Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
// SPDX-License-Identifier: GPL-2.0-only
/*
 * sigreturn.c - tests for x86 sigreturn(2) and exit-to-userspace
 * Copyright (c) 2014-2015 Andrew Lutomirski
 *
 * This is a series of tests that exercises the sigreturn(2) syscall and
 * the IRET / SYSRET paths in the kernel.
 *
 * For now, this focuses on the effects of unusual CS and SS values,
 * and it has a bunch of tests to make sure that ESP/RSP is restored
 * properly.
 *
 * The basic idea behind these tests is to raise(SIGUSR1) to create a
 * sigcontext frame, plug in the values to be tested, and then return,
 * which implicitly invokes sigreturn(2) and programs the user context
 * as desired.
 *
 * For tests for which we expect sigreturn and the subsequent return to
 * user mode to succeed, we return to a short trampoline that generates
 * SIGTRAP so that the meat of the tests can be ordinary C code in a
 * SIGTRAP handler.
 *
 * The inner workings of each test is documented below.
 *
 * Do not run on outdated, unpatched kernels at risk of nasty crashes.
 */

#define _GNU_SOURCE

#include <sys/time.h>
#include <time.h>
#include <stdlib.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <sys/signal.h>
#include <sys/ucontext.h>
#include <asm/ldt.h>
#include <err.h>
#include <setjmp.h>
#include <stddef.h>
#include <stdbool.h>
#include <sys/ptrace.h>
#include <sys/user.h>

/* Pull in AR_xyz defines. */
typedef unsigned int u32;
typedef unsigned short u16;
#include "../../../../arch/x86/include/asm/desc_defs.h"

/*
 * Copied from asm/ucontext.h, as asm/ucontext.h conflicts badly with the glibc
 * headers.
 */
#ifdef __x86_64__
/*
 * UC_SIGCONTEXT_SS will be set when delivering 64-bit or x32 signals on
 * kernels that save SS in the sigcontext.  All kernels that set
 * UC_SIGCONTEXT_SS will correctly restore at least the low 32 bits of esp
 * regardless of SS (i.e. they implement espfix).
 *
 * Kernels that set UC_SIGCONTEXT_SS will also set UC_STRICT_RESTORE_SS
 * when delivering a signal that came from 64-bit code.
 *
 * Sigreturn restores SS as follows:
 *
 * if (saved SS is valid || UC_STRICT_RESTORE_SS is set ||
 *     saved CS is not 64-bit)
 *         new SS = saved SS  (will fail IRET and signal if invalid)
 * else
 *         new SS = a flat 32-bit data segment
 */
#define UC_SIGCONTEXT_SS       0x2
#define UC_STRICT_RESTORE_SS   0x4
#endif

/*
 * In principle, this test can run on Linux emulation layers (e.g.
 * Illumos "LX branded zones").  Solaris-based kernels reserve LDT
 * entries 0-5 for their own internal purposes, so start our LDT
 * allocations above that reservation.  (The tests don't pass on LX
 * branded zones, but at least this lets them run.)
 */
#define LDT_OFFSET 6

/* An aligned stack accessible through some of our segments. */
static unsigned char stack16[65536] __attribute__((aligned(4096)));

/*
 * An aligned int3 instruction used as a trampoline.  Some of the tests
 * want to fish out their ss values, so this trampoline copies ss to eax
 * before the int3.
 */
asm (".pushsection .text\n\t"
     ".type int3, @function\n\t"
     ".align 4096\n\t"
     "int3:\n\t"
     "mov %ss,%ecx\n\t"
     "int3\n\t"
     ".size int3, . - int3\n\t"
     ".align 4096, 0xcc\n\t"
     ".popsection");
extern char int3[4096];

/*
 * At startup, we prepapre:
 *
 * - ldt_nonexistent_sel: An LDT entry that doesn't exist (all-zero
 *   descriptor or out of bounds).
 * - code16_sel: A 16-bit LDT code segment pointing to int3.
 * - data16_sel: A 16-bit LDT data segment pointing to stack16.
 * - npcode32_sel: A 32-bit not-present LDT code segment pointing to int3.
 * - npdata32_sel: A 32-bit not-present LDT data segment pointing to stack16.
 * - gdt_data16_idx: A 16-bit GDT data segment pointing to stack16.
 * - gdt_npdata32_idx: A 32-bit not-present GDT data segment pointing to
 *   stack16.
 *
 * For no particularly good reason, xyz_sel is a selector value with the
 * RPL and LDT bits filled in, whereas xyz_idx is just an index into the
 * descriptor table.  These variables will be zero if their respective
 * segments could not be allocated.
 */
static unsigned short ldt_nonexistent_sel;
static unsigned short code16_sel, data16_sel, npcode32_sel, npdata32_sel;

