Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | // SPDX-License-Identifier: GPL-2.0-only /******************************************************************************* Copyright (C) 2013 Vayavya Labs Pvt Ltd This implements all the API for managing HW timestamp & PTP. Author: Rayagond Kokatanur <rayagond@vayavyalabs.com> Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> *******************************************************************************/ #include <linux/io.h> #include <linux/iopoll.h> #include <linux/delay.h> #include <linux/ptp_clock_kernel.h> #include "common.h" #include "stmmac_ptp.h" #include "dwmac4.h" #include "stmmac.h" static void config_hw_tstamping(void __iomem *ioaddr, u32 data) { writel(data, ioaddr + PTP_TCR); } static void config_sub_second_increment(void __iomem *ioaddr, u32 ptp_clock, int gmac4, u32 *ssinc) { u32 value = readl(ioaddr + PTP_TCR); unsigned long data; u32 reg_value; /* For GMAC3.x, 4.x versions, in "fine adjustement mode" set sub-second * increment to twice the number of nanoseconds of a clock cycle. * The calculation of the default_addend value by the caller will set it * to mid-range = 2^31 when the remainder of this division is zero, * which will make the accumulator overflow once every 2 ptp_clock * cycles, adding twice the number of nanoseconds of a clock cycle : * 2000000000ULL / ptp_clock. */ if (value & PTP_TCR_TSCFUPDT) data = (2000000000ULL / ptp_clock); else data = (1000000000ULL / ptp_clock); /* 0.465ns accuracy */ if (!(value & PTP_TCR_TSCTRLSSR)) data = (data * 1000) / 465; if (data > PTP_SSIR_SSINC_MAX) data = PTP_SSIR_SSINC_MAX; reg_value = data; if (gmac4) reg_value <<= GMAC4_PTP_SSIR_SSINC_SHIFT; writel(reg_value, ioaddr + PTP_SSIR); if (ssinc) *ssinc = data; } static void hwtstamp_correct_latency(struct stmmac_priv *priv) { void __iomem *ioaddr = priv->ptpaddr; u32 reg_tsic, reg_tsicsns; u32 reg_tsec, reg_tsecsns; u64 scaled_ns; u32 val; /* MAC-internal ingress latency */ scaled_ns = readl(ioaddr + PTP_TS_INGR_LAT); /* See section 11.7.2.5.3.1 "Ingress Correction" on page 4001 of * i.MX8MP Applications Processor Reference Manual Rev. 1, 06/2021 */ val = readl(ioaddr + PTP_TCR); if (val & PTP_TCR_TSCTRLSSR) /* nanoseconds field is in decimal format with granularity of 1ns/bit */ scaled_ns = ((u64)NSEC_PER_SEC << 16) - scaled_ns; else /* nanoseconds field is in binary format with granularity of ~0.466ns/bit */ scaled_ns = ((1ULL << 31) << 16) - DIV_U64_ROUND_CLOSEST(scaled_ns * PSEC_PER_NSEC, 466U); reg_tsic = scaled_ns >> 16; reg_tsicsns = scaled_ns & 0xff00; /* set bit 31 for 2's compliment */ reg_tsic |= BIT(31); writel(reg_tsic, ioaddr + PTP_TS_INGR_CORR_NS); writel(reg_tsicsns, ioaddr + PTP_TS_INGR_CORR_SNS); /* MAC-internal egress latency */ scaled_ns = readl(ioaddr + PTP_TS_EGR_LAT); reg_tsec = scaled_ns >> 16; reg_tsecsns = scaled_ns & 0xff00; writel(reg_tsec, ioaddr + PTP_TS_EGR_CORR_NS); writel(reg_tsecsns, ioaddr + PTP_TS_EGR_CORR_SNS); } static int init_systime(void __iomem *ioaddr, u32 sec, u32 nsec) { u32 value; writel(sec, ioaddr + PTP_STSUR); writel(nsec, ioaddr + PTP_STNSUR); /* issue command to initialize the system time value */ value = readl(ioaddr + PTP_TCR); value |= PTP_TCR_TSINIT; writel(value, ioaddr + PTP_TCR); /* wait for present system time initialize to complete */ return readl_poll_timeout_atomic(ioaddr + PTP_TCR, value, !