				 DQS_BUFF_SEL_IN(dqs_mode) |
				 DQS_BUFF_SEL_OUT(dqs_mode);
	}

	if (nand_interface_is_sdr(conf)) {
		anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
	} else {
		/* ONFI timings are defined in picoseconds */
		anand->clk = div_u64((u64)NSEC_PER_SEC * 1000,
				     conf->timings.nvddr.tCK_min);
	}

	/*
	 * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
	 * with f > 90MHz (default clock is 100MHz) but signals are unstable
	 * with higher modes. Hence we decrease a little bit the clock rate to
	 * 80MHz when using SDR modes 2-5 with this SoC.
	 */
	if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
	    nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
		anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;

	return 0;
}

static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
{
	unsigned int bch_gf_mag, ecc_bits;

	switch (step_size) {
	case SZ_512:
		bch_gf_mag = 13;
		break;
	case SZ_1K:
		bch_gf_mag = 14;
		break;
	default:
		return -EINVAL;
	}

	ecc_bits = bch_gf_mag * strength;

	return DIV_ROUND_UP(ecc_bits, 8);
}

static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};

static const int anfc_hw_ecc_1024_strengths[] = {24};

static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
	{
		.stepsize = SZ_512,
		.strengths = anfc_hw_ecc_512_strengths,
		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
	},
	{
		.stepsize = SZ_1K,
		.strengths = anfc_hw_ecc_1024_strengths,
		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
	},
};

static const struct nand_ecc_caps anfc_hw_ecc_caps = {
	.stepinfos = anfc_hw_ecc_step_infos,
	.nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
	.calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
};

static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
				       struct nand_chip *chip)
{
	struct anand *anand = to_anand(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
	int ret;

	switch (mtd->writesize) {
	case SZ_512:
	case SZ_2K:
	case SZ_4K:
	case SZ_8K:
	case SZ_16K:
		break;
	default:
		dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
		return -EINVAL;
	}

	ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
	if (ret)
		return ret;

	switch (ecc->strength) {
	case 12:
		anand->strength = 0x1;
		break;
	case 8:
		anand->strength = 0x2;
		break;
	case 4:
		anand->strength = 0x3;
		break;
	case 24:
		anand->strength = 0x4;
		break;
	default:
		dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
		return -EINVAL;
	}

	switch (ecc->size) {
	case SZ_512:
		bch_gf_mag = 13;
		bch_prim_poly = 0x201b;
		break;
	case SZ_1K:
		bch_gf_mag = 14;
		bch_prim_poly = 0x4443;
		break;
	default:
		dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
		return -EINVAL;
	}

	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());

	ecc->steps = mtd->writesize / ecc->size;
	ecc->algo = NAND_ECC_ALGO_BCH;
	anand->ecc_bits = bch_gf_mag * ecc->strength;
	ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
	anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
	ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
	anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
			  ECC_CONF_LEN(anand->ecc_total) |
			  ECC_CONF_BCH_EN;

	anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
					   sizeof(*anand->errloc), GFP_KERNEL);
	if (!anand->errloc)
		return -ENOMEM;

	anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
	if (!anand->hw_ecc)
		return -ENOMEM;

	/* Enforce bit swapping to fit the hardware */
	anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
	if (!anand->bch)
		return -EINVAL;

	ecc->read_page = anfc_sel_read_page_hw_ecc;
	ecc->write_page = anfc_sel_write_page_hw_ecc;

	return 0;
}

static int anfc_attach_chip(struct nand_chip *chip)
{
	struct anand *anand = to_anand(chip);
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret = 0;

	if (mtd->writesize <= SZ_512)
		anand->caddr_cycles = 1;
	else
		anand->caddr_cycles = 2;

	if (chip->options & NAND_ROW_ADDR_3)
		anand->raddr_cycles = 3;
	else
		anand->raddr_cycles = 2;

	switch (mtd->writesize) {
	case 512:
		anand->page_sz = 0;
		break;
	case 1024:
		anand->page_sz = 5;
		break;
	case 2048:
		anand->page_sz = 1;
		break;
	case 4096:
		anand->page_sz = 2;
		break;
	case 8192:
		anand->page_sz = 3;
		break;
	case 16384:
		anand->page_sz = 4;
		break;
	default:
		return -EINVAL;
	}

	/* These hooks are valid for all ECC providers */
	chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
	chip->ecc.write_page_raw = nand_monolithic_write_page_raw;

	switch (chip->ecc.engine_type) {
	case NAND_ECC_ENGINE_TYPE_NONE:
	case NAND_ECC_ENGINE_TYPE_SOFT:
	case NAND_ECC_ENGINE_TYPE_ON_DIE:
		break;
	case NAND_ECC_ENGINE_TYPE_ON_HOST:
		ret = anfc_init_hw_ecc_controller(nfc, chip);
		break;
	default:
		dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
			chip->ecc.engine_type);
		return -EINVAL;
	}

	return ret;
}

static void anfc_detach_chip(struct nand_chip *chip)
{
	struct anand *anand = to_anand(chip);

	if (anand->bch)
		bch_free(anand->bch);
}

static const struct nand_controller_ops anfc_ops = {
	.exec_op = anfc_exec_op,
	.setup_interface = anfc_setup_interface,
	.attach_chip = anfc_attach_chip,
	.detach_chip = anfc_detach_chip,
};

static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
{
	struct anand *anand;
	struct nand_chip *chip;
	struct mtd_info *mtd;
	int rb, ret, i;

	anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
	if (!anand)
		return -ENOMEM;

