Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | // SPDX-License-Identifier: GPL-2.0-only /* * AMD Cryptographic Coprocessor (CCP) RSA crypto API support * * Copyright (C) 2017 Advanced Micro Devices, Inc. * * Author: Gary R Hook <gary.hook@amd.com> */ #include <linux/module.h> #include <linux/sched.h> #include <linux/scatterlist.h> #include <linux/crypto.h> #include <crypto/algapi.h> #include <crypto/internal/rsa.h> #include <crypto/internal/akcipher.h> #include <crypto/akcipher.h> #include <crypto/scatterwalk.h> #include "ccp-crypto.h" static inline struct akcipher_request *akcipher_request_cast( struct crypto_async_request *req) { return container_of(req, struct akcipher_request, base); } static inline int ccp_copy_and_save_keypart(u8 **kpbuf, unsigned int *kplen, const u8 *buf, size_t sz) { int nskip; for (nskip = 0; nskip < sz; nskip++) if (buf[nskip]) break; *kplen = sz - nskip; *kpbuf = kmemdup(buf + nskip, *kplen, GFP_KERNEL); if (!*kpbuf) return -ENOMEM; return 0; } static int ccp_rsa_complete(struct crypto_async_request *async_req, int ret) { struct akcipher_request *req = akcipher_request_cast(async_req); struct ccp_rsa_req_ctx *rctx = akcipher_request_ctx_dma(req); if (ret) return ret; req->dst_len = rctx->cmd.u.rsa.key_size >> 3; return 0; } static unsigned int ccp_rsa_maxsize(struct crypto_akcipher *tfm) { struct ccp_ctx *ctx = akcipher_tfm_ctx_dma(tfm); return ctx->u.rsa.n_len; } static int ccp_rsa_crypt(struct akcipher_request *req, bool encrypt) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct ccp_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct ccp_rsa_req_ctx *rctx = akcipher_request_ctx_dma(req); int ret = 0; memset(&rctx->cmd, 0, sizeof(rctx->cmd)); INIT_LIST_HEAD(&rctx->cmd.entry); rctx->cmd.engine = CCP_ENGINE_RSA; rctx->cmd.u.rsa.key_size = ctx->u.rsa.key_len; /* in bits */ if (encrypt) { rctx->cmd.u.rsa.exp = &ctx->u.rsa.e_sg; rctx->cmd.u.rsa.exp_len = ctx->u.rsa.e_len; } else { rctx->cmd.u.rsa.exp = &ctx->u.rsa.d_sg; rctx->cmd.u.rsa.exp_len = ctx->u.rsa.d_len; } rctx->cmd.u.rsa.mod = &ctx->u.rsa.n_sg; rctx->cmd.u.rsa.mod_len = ctx->u.rsa.n_len; rctx->cmd.u.rsa.src = req->src; rctx->cmd.u.rsa.src_len = req->src_len; rctx->cmd.u.rsa.dst = req->dst; ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); return ret; } static int ccp_rsa_encrypt(struct akcipher_request *req) { return ccp_rsa_crypt(req, true); } static int ccp_rsa_decrypt(struct akcipher_request *req) { return ccp_rsa_crypt(req, false); } static int ccp_check_key_length(unsigned int len) { /* In bits */ if (len < 8 || len > 4096) return -EINVAL; return 0; } static void ccp_rsa_free_key_bufs(struct ccp_ctx *ctx) { /* Clean up old key data */ kfree_sensitive(ctx->u.rsa.e_buf); ctx->u.rsa.e_buf = NULL; ctx->u.rsa.e_len = 0; kfree_sensitive(ctx->u.rsa.n_buf); ctx->u.rsa.n_buf = NULL; ctx->u.rsa.n_len = 0; kfree_sensitive(ctx->u.rsa.d_buf); ctx->u.rsa.d_buf = NULL; ctx->u.rsa.d_len = 0; } static int ccp_rsa_setkey(struct crypto_akcipher *tfm, const void *key, unsigned int keylen, bool private) { struct ccp_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct rsa_key raw_key; int ret; ccp_rsa_free_key_bufs(ctx); memset(&raw_key, 0, sizeof(raw_key)); /* Code borrowed from crypto/rsa.c */ if (private) ret = rsa_parse_priv_key(&raw_key, key, keylen); else ret = rsa_parse_pub_key(&raw_key, key, keylen); if (ret) goto n_key; ret = ccp_copy_and_save_keypart(&ctx->u.rsa.n_buf, &ctx->u.rsa.n_len, raw_key.n, raw_key.n_sz); if (ret) goto key_err; sg_init_one(&ctx->u.rsa.n_sg, ctx->u.rsa.n_buf, ctx->u.rsa.n_len); ctx->u.rsa.key_len = ctx->u.rsa.n_len << 3; /* convert to bits */ if (ccp_check_key_length(ctx->u.rsa.key_len)) { ret = -EINVAL; goto key_err; } ret = ccp_copy_and_save_keypart(&ctx->u.rsa.e_buf, &ctx->u.rsa.e_len, raw_key.e, raw_key.e_sz); if (ret) goto key_err; sg_init_one(&ctx->u.rsa.e_sg, ctx->u.rsa.e_buf, ctx->u.rsa.e_len); if (private) { ret = ccp_copy_and_save_keypart(&ctx->u.rsa.d_buf, &ctx->u.rsa.d_len, raw_key.d, raw_key.d_sz); if (ret) goto key_err; sg_init_one(&ctx->u.rsa.d_sg, ctx->u.rsa.d_buf, ctx->u.rsa.d_len); } return 0; key_err: ccp_rsa_free_key_bufs(ctx); n_key: return ret; } static int ccp_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { return ccp_rsa_setkey(tfm, key, keylen, true); } static int ccp_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { return ccp_rsa_setkey(tfm, key, keylen, false); } static int ccp_rsa_init_tfm(struct crypto_akcipher *tfm) { struct ccp_ctx *ctx = akcipher_tfm_ctx_dma(tfm); akcipher_set_reqsize_dma(tfm, sizeof(struct ccp_rsa_req_ctx)); ctx->complete = ccp_rsa_complete; return 0; } static void ccp_rsa_exit_tfm(struct crypto_akcipher *tfm) { struct ccp_ctx *ctx = akcipher_tfm_ctx_dma(tfm); ccp_rsa_free_key_bufs(ctx); } static struct akcipher_alg ccp_rsa_defaults = { .encrypt = ccp_rsa_encrypt, .decrypt = ccp_rsa_decrypt, .set_pub_key = ccp_rsa_setpubkey, .set_priv_key = ccp_rsa_setprivkey, .max_size = ccp_rsa_maxsize, .init = ccp_rsa_init_tfm, .exit = ccp_rsa_exit_tfm, .base = { .cra_name = "rsa", .cra_driver_name = "rsa-ccp", .cra_priority = CCP_CRA_PRIORITY, .cra_module = THIS_MODULE, .cra_ctxsize = 2 * sizeof(struct ccp_ctx) + CRYPTO_DMA_PADDING, }, }; struct ccp_rsa_def { unsigned int version; const char *name; const char *driver_name; unsigned int reqsize; struct akcipher_alg *alg_defaults; }; static struct ccp_rsa_def rsa_algs[] = { { .version = CCP_VERSION(3, 0), .name = "rsa", .driver_name = "rsa-ccp", .reqsize = sizeof(struct ccp_rsa_req_ctx), .alg_defaults = &ccp_rsa_defaults, } }; static int ccp_register_rsa_alg(struct list_head *head, const struct ccp_rsa_def *def) { struct ccp_crypto_akcipher_alg *ccp_alg; struct akcipher_alg *alg; int ret; ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); if (!ccp_alg) return -ENOMEM; INIT_LIST_HEAD(&ccp_alg->entry); alg = &ccp_alg->alg; *alg = *def->alg_defaults; snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", def->driver_name); ret = crypto_register_akcipher(alg); if (ret) { pr_err("%s akcipher algorithm registration error (%d)\n", alg->base.cra_name, ret); kfree(ccp_alg); return ret; } list_add(&ccp_alg->entry, head); return 0; } int ccp_register_rsa_algs(struct list_head *head) { int i, ret; unsigned int ccpversion = ccp_version(); /* Register the RSA algorithm in standard mode * This works for CCP v3 and later */ for (i = 0; i < ARRAY_SIZE(rsa_algs); i++) { if (rsa_algs[i].version > ccpversion) continue; ret = ccp_register_rsa_alg(head, &rsa_algs[i]); if (ret) return ret; } return 0; } |