static unsigned short gdt_data16_idx, gdt_npdata32_idx;

static unsigned short GDT3(int idx)
{
	return (idx << 3) | 3;
}

static unsigned short LDT3(int idx)
{
	return (idx << 3) | 7;
}

static void sethandler(int sig, void (*handler)(int, siginfo_t *, void *),
		       int flags)
{
	struct sigaction sa;
	memset(&sa, 0, sizeof(sa));
	sa.sa_sigaction = handler;
	sa.sa_flags = SA_SIGINFO | flags;
	sigemptyset(&sa.sa_mask);
	if (sigaction(sig, &sa, 0))
		err(1, "sigaction");
}

static void clearhandler(int sig)
{
	struct sigaction sa;
	memset(&sa, 0, sizeof(sa));
	sa.sa_handler = SIG_DFL;
	sigemptyset(&sa.sa_mask);
	if (sigaction(sig, &sa, 0))
		err(1, "sigaction");
}

static void add_ldt(const struct user_desc *desc, unsigned short *var,
		    const char *name)
{
	if (syscall(SYS_modify_ldt, 1, desc, sizeof(*desc)) == 0) {
		*var = LDT3(desc->entry_number);
	} else {
		printf("[NOTE]\tFailed to create %s segment\n", name);
		*var = 0;
	}
}

static void setup_ldt(void)
{
	if ((unsigned long)stack16 > (1ULL << 32) - sizeof(stack16))
		errx(1, "stack16 is too high\n");
	if ((unsigned long)int3 > (1ULL << 32) - sizeof(int3))
		errx(1, "int3 is too high\n");

	ldt_nonexistent_sel = LDT3(LDT_OFFSET + 2);

	const struct user_desc code16_desc = {
		.entry_number    = LDT_OFFSET + 0,
		.base_addr       = (unsigned long)int3,
		.limit           = 4095,
		.seg_32bit       = 0,
		.contents        = 2, /* Code, not conforming */
		.read_exec_only  = 0,
		.limit_in_pages  = 0,
		.seg_not_present = 0,
		.useable         = 0
	};
	add_ldt(&code16_desc, &code16_sel, "code16");

	const struct user_desc data16_desc = {
		.entry_number    = LDT_OFFSET + 1,
		.base_addr       = (unsigned long)stack16,
		.limit           = 0xffff,
		.seg_32bit       = 0,
		.contents        = 0, /* Data, grow-up */
		.read_exec_only  = 0,
		.limit_in_pages  = 0,
		.seg_not_present = 0,
		.useable         = 0
	};
	add_ldt(&data16_desc, &data16_sel, "data16");

	const struct user_desc npcode32_desc = {
		.entry_number    = LDT_OFFSET + 3,
		.base_addr       = (unsigned long)int3,
		.limit           = 4095,
		.seg_32bit       = 1,
		.contents        = 2, /* Code, not conforming */
		.read_exec_only  = 0,
		.limit_in_pages  = 0,
		.seg_not_present = 1,
		.useable         = 0
	};
	add_ldt(&npcode32_desc, &npcode32_sel, "npcode32");

	const struct user_desc npdata32_desc = {
		.entry_number    = LDT_OFFSET + 4,
		.base_addr       = (unsigned long)stack16,
		.limit           = 0xffff,
		.seg_32bit       = 1,
		.contents        = 0, /* Data, grow-up */
		.read_exec_only  = 0,
		.limit_in_pages  = 0,
		.seg_not_present = 1,
		.useable         = 0
	};
	add_ldt(&npdata32_desc, &npdata32_sel, "npdata32");

	struct user_desc gdt_data16_desc = {
		.entry_number    = -1,
		.base_addr       = (unsigned long)stack16,
		.limit           = 0xffff,
		.seg_32bit       = 0,
		.contents        = 0, /* Data, grow-up */
		.read_exec_only  = 0,
		.limit_in_pages  = 0,
		.seg_not_present = 0,
		.useable         = 0
	};

