Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018, The Linux Foundation. All rights reserved. * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf */ #include <linux/atomic.h> #include <linux/auxiliary_bus.h> #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/debugfs.h> #include <linux/gpio/consumer.h> #include <linux/gpio/driver.h> #include <linux/i2c.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of_graph.h> #include <linux/pm_runtime.h> #include <linux/pwm.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <asm/unaligned.h> #include <drm/display/drm_dp_aux_bus.h> #include <drm/display/drm_dp_helper.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_bridge_connector.h> #include <drm/drm_edid.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_panel.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> #define SN_DEVICE_REV_REG 0x08 #define SN_DPPLL_SRC_REG 0x0A #define DPPLL_CLK_SRC_DSICLK BIT(0) #define REFCLK_FREQ_MASK GENMASK(3, 1) #define REFCLK_FREQ(x) ((x) << 1) #define DPPLL_SRC_DP_PLL_LOCK BIT(7) #define SN_PLL_ENABLE_REG 0x0D #define SN_DSI_LANES_REG 0x10 #define CHA_DSI_LANES_MASK GENMASK(4, 3) #define CHA_DSI_LANES(x) ((x) << 3) #define SN_DSIA_CLK_FREQ_REG 0x12 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D #define CHA_HSYNC_POLARITY BIT(7) #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31 #define CHA_VSYNC_POLARITY BIT(7) #define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34 #define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38 #define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A #define SN_LN_ASSIGN_REG 0x59 #define LN_ASSIGN_WIDTH 2 #define SN_ENH_FRAME_REG 0x5A #define VSTREAM_ENABLE BIT(3) #define LN_POLRS_OFFSET 4 #define LN_POLRS_MASK 0xf0 #define SN_DATA_FORMAT_REG 0x5B #define BPP_18_RGB BIT(0) #define SN_HPD_DISABLE_REG 0x5C #define HPD_DISABLE BIT(0) #define HPD_DEBOUNCED_STATE BIT(4) #define SN_GPIO_IO_REG 0x5E #define SN_GPIO_INPUT_SHIFT 4 #define SN_GPIO_OUTPUT_SHIFT 0 #define SN_GPIO_CTRL_REG 0x5F #define SN_GPIO_MUX_INPUT 0 #define SN_GPIO_MUX_OUTPUT 1 #define SN_GPIO_MUX_SPECIAL 2 #define SN_GPIO_MUX_MASK 0x3 #define SN_AUX_WDATA_REG(x) (0x64 + (x)) #define SN_AUX_ADDR_19_16_REG 0x74 #define SN_AUX_ADDR_15_8_REG 0x75 #define SN_AUX_ADDR_7_0_REG 0x76 #define SN_AUX_ADDR_MASK GENMASK(19, 0) #define SN_AUX_LENGTH_REG 0x77 #define SN_AUX_CMD_REG 0x78 #define AUX_CMD_SEND BIT(0) #define AUX_CMD_REQ(x) ((x) << 4) #define SN_AUX_RDATA_REG(x) (0x79 + (x)) #define SN_SSC_CONFIG_REG 0x93 #define DP_NUM_LANES_MASK GENMASK(5, 4) #define DP_NUM_LANES(x) ((x) << 4) #define SN_DATARATE_CONFIG_REG 0x94 #define DP_DATARATE_MASK GENMASK(7, 5) #define DP_DATARATE(x) ((x) << 5) #define SN_TRAINING_SETTING_REG 0x95 #define SCRAMBLE_DISABLE BIT(4) #define SN_ML_TX_MODE_REG 0x96 #define ML_TX_MAIN_LINK_OFF 0 #define ML_TX_NORMAL_MODE BIT(0) #define SN_PWM_PRE_DIV_REG 0xA0 #define SN_BACKLIGHT_SCALE_REG 0xA1 #define BACKLIGHT_SCALE_MAX 0xFFFF #define SN_BACKLIGHT_REG 0xA3 #define SN_PWM_EN_INV_REG 0xA5 #define SN_PWM_INV_MASK BIT(0) #define SN_PWM_EN_MASK BIT(1) #define SN_AUX_CMD_STATUS_REG 0xF4 #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3) #define AUX_IRQ_STATUS_AUX_SHORT BIT(5) #define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6) #define MIN_DSI_CLK_FREQ_MHZ 40 /* fudge factor required to account for 8b/10b encoding */ #define DP_CLK_FUDGE_NUM 10 #define DP_CLK_FUDGE_DEN 8 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */ #define SN_AUX_MAX_PAYLOAD_BYTES 16 #define SN_REGULATOR_SUPPLY_NUM 4 #define SN_MAX_DP_LANES 4 #define SN_NUM_GPIOS 4 #define SN_GPIO_PHYSICAL_OFFSET 1 #define SN_LINK_TRAINING_TRIES 10 #define SN_PWM_GPIO_IDX 3 /* 4th GPIO */ /** * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver. * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality. * @gpio_aux: AUX-bus sub device for GPIO controller functionality. * @aux_aux: AUX-bus sub device for eDP AUX channel functionality. * @pwm_aux: AUX-bus sub device for PWM controller functionality. * * @dev: Pointer to the top level (i2c) device. * @regmap: Regmap for accessing i2c. * @aux: Our aux channel. * @bridge: Our bridge. * @connector: Our connector. * @host_node: Remote DSI node. * @dsi: Our MIPI DSI source. * @refclk: Our reference clock. * @next_bridge: The bridge on the eDP side. * @enable_gpio: The GPIO we toggle to enable the bridge. * @supplies: Data for bulk enabling/disabling our regulators. * @dp_lanes: Count of dp_lanes we're using. * @ln_assign: Value to program to the LN_ASSIGN register. * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG. * @comms_enabled: If true then communication over the aux channel is enabled. * @comms_mutex: Protects modification of comms_enabled. * * @gchip: If we expose our GPIOs, this is used. * @gchip_output: A cache of whether we've set GPIOs to output. This * serves double-duty of keeping track of the direction and * also keeping track of whether we've incremented the * pm_runtime reference count for this pin, which we do * whenever a pin is configured as an output. This is a * bitmap so we can do atomic ops on it without an extra * lock so concurrent users of our 4 GPIOs don't stomp on * each other's read-modify-write. * * @pchip: pwm_chip if the PWM is exposed. * @pwm_enabled: Used to track if the PWM signal is currently enabled. * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM. * @pwm_refclk_freq: Cache for the reference clock input to the PWM. */ struct ti_sn65dsi86 { struct auxiliary_device *bridge_aux; struct auxiliary_device *gpio_aux; struct auxiliary_device *aux_aux; struct auxiliary_device *pwm_aux; struct device *dev; struct regmap *regmap; struct drm_dp_aux aux; struct drm_bridge bridge; struct drm_connector *connector; struct device_node *host_node; struct mipi_dsi_device *dsi; struct clk *refclk; struct drm_bridge *next_bridge; struct gpio_desc *enable_gpio; struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM]; int dp_lanes; u8 ln_assign; u8 ln_polrs; bool comms_enabled; struct mutex comms_mutex; #if defined(CONFIG_OF_GPIO) struct gpio_chip gchip; DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS); #endif #if defined(CONFIG_PWM) struct pwm_chip pchip; bool pwm_enabled; atomic_t pwm_pin_busy; #endif unsigned int pwm_refclk_freq; }; static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = { { .range_min = 0, .range_max = 0xFF }, }; static const struct regmap_access_table ti_sn_bridge_volatile_table = { .yes_ranges = ti_sn65dsi86_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges), }; static const struct regmap_config ti_sn65dsi86_regmap_config = { .reg_bits = 8, .val_bits = 8, .volatile_table = &ti_sn_bridge_volatile_table, .cache_type = REGCACHE_NONE, .max_register = 0xFF, }; static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata, unsigned int reg, u16 *val) { u8 buf[2]; int ret; ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf)); if (ret) return ret; *val = buf[0] | (buf[1] << 8); return 0; } static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata, unsigned int reg, u16 val) { u8 buf[2] = { val & 0xff, val >> 8 }; regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf)); } static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata) { u32 bit_rate_khz, clk_freq_khz; struct drm_display_mode *mode = &pdata->bridge.encoder->crtc->state->adjusted_mode; bit_rate_khz = mode->clock * mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2); return clk_freq_khz; } /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */ static const u32 ti_sn_bridge_refclk_lut[] = { 12000000, 19200000, 26000000, 27000000, 38400000, }; /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */ static const u32 ti_sn_bridge_dsiclk_lut[] = { 468000000, 384000000, 416000000, 486000000, 460800000, }; static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata) { int i; u32 refclk_rate; const u32 *refclk_lut; size_t refclk_lut_size; if (pdata->refclk) { refclk_rate = clk_get_rate(pdata->refclk); refclk_lut = ti_sn_bridge_refclk_lut; refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut); clk_prepare_enable(pdata->refclk); } else { refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000; refclk_lut = ti_sn_bridge_dsiclk_lut; refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut); } /* for i equals to refclk_lut_size means default frequency */ for (i = 0; i < refclk_lut_size; i++) if (refclk_lut[i] == refclk_rate) break; /* avoid buffer overflow and "1" is the default rate in the datasheet. */ if (i >= refclk_lut_size) i = 1; regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK, REFCLK_FREQ(i)); /* * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG, * regardless of its actual sourcing. */ pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i]; } static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata) { mutex_lock(&pdata->comms_mutex); /* configure bridge ref_clk */ ti_sn_bridge_set_refclk_freq(pdata); /* * HPD on this bridge chip is a bit useless. This is an eDP bridge * so the HPD is an internal signal that's only there to signal that * the panel is done powering up. ...but the bridge chip debounces * this signal by between 100 ms and 400 ms (depending on process, * voltage, and temperate--I measured it at about 200 ms). One * particular panel asserted HPD 84 ms after it was powered on meaning * that we saw HPD 284 ms after power on. ...but the same panel said * that instead of looking at HPD you could just hardcode a delay of * 200 ms. We'll assume that the panel driver will have the hardcoded * delay in its prepare and always disable HPD. * * If HPD somehow makes sense on some future panel we'll have to * change this to be conditional on someone specifying that HPD should * be used. */ regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE, HPD_DISABLE); pdata->comms_enabled = true; mutex_unlock(&pdata->comms_mutex); } static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata) { mutex_lock(&pdata->comms_mutex); pdata->comms_enabled = false; clk_disable_unprepare(pdata->refclk); mutex_unlock(&pdata->comms_mutex); } static int __maybe_unused ti_sn65dsi86_resume(struct device *dev) { struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); int ret; ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); if (ret) { DRM_ERROR("failed to enable supplies %d\n", ret); return ret; } /* td2: min 100 us after regulators before enabling the GPIO */ usleep_range(100, 110); gpiod_set_value_cansleep(pdata->enable_gpio, 1); /* * If we have a reference clock we can enable communication w/ the * panel (including the aux channel) w/out any need for an input clock * so we can do it in resume which lets us read the EDID before * pre_enable(). Without a reference clock we need the MIPI reference * clock so reading early doesn't work. */ if (pdata->refclk) ti_sn65dsi86_enable_comms(pdata); return ret; } static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev) { struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); int ret; if (pdata->refclk) ti_sn65dsi86_disable_comms(pdata); gpiod_set_value_cansleep(pdata->enable_gpio, 0); ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); if (ret) DRM_ERROR("failed to disable supplies %d\n", ret); return ret; } static const struct dev_pm_ops ti_sn65dsi86_pm_ops = { SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static int status_show(struct seq_file *s, void *data) { struct ti_sn65dsi86 *pdata = s->private; unsigned int reg, val; seq_puts(s, "STATUS REGISTERS:\n"); pm_runtime_get_sync(pdata->dev); /* IRQ Status Registers, see Table 31 in datasheet */ for (reg = 0xf0; reg <= 0xf8; reg++) { regmap_read(pdata->regmap, reg, &val); seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val); } pm_runtime_put_autosuspend(pdata->dev); return 0; } DEFINE_SHOW_ATTRIBUTE(status); static void ti_sn65dsi86_debugfs_remove(void *data) { debugfs_remove_recursive(data); } static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata) { struct device *dev = pdata->dev; struct dentry *debugfs; int ret; debugfs = debugfs_create_dir(dev_name(dev), NULL); /* * We might get an error back if debugfs wasn't enabled in the kernel * so let's just silently return upon failure. */ if (IS_ERR_OR_NULL(debugfs)) return; ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs); if (ret) return; debugfs_create_file("status", 0600, debugfs, pdata, &status_fops); } /* ----------------------------------------------------------------------------- * Auxiliary Devices (*not* AUX) */ static void ti_sn65dsi86_uninit_aux(void *data) { auxiliary_device_uninit(data); } static void ti_sn65dsi86_delete_aux(void *data) { auxiliary_device_delete(data); } static void ti_sn65dsi86_aux_device_release(struct device *dev) { struct auxiliary_device *aux = container_of(dev, struct auxiliary_device, dev); kfree(aux); } static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata, struct auxiliary_device **aux_out, const char *name) { struct device *dev = pdata->dev; struct auxiliary_device *aux; int ret; aux = kzalloc(sizeof(*aux), GFP_KERNEL); if (!aux) return -ENOMEM; aux->name = name; aux->dev.parent = dev; aux->dev.release = ti_sn65dsi86_aux_device_release; device_set_of_node_from_dev(&aux->dev, dev); ret = auxiliary_device_init(aux); if (ret) { kfree(aux); return ret; } ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux); if (ret) return ret; ret = auxiliary_device_add(aux); if (ret) return ret; ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux); if (!ret) *aux_out = aux; return ret; } /* ----------------------------------------------------------------------------- * AUX Adapter */ static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux) { return container_of(aux, struct ti_sn65dsi86, aux); } static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) { struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux); u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE); u32 request_val = AUX_CMD_REQ(msg->request); u8 *buf = msg->buffer; unsigned int len = msg->size; unsigned int short_len; unsigned int val; int ret; u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG]; if (len > SN_AUX_MAX_PAYLOAD_BYTES) return -EINVAL; pm_runtime_get_sync(pdata->dev); mutex_lock(&pdata->comms_mutex); /* * If someone tries to do a DDC over AUX transaction before pre_enable() * on a device without a dedicated reference clock then we just can't * do it. Fail right away. This prevents non-refclk users from reading * the EDID before enabling the panel but such is life. */ if (!pdata->comms_enabled) { ret = -EIO; goto exit; } switch (request) { case DP_AUX_NATIVE_WRITE: case DP_AUX_I2C_WRITE: case DP_AUX_NATIVE_READ: case DP_AUX_I2C_READ: regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val); /* Assume it's good */ msg->reply = 0; break; default: ret = -EINVAL; goto exit; } BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32)); put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len, addr_len); regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len, ARRAY_SIZE(addr_len)); if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE) regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len); /* Clear old status bits before start so we don't get confused */ regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG, AUX_IRQ_STATUS_NAT_I2C_FAIL | AUX_IRQ_STATUS_AUX_RPLY_TOUT | AUX_IRQ_STATUS_AUX_SHORT); regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND); /* Zero delay loop because i2c transactions are slow already */ ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val, !(val & AUX_CMD_SEND), 0, 50 * 1000); if (ret) goto exit; ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val); if (ret) goto exit; if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) { /* * The hardware tried the message seven times per the DP spec * but it hit a timeout. We ignore defers here because they're * handled in hardware. */ ret = -ETIMEDOUT; goto exit; } if (val & AUX_IRQ_STATUS_AUX_SHORT) { ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &short_len); len = min(len, short_len); if (ret) goto exit; } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) { switch (request) { case DP_AUX_I2C_WRITE: case DP_AUX_I2C_READ: msg->reply |= DP_AUX_I2C_REPLY_NACK; break; case DP_AUX_NATIVE_READ: case DP_AUX_NATIVE_WRITE: msg->reply |= DP_AUX_NATIVE_REPLY_NACK; break; } len = 0; goto exit; } if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0) ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len); exit: mutex_unlock(&pdata->comms_mutex); pm_runtime_mark_last_busy(pdata->dev); pm_runtime_put_autosuspend(pdata->dev); if (ret) return ret; return len; } static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us) { /* * The HPD in this chip is a bit useless (See comment in * ti_sn65dsi86_enable_comms) so if our driver is expected to wait * for HPD, we just assume it's asserted after the wait_us delay. * * In case we are asked to wait forever (wait_us=0) take conservative * 500ms delay. */ if (wait_us == 0) wait_us = 