	/* Chip-select init */
	anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32));
	if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) {
		dev_err(nfc->dev, "Invalid reg property\n");
		return -EINVAL;
	}

	anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx,
				     sizeof(*anand->cs_idx), GFP_KERNEL);
	if (!anand->cs_idx)
		return -ENOMEM;

	for (i = 0; i < anand->ncs_idx; i++) {
		ret = of_property_read_u32_index(np, "reg", i,
						 &anand->cs_idx[i]);
		if (ret) {
			dev_err(nfc->dev, "invalid CS property: %d\n", ret);
			return ret;
		}
	}

	/* Ready-busy init */
	ret = of_property_read_u32(np, "nand-rb", &rb);
	if (ret)
		return ret;

	if (rb >= ANFC_MAX_CS) {
		dev_err(nfc->dev, "Wrong RB %d\n", rb);
		return -EINVAL;
	}

	anand->rb = rb;

	chip = &anand->chip;
	mtd = nand_to_mtd(chip);
	mtd->dev.parent = nfc->dev;
	chip->controller = &nfc->controller;
	chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
			NAND_USES_DMA;

	nand_set_flash_node(chip, np);
	if (!mtd->name) {
		dev_err(nfc->dev, "NAND label property is mandatory\n");
		return -EINVAL;
	}

	ret = nand_scan(chip, anand->ncs_idx);
	if (ret) {
		dev_err(nfc->dev, "Scan operation failed\n");
		return ret;
	}

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret) {
		nand_cleanup(chip);
		return ret;
	}

	list_add_tail(&anand->node, &nfc->chips);

	return 0;
}

static void anfc_chips_cleanup(struct arasan_nfc *nfc)
{
	struct anand *anand, *tmp;
	struct nand_chip *chip;
	int ret;

	list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
		chip = &anand->chip;
		ret = mtd_device_unregister(nand_to_mtd(chip));
		WARN_ON(ret);
		nand_cleanup(chip);
		list_del(&anand->node);
	}
}

static int anfc_chips_init(struct arasan_nfc *nfc)
{
	struct device_node *np = nfc->dev->of_node, *nand_np;
	int nchips = of_get_child_count(np);
	int ret;

	if (!nchips) {
		dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
			nchips);
		return -EINVAL;
	}

	for_each_child_of_node(np, nand_np) {
		ret = anfc_chip_init(nfc, nand_np);
		if (ret) {
			of_node_put(nand_np);
			anfc_chips_cleanup(nfc);
			break;
		}
	}

	return ret;
}

static void anfc_reset(struct arasan_nfc *nfc)
{
	/* Disable interrupt signals */
	writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);

	/* Enable interrupt status */
	writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);

	nfc->cur_cs = -1;
}

static int anfc_parse_cs(struct arasan_nfc *nfc)
{
	int ret;

	/* Check the gpio-cs property */
	ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs);
	if (ret)
		return ret;

	/*
	 * The controller native CS cannot be both disabled at the same time.
	 * Hence, only one native CS can be used if GPIO CS are needed, so that
	 * the other is selected when a non-native CS must be asserted (not
	 * wired physically or configured as GPIO instead of NAND CS). In this
	 * case, the "not" chosen CS is assigned to nfc->spare_cs and selected
	 * whenever a GPIO CS must be asserted.
	 */
	if (nfc->cs_array && nfc->ncs > 2) {
		if (!nfc->cs_array[0] && !nfc->cs_array[1]) {
			dev_err(nfc->dev,
				"Assign a single native CS when using GPIOs\n");
			return -EINVAL;
		}

		if (nfc->cs_array[0])
			nfc->spare_cs = 0;
		else
			nfc->spare_cs = 1;
	}

	if (!nfc->cs_array) {
		nfc->cs_array = anfc_default_cs_array;
		nfc->ncs = ANFC_MAX_CS;
		return 0;
	}

	return 0;
}

static int anfc_probe(struct platform_device *pdev)
{
	struct arasan_nfc *nfc;
	int ret;

	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nfc->dev = &pdev->dev;
	nand_controller_init(&nfc->controller);
	nfc->controller.ops = &anfc_ops;
	INIT_LIST_HEAD(&nfc->chips);

	nfc->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(nfc->base))
		return PTR_ERR(nfc->base);

	anfc_reset(nfc);

	nfc->controller_clk = devm_clk_get_enabled(&pdev->dev, "controller");
	if (IS_ERR(nfc->controller_clk))
		return PTR_ERR(nfc->controller_clk);

	nfc->bus_clk = devm_clk_get_enabled(&pdev->dev, "bus");
	if (IS_ERR(nfc->bus_clk))
		return PTR_ERR(nfc->bus_clk);

	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
	if (ret)
		return ret;

	ret = anfc_parse_cs(nfc);
	if (ret)
		return ret;

	ret = anfc_chips_init(nfc);
	if (ret)
		return ret;

	platform_set_drvdata(pdev, nfc);

	return 0;
}

static void anfc_remove(struct platform_device *pdev)
{
	struct arasan_nfc *nfc = platform_get_drvdata(pdev);

	anfc_chips_cleanup(nfc);
}

static const struct of_device_id anfc_ids[] = {
	{
		.compatible = "xlnx,zynqmp-nand-controller",
	},
	{
		.compatible = "arasan,nfc-v3p10",
	},
	{}
};
MODULE_DEVICE_TABLE(of, anfc_ids);

static struct platform_driver anfc_driver = {
	.driver = {
		.name = "arasan-nand-controller",
		.of_match_table = anfc_ids,
	},
	.probe = anfc_probe,
	.remove_new = anfc_remove,
};
module_platform_driver(anfc_driver);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");