	if (syscall(SYS_set_thread_area, &gdt_data16_desc) == 0) {
		/*
		 * This probably indicates vulnerability to CVE-2014-8133.
		 * Merely getting here isn't definitive, though, and we'll
		 * diagnose the problem for real later on.
		 */
		printf("[WARN]\tset_thread_area allocated data16 at index %d\n",
		       gdt_data16_desc.entry_number);
		gdt_data16_idx = gdt_data16_desc.entry_number;
	} else {
		printf("[OK]\tset_thread_area refused 16-bit data\n");
	}

	struct user_desc gdt_npdata32_desc = {
		.entry_number    = -1,
		.base_addr       = (unsigned long)stack16,
		.limit           = 0xffff,
		.seg_32bit       = 1,
		.contents        = 0, /* Data, grow-up */
		.read_exec_only  = 0,
		.limit_in_pages  = 0,
		.seg_not_present = 1,
		.useable         = 0
	};

	if (syscall(SYS_set_thread_area, &gdt_npdata32_desc) == 0) {
		/*
		 * As a hardening measure, newer kernels don't allow this.
		 */
		printf("[WARN]\tset_thread_area allocated npdata32 at index %d\n",
		       gdt_npdata32_desc.entry_number);
		gdt_npdata32_idx = gdt_npdata32_desc.entry_number;
	} else {
		printf("[OK]\tset_thread_area refused 16-bit data\n");
	}
}

/* State used by our signal handlers. */
static gregset_t initial_regs, requested_regs, resulting_regs;

/* Instructions for the SIGUSR1 handler. */
static volatile unsigned short sig_cs, sig_ss;
static volatile sig_atomic_t sig_trapped, sig_err, sig_trapno;
#ifdef __x86_64__
static volatile sig_atomic_t sig_corrupt_final_ss;
#endif

/* Abstractions for some 32-bit vs 64-bit differences. */
#ifdef __x86_64__
# define REG_IP REG_RIP
# define REG_SP REG_RSP
# define REG_CX REG_RCX

struct selectors {
	unsigned short cs, gs, fs, ss;
};

static unsigned short *ssptr(ucontext_t *ctx)
{
	struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
	return &sels->ss;
}

static unsigned short *csptr(ucontext_t *ctx)
{
	struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
	return &sels->cs;
}
#else
# define REG_IP REG_EIP
# define REG_SP REG_ESP
# define REG_CX REG_ECX

static greg_t *ssptr(ucontext_t *ctx)
{
	return &ctx->uc_mcontext.gregs[REG_SS];
}

static greg_t *csptr(ucontext_t *ctx)
{
	return &ctx->uc_mcontext.gregs[REG_CS];
}
#endif

/*
 * Checks a given selector for its code bitness or returns -1 if it's not
 * a usable code segment selector.
 */
int cs_bitness(unsigned short cs)
{
	uint32_t valid = 0, ar;
	asm ("lar %[cs], %[ar]\n\t"
	     "jnz 1f\n\t"
	     "mov $1, %[valid]\n\t"
	     "1:"
	     : [ar] "=r" (ar), [valid] "+rm" (valid)
	     : [cs] "r" (cs));

	if (!valid)
		return -1;

	bool db = (ar & (1 << 22));
	bool l = (ar & (1 << 21));

	if (!(ar & (1<<11)))
	    return -1;	/* Not code. */

	if (l && !db)
		return 64;
	else if (!l && db)
		return 32;
	else if (!l && !db)
		return 16;
	else
		return -1;	/* Unknown bitness. */
}

/*
 * Checks a given selector for its code bitness or returns -1 if it's not
 * a usable code segment selector.
 */
bool is_valid_ss(unsigned short cs)
{
	uint32_t valid = 0, ar;
	asm ("lar %[cs], %[ar]\n\t"
	     "jnz 1f\n\t"
	     "mov $1, %[valid]\n\t"
	     "1:"
	     : [ar] "=r" (ar), [valid] "+rm" (valid)
	     : [cs] "r" (cs));

	if (!valid)
		return false;

	if ((ar & AR_TYPE_MASK) != AR_TYPE_RWDATA &&
	    (ar & AR_TYPE_MASK) != AR_TYPE_RWDATA_EXPDOWN)
		return false;

	return (ar & AR_P);
}

/* Number of errors in the current test case. */
static volatile sig_atomic_t nerrs;

static void validate_signal_ss(int sig, ucontext_t *ctx)
{
#ifdef __x86_64__
	bool was_64bit = (cs_bitness(*csptr(ctx)) == 64);

	if (!(ctx->uc_flags & UC_SIGCONTEXT_SS)) {
		printf("[FAIL]\tUC_SIGCONTEXT_SS was not set\n");
		nerrs++;