500000; usleep_range(wait_us, wait_us + 1000); return 0; } static int ti_sn_aux_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id) { struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); int ret; pdata->aux.name = "ti-sn65dsi86-aux"; pdata->aux.dev = &adev->dev; pdata->aux.transfer = ti_sn_aux_transfer; pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted; drm_dp_aux_init(&pdata->aux); ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux); if (ret) return ret; /* * The eDP to MIPI bridge parts don't work until the AUX channel is * setup so we don't add it in the main driver probe, we add it now. */ return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge"); } static const struct auxiliary_device_id ti_sn_aux_id_table[] = { { .name = "ti_sn65dsi86.aux", }, {}, }; static struct auxiliary_driver ti_sn_aux_driver = { .name = "aux", .probe = ti_sn_aux_probe, .id_table = ti_sn_aux_id_table, }; /*------------------------------------------------------------------------------ * DRM Bridge */ static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge) { return container_of(bridge, struct ti_sn65dsi86, bridge); } static int ti_sn_attach_host(struct auxiliary_device *adev, struct ti_sn65dsi86 *pdata) { int val; struct mipi_dsi_host *host; struct mipi_dsi_device *dsi; struct device *dev = pdata->dev; const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge", .channel = 0, .node = NULL, }; host = of_find_mipi_dsi_host_by_node(pdata->host_node); if (!host) return -EPROBE_DEFER; dsi = devm_mipi_dsi_device_register_full(&adev->dev, host, &info); if (IS_ERR(dsi)) return PTR_ERR(dsi); /* TODO: setting to 4 MIPI lanes always for now */ dsi->lanes = 4; dsi->format = MIPI_DSI_FMT_RGB888; dsi->mode_flags = MIPI_DSI_MODE_VIDEO; /* check if continuous dsi clock is required or not */ pm_runtime_get_sync(dev); regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val); pm_runtime_put_autosuspend(dev); if (!(val & DPPLL_CLK_SRC_DSICLK)) dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS; pdata->dsi = dsi; return devm_mipi_dsi_attach(&adev->dev, dsi); } static int ti_sn_bridge_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); int ret; pdata->aux.drm_dev = bridge->dev; ret = drm_dp_aux_register(&pdata->aux); if (ret < 0) { drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret); return ret; } /* * Attach the next bridge. * We never want the next bridge to *also* create a connector. */ ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge, &pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR); if (ret < 0) goto err_initted_aux; if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) return 0; pdata->connector = drm_bridge_connector_init(pdata->bridge.dev, pdata->bridge.encoder); if (IS_ERR(pdata->connector)) { ret = PTR_ERR(pdata->connector); goto err_initted_aux; } drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder); return 0; err_initted_aux: drm_dp_aux_unregister(&pdata->aux); return ret; } static void ti_sn_bridge_detach(struct drm_bridge *bridge) { drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux); } static enum drm_mode_status ti_sn_bridge_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { /* maximum supported resolution is 4K at 60 fps */ if (mode->clock > 594000) return MODE_CLOCK_HIGH; /* * The front and back porch registers are 8 bits, and pulse width * registers are 15 bits, so reject any modes with larger periods. */ if ((mode->hsync_start - mode->hdisplay) > 0xff) return MODE_HBLANK_WIDE; if ((mode->vsync_start - mode->vdisplay) > 0xff) return MODE_VBLANK_WIDE; if ((mode->hsync_end - mode->hsync_start) > 0x7fff) return MODE_HSYNC_WIDE; if ((mode->vsync_end - mode->vsync_start) > 0x7fff) return MODE_VSYNC_WIDE; if ((mode->htotal - mode->hsync_end) > 0xff) return MODE_HBLANK_WIDE; if ((mode->vtotal - mode->vsync_end) > 0xff) return MODE_VBLANK_WIDE; return MODE_OK; } static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); /* disable video stream */ regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0); } static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata) { unsigned int bit_rate_mhz, clk_freq_mhz; unsigned int val; struct drm_display_mode *mode = &pdata->bridge.encoder->crtc->state->adjusted_mode; /* set DSIA clk frequency */ bit_rate_mhz = (mode->clock / 1000) * mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2); /* for each increment in val, frequency increases by 5MHz */ val = (MIN_DSI_CLK_FREQ_MHZ / 5) + (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF); regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val); } static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector) { if (connector->display_info.bpc <= 6) return 18; else return 24; } /* * LUT index corresponds to register value and * LUT values corresponds to dp data rate supported * by the bridge in Mbps unit. */ static const unsigned int ti_sn_bridge_dp_rate_lut[] = { 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400 }; static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp) { unsigned int bit_rate_khz, dp_rate_mhz; unsigned int i; struct drm_display_mode *mode = &pdata->bridge.encoder->crtc->state->adjusted_mode; /* Calculate minimum bit rate based on our pixel clock. */ bit_rate_khz = mode->clock * bpp; /* Calculate minimum DP data rate, taking 80% as per DP spec */ dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM, 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN); for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++) if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz) break; return i; } static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata) { unsigned int valid_rates = 0; unsigned int rate_per_200khz; unsigned int rate_mhz; u8 dpcd_val; int ret; int i, j; ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val); if (ret != 1) { DRM_DEV_ERROR(pdata->dev, "Can't read eDP rev (%d), assuming 1.1\n", ret); dpcd_val = DP_EDP_11; } if (dpcd_val >= DP_EDP_14) { /* eDP 1.4 devices must provide a custom table */ __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES, sink_rates, sizeof(sink_rates)); if (ret != sizeof(sink_rates)) { DRM_DEV_ERROR(pdata->dev, "Can't read supported rate table (%d)\n", ret); /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */ memset(sink_rates, 0, sizeof(sink_rates)); } for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { rate_per_200khz = le16_to_cpu(sink_rates[i]); if (!rate_per_200khz) break; rate_mhz = rate_per_200khz * 200 / 1000; for (j = 0; j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); j++) { if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz) valid_rates |= BIT(j); } } for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) { if (valid_rates & BIT(i)) return valid_rates; } DRM_DEV_ERROR(pdata->dev, "No matching eDP rates in table; falling back\n"); } /* On older versions best we can do is use DP_MAX_LINK_RATE */ ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val); if (ret != 1) { DRM_DEV_ERROR(pdata->dev, "Can't read max rate (%d); assuming 5.4 GHz\n", ret); dpcd_val = DP_LINK_BW_5_4; } switch (dpcd_val) { default: DRM_DEV_ERROR(pdata->dev, "Unexpected max rate (%#x); assuming 5.4 GHz\n", (int)dpcd_val); fallthrough; case DP_LINK_BW_5_4: valid_rates |= BIT(7); fallthrough; case DP_LINK_BW_2_7: valid_rates |= BIT(4); fallthrough; case DP_LINK_BW_1_62: valid_rates |= BIT(1); break; } return valid_rates; } static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata) { struct drm_display_mode *mode = &pdata->bridge.encoder->crtc->state->adjusted_mode; u8 hsync_polarity = 0, vsync_polarity = 0; if (mode->flags & DRM_MODE_FLAG_NHSYNC) hsync_polarity = CHA_HSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_NVSYNC) vsync_polarity = CHA_VSYNC_POLARITY; ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG, mode->hdisplay); ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG, mode->vdisplay); regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG, (mode->hsync_end - mode->hsync_start) & 0xFF); regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG, (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) | hsync_polarity); regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG, (mode->vsync_end - mode->vsync_start) & 0xFF); regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG, (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) | vsync_polarity); regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG, (mode->htotal - mode->hsync_end) & 0xFF); regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG, (mode->vtotal - mode->vsync_end) & 0xFF); regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG, (mode->hsync_start - mode->hdisplay) & 0xFF); regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG, (mode->vsync_start - mode->vdisplay) & 0xFF); usleep_range(10000, 10500); /* 10ms delay recommended by spec */ } static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata) { u8 data; int ret; ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data); if (ret != 1) { DRM_DEV_ERROR(pdata->dev, "Can't read lane count (%d); assuming 4\n", ret); return 4; } return data & DP_LANE_COUNT_MASK; } static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx, const char **last_err_str) { unsigned int val; int ret; int i; /* set dp clk frequency value */ regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG, DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx)); /* enable DP PLL */ regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1); ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val, val & DPPLL_SRC_DP_PLL_LOCK, 1000, 50 * 1000); if (ret) { *last_err_str = "DP_PLL_LOCK polling failed"; goto exit; } /* * We'll try to link train several times. As part of link training * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If * the panel isn't ready quite it might respond NAK here which means * we need to try again. */ for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) { /* Semi auto link training mode */ regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A); ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val, val == ML_TX_MAIN_LINK_OFF || val == ML_TX_NORMAL_MODE, 1000, 500 * 1000); if (ret) { *last_err_str = "Training complete polling failed"; } else if (val == ML_TX_MAIN_LINK_OFF) { *last_err_str = "Link training failed, link is off"; ret = -EIO; continue; } break; } /* If we saw quite a few retries, add a note about it */ if (!ret && i > SN_LINK_TRAINING_TRIES / 2) DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i); exit: /* Disable the PLL if we failed */ if (ret) regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); return ret; } static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); struct drm_connector *connector; const char *last_err_str = "No supported DP rate"; unsigned int valid_rates; int dp_rate_idx; unsigned int val; int ret = -EINVAL; int max_dp_lanes; unsigned int bpp; connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state, bridge->encoder); if (!connector) { dev_err_ratelimited(pdata->dev, "Could not get the connector\n"); return; } max_dp_lanes = ti_sn_get_max_lanes(pdata); pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes); /* DSI_A lane config */ val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes); regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG, CHA_DSI_LANES_MASK, val); regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign); regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK, pdata->ln_polrs << LN_POLRS_OFFSET); /* set dsi clk frequency value */ ti_sn_bridge_set_dsi_rate(pdata); /* * The SN65DSI86 only supports ASSR Display Authentication method and * this method is enabled for eDP panels. An eDP panel must support this * authentication method. We need to enable this method in the eDP panel * at DisplayPort address 0x0010A prior to link training. * * As only ASSR is supported by SN65DSI86, for full DisplayPort displays * we need to disable the scrambler. */ if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) { drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET, DP_ALTERNATE_SCRAMBLER_RESET_ENABLE); regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG, SCRAMBLE_DISABLE, 0); } else { regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG, SCRAMBLE_DISABLE, SCRAMBLE_DISABLE); } bpp = ti_sn_bridge_get_bpp(connector); /* Set the DP output format (18 bpp or 24 bpp) */ val = bpp == 18 ? BPP_18_RGB : 0; regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val); /* DP lane config */ val = DP_NUM_LANES(min(pdata->dp_lanes, 3)); regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, val); valid_rates = ti_sn_bridge_read_valid_rates(pdata); /* Train until we run out of rates */ for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp); dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); dp_rate_idx++) { if (!