(value & PTP_TCR_TSINIT), 10, 100000); } static int config_addend(void __iomem *ioaddr, u32 addend) { u32 value; int limit; writel(addend, ioaddr + PTP_TAR); /* issue command to update the addend value */ value = readl(ioaddr + PTP_TCR); value |= PTP_TCR_TSADDREG; writel(value, ioaddr + PTP_TCR); /* wait for present addend update to complete */ limit = 10; while (limit--) { if (!(readl(ioaddr + PTP_TCR) & PTP_TCR_TSADDREG)) break; mdelay(10); } if (limit < 0) return -EBUSY; return 0; } static int adjust_systime(void __iomem *ioaddr, u32 sec, u32 nsec, int add_sub, int gmac4) { u32 value; int limit; if (add_sub) { /* If the new sec value needs to be subtracted with * the system time, then MAC_STSUR reg should be * programmed with (2^32 – <new_sec_value>) */ if (gmac4) sec = -sec; value = readl(ioaddr + PTP_TCR); if (value & PTP_TCR_TSCTRLSSR) nsec = (PTP_DIGITAL_ROLLOVER_MODE - nsec); else nsec = (PTP_BINARY_ROLLOVER_MODE - nsec); } writel(sec, ioaddr + PTP_STSUR); value = (add_sub << PTP_STNSUR_ADDSUB_SHIFT) | nsec; writel(value, ioaddr + PTP_STNSUR); /* issue command to initialize the system time value */ value = readl(ioaddr + PTP_TCR); value |= PTP_TCR_TSUPDT; writel(value, ioaddr + PTP_TCR); /* wait for present system time adjust/update to complete */ limit = 10; while (limit--) { if (!(readl(ioaddr + PTP_TCR) & PTP_TCR_TSUPDT)) break; mdelay(10); } if (limit < 0) return -EBUSY; return 0; } static void get_systime(void __iomem *ioaddr, u64 *systime) { u64 ns, sec0, sec1; /* Get the TSS value */ sec1 = readl_relaxed(ioaddr + PTP_STSR); do { sec0 = sec1; /* Get the TSSS value */ ns = readl_relaxed(ioaddr + PTP_STNSR); /* Get the TSS value */ sec1 = readl_relaxed(ioaddr + PTP_STSR); } while (sec0 != sec1); if (systime) *systime = ns + (sec1 * 1000000000ULL); } static void get_ptptime(void __iomem *ptpaddr, u64 *ptp_time) { u64 ns; ns = readl(ptpaddr + PTP_ATNR); ns += readl(ptpaddr + PTP_ATSR) * NSEC_PER_SEC; *ptp_time = ns; } static void timestamp_interrupt(struct stmmac_priv *priv) { u32 num_snapshot, ts_status, tsync_int; struct ptp_clock_event event; u32 acr_value, channel; unsigned long flags; u64 ptp_time; int i; if (priv->plat->flags & STMMAC_FLAG_INT_SNAPSHOT_EN) { wake_up(&priv->tstamp_busy_wait); return; } tsync_int = readl(priv->ioaddr + GMAC_INT_STATUS) & GMAC_INT_TSIE; if (!tsync_int) return; /* Read timestamp status to clear interrupt from either external * timestamp or start/end of PPS. */ ts_status = readl(priv->ioaddr + GMAC_TIMESTAMP_STATUS); if (!(priv->plat->flags & STMMAC_FLAG_EXT_SNAPSHOT_EN)) return; num_snapshot = (ts_status & GMAC_TIMESTAMP_ATSNS_MASK) >> GMAC_TIMESTAMP_ATSNS_SHIFT; acr_value = readl(priv->ptpaddr + PTP_ACR); channel = ilog2(FIELD_GET(PTP_ACR_MASK, acr_value)); for (i = 0; i < num_snapshot; i++) { read_lock_irqsave(&priv->ptp_lock, flags); get_ptptime(priv->ptpaddr, &ptp_time); read_unlock_irqrestore(&priv->ptp_lock, flags); event.type = PTP_CLOCK_EXTTS; event.index = channel; event.timestamp = ptp_time; ptp_clock_event(priv->ptp_clock, &event); } } const struct stmmac_hwtimestamp stmmac_ptp = { .config_hw_tstamping = config_hw_tstamping, .init_systime = init_systime, .config_sub_second_increment = config_sub_second_increment, .config_addend = config_addend, .adjust_systime = adjust_systime, .get_systime = get_systime, .get_ptptime = get_ptptime, .timestamp_interrupt = timestamp_interrupt, .hwtstamp_correct_latency = hwtstamp_correct_latency, }; |