		/*
		 * This happens on Linux 4.1.  The rest will fail, too, so
		 * return now to reduce the noise.
		 */
		return;
	}

	/* UC_STRICT_RESTORE_SS is set iff we came from 64-bit mode. */
	if (!!(ctx->uc_flags & UC_STRICT_RESTORE_SS) != was_64bit) {
		printf("[FAIL]\tUC_STRICT_RESTORE_SS was wrong in signal %d\n",
		       sig);
		nerrs++;
	}

	if (is_valid_ss(*ssptr(ctx))) {
		/*
		 * DOSEMU was written before 64-bit sigcontext had SS, and
		 * it tries to figure out the signal source SS by looking at
		 * the physical register.  Make sure that keeps working.
		 */
		unsigned short hw_ss;
		asm ("mov %%ss, %0" : "=rm" (hw_ss));
		if (hw_ss != *ssptr(ctx)) {
			printf("[FAIL]\tHW SS didn't match saved SS\n");
			nerrs++;
		}
	}
#endif
}

/*
 * SIGUSR1 handler.  Sets CS and SS as requested and points IP to the
 * int3 trampoline.  Sets SP to a large known value so that we can see
 * whether the value round-trips back to user mode correctly.
 */
static void sigusr1(int sig, siginfo_t *info, void *ctx_void)
{
	ucontext_t *ctx = (ucontext_t*)ctx_void;

	validate_signal_ss(sig, ctx);

	memcpy(&initial_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));

	*csptr(ctx) = sig_cs;
	*ssptr(ctx) = sig_ss;

	ctx->uc_mcontext.gregs[REG_IP] =
		sig_cs == code16_sel ? 0 : (unsigned long)&int3;
	ctx->uc_mcontext.gregs[REG_SP] = (unsigned long)0x8badf00d5aadc0deULL;
	ctx->uc_mcontext.gregs[REG_CX] = 0;

#ifdef __i386__
	/*
	 * Make sure the kernel doesn't inadvertently use DS or ES-relative
	 * accesses in a region where user DS or ES is loaded.
	 *
	 * Skip this for 64-bit builds because long mode doesn't care about
	 * DS and ES and skipping it increases test coverage a little bit,
	 * since 64-bit kernels can still run the 32-bit build.
	 */
	ctx->uc_mcontext.gregs[REG_DS] = 0;
	ctx->uc_mcontext.gregs[REG_ES] = 0;
#endif

	memcpy(&requested_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
	requested_regs[REG_CX] = *ssptr(ctx);	/* The asm code does this. */

	return;
}

/*
 * Called after a successful sigreturn (via int3) or from a failed
 * sigreturn (directly by kernel).  Restores our state so that the
 * original raise(SIGUSR1) returns.
 */
static void sigtrap(int sig, siginfo_t *info, void *ctx_void)
{
	ucontext_t *ctx = (ucontext_t*)ctx_void;

	validate_signal_ss(sig, ctx);

	sig_err = ctx->uc_mcontext.gregs[REG_ERR];
	sig_trapno = ctx->uc_mcontext.gregs[REG_TRAPNO];

	unsigned short ss;
	asm ("mov %%ss,%0" : "=r" (ss));

	greg_t asm_ss = ctx->uc_mcontext.gregs[REG_CX];
	if (asm_ss != sig_ss && sig == SIGTRAP) {
		/* Sanity check failure. */
		printf("[FAIL]\tSIGTRAP: ss = %hx, frame ss = %hx, ax = %llx\n",
		       ss, *ssptr(ctx), (unsigned long long)asm_ss);
		nerrs++;
	}

	memcpy(&resulting_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
	memcpy(&ctx->uc_mcontext.gregs, &initial_regs, sizeof(gregset_t));

#ifdef __x86_64__
	if (sig_corrupt_final_ss) {
		if (ctx->uc_flags & UC_STRICT_RESTORE_SS) {
			printf("[FAIL]\tUC_STRICT_RESTORE_SS was set inappropriately\n");
			nerrs++;
		} else {
			/*
			 * DOSEMU transitions from 32-bit to 64-bit mode by
			 * adjusting sigcontext, and it requires that this work
			 * even if the saved SS is bogus.
			 */
			printf("\tCorrupting SS on return to 64-bit mode\n");
			*ssptr(ctx) = 0;
		}
	}
#endif

	sig_trapped = sig;
}

#ifdef __x86_64__
/* Tests recovery if !UC_STRICT_RESTORE_SS */
static void sigusr2(int sig, siginfo_t *info, void *ctx_void)
{
	ucontext_t *ctx = (ucontext_t*)ctx_void;

	if (!(ctx->uc_flags & UC_STRICT_RESTORE_SS)) {
		printf("[FAIL]\traise(2) didn't set UC_STRICT_RESTORE_SS\n");
		nerrs++;
		return;  /* We can't do the rest. */
	}

	ctx->uc_flags &= ~UC_STRICT_RESTORE_SS;
	*ssptr(ctx) = 0;

	/* Return.  The kernel should recover without sending another signal. */
}

static int test_nonstrict_ss(void)
{
	clearhandler(SIGUSR1);
	clearhandler(SIGTRAP);
	clearhandler(SIGSEGV);
	clearhandler(SIGILL);
	sethandler(SIGUSR2, sigusr2, 0);

	nerrs = 0;

	printf("[RUN]\tClear UC_STRICT_RESTORE_SS and corrupt SS\n");
	raise(SIGUSR2);
	if (!nerrs)
		printf("[OK]\tIt worked\n");

	return nerrs;
}
#endif

/* Finds a usable code segment of the requested bitness. */
int find_cs(int bitness)
{
	unsigned short my_cs;

	asm ("mov %%cs,%0" :  "=r" (my_cs));

	if (cs_bitness(my_cs) == bitness)
		return my_cs;
	if (cs_bitness(my_cs + (2 << 3)) == bitness)
		return my_cs + (2 << 3);
	if (my_cs > (2<<3) && cs_bitness(my_cs - (2 << 3)) == bitness)
	    return my_cs - (2 << 3);
	if (cs_bitness(code16_sel) == bitness)
		return code16_sel;

	printf("[WARN]\tCould not find %d-bit CS\n", bitness);
	return -1;
}

static int test_valid_sigreturn(int cs_bits, bool use_16bit_ss, int force_ss)
{
	int cs = find_cs(cs_bits);
	if (cs == -1) {
		printf("[SKIP]\tCode segment unavailable for %d-bit CS, %d-bit SS\n",
		       cs_bits, use_16bit_ss ? 16 : 32);
		return 0;
	}

	if (force_ss != -1) {
		sig_ss = force_ss;
	} else {
		if (use_16bit_ss) {
			if (!data16_sel) {
				printf("[SKIP]\tData segment unavailable for %d-bit CS, 16-bit SS\n",
				       cs_bits);
				return 0;
			}
			sig_ss = data16_sel;
		} else {
			asm volatile ("mov %%ss,%0" : "=r" (sig_ss));
		}
	}

	sig_cs = cs;

	printf("[RUN]\tValid sigreturn: %d-bit CS (%hx), %d-bit SS (%hx%s)\n",
	       cs_bits, sig_cs, use_16bit_ss ? 16 : 32, sig_ss,
	       (sig_ss & 4) ? "" : ", GDT");

	raise(SIGUSR1);

	nerrs = 0;

	/*
	 * Check that each register had an acceptable value when the
	 * int3 trampoline was invoked.
	 */
	for (int i = 0; i < NGREG; i++) {
		greg_t req = requested_regs[i], res = resulting_regs[i];

		if (i == REG_TRAPNO || i == REG_IP)
			continue;	/* don't care */

		if (i == REG_SP) {
			/*
			 * If we were using a 16-bit stack segment, then
			 * the kernel is a bit stuck: IRET only restores
			 * the low 16 bits of ESP/RSP if SS is 16-bit.
			 * The kernel uses a hack to restore bits 31:16,
			 * but that hack doesn't help with bits 63:32.
			 * On Intel CPUs, bits 63:32 end up zeroed, and, on
			 * AMD CPUs, they leak the high bits of the kernel
			 * espfix64 stack pointer.  There's very little that
			 * the kernel can do about it.
			 *
			 * Similarly, if we are returning to a 32-bit context,
			 * the CPU will often lose the high 32 bits of RSP.
			 */

			if (res == req)
				continue;

			if (cs_bits != 64 && ((res ^ req) & 0xFFFFFFFF) == 0) {
				printf("[NOTE]\tSP: %llx -> %llx\n",
				       (unsigned long long)req,
				       (unsigned long long)res);
				continue;
			}

			printf("[FAIL]\tSP mismatch: requested 0x%llx; got 0x%llx\n",
			       (unsigned long long)requested_regs[i],
			       (unsigned long long)resulting_regs[i]);
			nerrs++;
			continue;
		}

		bool ignore_reg = false;
#if __i386__
		if (i == REG_UESP)
			ignore_reg = true;
#else
		if (i == REG_CSGSFS) {
			struct selectors *req_sels =
				(void *)&requested_regs[REG_CSGSFS];
			struct selectors *res_sels =
				(void *)&resulting_regs[REG_CSGSFS];
			if (req_sels->cs != res_sels->cs) {
				printf("[FAIL]\tCS mismatch: requested 0x%hx; got 0x%hx\n",
				       req_sels->cs, res_sels->cs);
				nerrs++;
			}

			if (req_sels->ss != res_sels->ss) {
				printf("[FAIL]\tSS mismatch: requested 0x%hx; got 0x%hx\n",
				       req_sels->ss, res_sels->ss);
				nerrs++;
			}

			continue;
		}
#endif

		/* Sanity check on the kernel */
		if (i == REG_CX && req != res) {
			printf("[FAIL]\tCX (saved SP) mismatch: requested 0x%llx; got 0x%llx\n",
			       (unsigned long long)req,
			       (unsigned long long)res);
			nerrs++;
			continue;
		}

		if (req != res && !ignore_reg) {
			printf("[FAIL]\tReg %d mismatch: requested 0x%llx; got 0x%llx\n",
			       i, (unsigned long long)req,
			       (unsigned long long)res);
			nerrs++;
		}
	}

	if (nerrs == 0)
		printf("[OK]\tall registers okay\n");

	return nerrs;
}

static int test_bad_iret(int cs_bits, unsigned short ss, int force_cs)
{
	int cs = force_cs == -1 ? find_cs(cs_bits) : force_cs;
	if (cs == -1)
		return 0;

	sig_cs = cs;
	sig_ss = ss;

	printf("[RUN]\t%d-bit CS (%hx), bogus SS (%hx)\n",
	       cs_bits, sig_cs, sig_ss);

	sig_trapped = 0;
	raise(SIGUSR1);
	if (sig_trapped) {
		char errdesc[32] = "";
		if (sig_err) {
			const char *src = (sig_err & 1) ? " EXT" : "";
			const char *table;
			if ((sig_err & 0x6) == 0x0)
				table = "GDT";
			else if ((sig_err & 0x6) == 0x4)
				table = "LDT";
			else if ((sig_err & 0x6) == 0x2)
				table = "IDT";
			else
				table = "???";

			sprintf(errdesc, "%s%s index %d, ",
				table, src, sig_err >> 3);
		}

		char trapname[32];
		if (sig_trapno == 13)
			strcpy(trapname, "GP");
		else if (sig_trapno == 11)
			strcpy(trapname, "NP");
		else if (sig_trapno == 12)
			strcpy(trapname, "SS");
		else if (sig_trapno == 32)
			strcpy(trapname, "IRET");  /* X86_TRAP_IRET */
		else
			sprintf(trapname, "%d", sig_trapno);

		printf("[OK]\tGot #%s(0x%lx) (i.e. %s%s)\n",
		       trapname, (unsigned long)sig_err,
		       errdesc, strsignal(sig_trapped));
		return 0;
	} else {
		/*
		 * This also implicitly tests UC_STRICT_RESTORE_SS:
		 * We check that these signals set UC_STRICT_RESTORE_SS and,
		 * if UC_STRICT_RESTORE_SS doesn't cause strict behavior,
		 * then we won't get SIGSEGV.
		 */
		printf("[FAIL]\tDid not get SIGSEGV\n");
		return 1;
	}
}

int main()
{
	int total_nerrs = 0;
	unsigned short my_cs, my_ss;

	asm volatile ("mov %%cs,%0" : "=r" (my_cs));
	asm volatile ("mov %%ss,%0" : "=r" (my_ss));
	setup_ldt();

	stack_t stack = {
		/* Our sigaltstack scratch space. */
		.ss_sp = malloc(sizeof(char) * SIGSTKSZ),
		.ss_size = SIGSTKSZ,
	};
	if (sigaltstack(&stack, NULL) != 0)
		err(1, "sigaltstack");

	sethandler(SIGUSR1, sigusr1, 0);
	sethandler(SIGTRAP, sigtrap, SA_ONSTACK);

	/* Easy cases: return to a 32-bit SS in each possible CS bitness. */
	total_nerrs += test_valid_sigreturn(64, false, -1);
	total_nerrs += test_valid_sigreturn(32, false, -1);
	total_nerrs += test_valid_sigreturn(16, false, -1);

	/*
	 * Test easy espfix cases: return to a 16-bit LDT SS in each possible
	 * CS bitness.  NB: with a long mode CS, the SS bitness is irrelevant.
	 *
	 * This catches the original missing-espfix-on-64-bit-kernels issue
	 * as well as CVE-2014-8134.
	 */
	total_nerrs += test_valid_sigreturn(64, true, -1);
	total_nerrs += test_valid_sigreturn(32, true, -1);
	total_nerrs += test_valid_sigreturn(16, true, -1);

	if (gdt_data16_idx) {
		/*
		 * For performance reasons, Linux skips espfix if SS points
		 * to the GDT.  If we were able to allocate a 16-bit SS in
		 * the GDT, see if it leaks parts of the kernel stack pointer.
		 *
		 * This tests for CVE-2014-8133.
		 */
		total_nerrs += test_valid_sigreturn(64, true,
						    GDT3(gdt_data16_idx));
		total_nerrs += test_valid_sigreturn(32, true,
						    GDT3(gdt_data16_idx));
		total_nerrs += test_valid_sigreturn(16, true,
						    GDT3(gdt_data16_idx));
	}

#ifdef __x86_64__
	/* Nasty ABI case: check SS corruption handling. */
	sig_corrupt_final_ss = 1;
	total_nerrs += test_valid_sigreturn(32, false, -1);
	total_nerrs += test_valid_sigreturn(32, true, -1);
	sig_corrupt_final_ss = 0;
#endif

	/*
	 * We're done testing valid sigreturn cases.  Now we test states
	 * for which sigreturn itself will succeed but the subsequent
	 * entry to user mode will fail.
	 *
	 * Depending on the failure mode and the kernel bitness, these
	 * entry failures can generate SIGSEGV, SIGBUS, or SIGILL.
	 */
	clearhandler(SIGTRAP);
	sethandler(SIGSEGV, sigtrap, SA_ONSTACK);
	sethandler(SIGBUS, sigtrap, SA_ONSTACK);
	sethandler(SIGILL, sigtrap, SA_ONSTACK);  /* 32-bit kernels do this */

	/* Easy failures: invalid SS, resulting in #GP(0) */
	test_bad_iret(64, ldt_nonexistent_sel, -1);
	test_bad_iret(32, ldt_nonexistent_sel, -1);
	test_bad_iret(16, ldt_nonexistent_sel, -1);

	/* These fail because SS isn't a data segment, resulting in #GP(SS) */
	test_bad_iret(64, my_cs, -1);
	test_bad_iret(32, my_cs, -1);
	test_bad_iret(16, my_cs, -1);

	/* Try to return to a not-present code segment, triggering #NP(SS). */
	test_bad_iret(32, my_ss, npcode32_sel);

	/*
	 * Try to return to a not-present but otherwise valid data segment.
	 * This will cause IRET to fail with #SS on the espfix stack.  This
	 * exercises CVE-2014-9322.
	 *
	 * Note that, if espfix is enabled, 64-bit Linux will lose track
	 * of the actual cause of failure and report #GP(0) instead.
	 * This would be very difficult for Linux to avoid, because
	 * espfix64 causes IRET failures to be promoted to #DF, so the
	 * original exception frame is never pushed onto the stack.
	 */
	test_bad_iret(32, npdata32_sel, -1);

	/*
	 * Try to return to a not-present but otherwise valid data
	 * segment without invoking espfix.  Newer kernels don't allow
	 * this to happen in the first place.  On older kernels, though,
	 * this can trigger CVE-2014-9322.
	 */
	if (gdt_npdata32_idx)
		test_bad_iret(32, GDT3(gdt_npdata32_idx), -1);

#ifdef __x86_64__
	total_nerrs += test_nonstrict_ss();
#endif

	free(stack.ss_sp);
	return total_nerrs ? 1 : 0;
}