(valid_rates & BIT(dp_rate_idx))) continue; ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str); if (!ret) break; } if (ret) { DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret); return; } /* config video parameters */ ti_sn_bridge_set_video_timings(pdata); /* enable video stream */ regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, VSTREAM_ENABLE); } static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); pm_runtime_get_sync(pdata->dev); if (!pdata->refclk) ti_sn65dsi86_enable_comms(pdata); /* td7: min 100 us after enable before DSI data */ usleep_range(100, 110); } static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); /* semi auto link training mode OFF */ regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0); /* Num lanes to 0 as per power sequencing in data sheet */ regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0); /* disable DP PLL */ regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); if (!pdata->refclk) ti_sn65dsi86_disable_comms(pdata); pm_runtime_put_sync(pdata->dev); } static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge) { struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); int val = 0; pm_runtime_get_sync(pdata->dev); regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val); pm_runtime_put_autosuspend(pdata->dev); return val & HPD_DEBOUNCED_STATE ? connector_status_connected : connector_status_disconnected; } static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge, struct drm_connector *connector) { struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); return drm_get_edid(connector, &pdata->aux.ddc); } static const struct drm_bridge_funcs ti_sn_bridge_funcs = { .attach = ti_sn_bridge_attach, .detach = ti_sn_bridge_detach, .mode_valid = ti_sn_bridge_mode_valid, .get_edid = ti_sn_bridge_get_edid, .detect = ti_sn_bridge_detect, .atomic_pre_enable = ti_sn_bridge_atomic_pre_enable, .atomic_enable = ti_sn_bridge_atomic_enable, .atomic_disable = ti_sn_bridge_atomic_disable, .atomic_post_disable = ti_sn_bridge_atomic_post_disable, .atomic_reset = drm_atomic_helper_bridge_reset, .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, }; static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata, struct device_node *np) { u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 }; u32 lane_polarities[SN_MAX_DP_LANES] = { }; struct device_node *endpoint; u8 ln_assign = 0; u8 ln_polrs = 0; int dp_lanes; int i; /* * Read config from the device tree about lane remapping and lane * polarities. These are optional and we assume identity map and * normal polarity if nothing is specified. It's OK to specify just * data-lanes but not lane-polarities but not vice versa. * * Error checking is light (we just make sure we don't crash or * buffer overrun) and we assume dts is well formed and specifying * mappings that the hardware supports. */ endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES); if (dp_lanes > 0) { of_property_read_u32_array(endpoint, "data-lanes", lane_assignments, dp_lanes); of_property_read_u32_array(endpoint, "lane-polarities", lane_polarities, dp_lanes); } else { dp_lanes = SN_MAX_DP_LANES; } of_node_put(endpoint); /* * Convert into register format. Loop over all lanes even if * data-lanes had fewer elements so that we nicely initialize * the LN_ASSIGN register. */ for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) { ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i]; ln_polrs = ln_polrs << 1 | lane_polarities[i]; } /* Stash in our struct for when we power on */ pdata->dp_lanes = dp_lanes; pdata->ln_assign = ln_assign; pdata->ln_polrs = ln_polrs; } static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata) { struct device_node *np = pdata->dev->of_node; pdata->host_node = of_graph_get_remote_node(np, 0, 0); if (!pdata->host_node) { DRM_ERROR("remote dsi host node not found\n"); return -ENODEV; } return 0; } static int ti_sn_bridge_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id) { struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); struct device_node *np = pdata->dev->of_node; int ret; pdata->next_bridge = devm_drm_of_get_bridge(&adev->dev, np, 1, 0); if (IS_ERR(pdata->next_bridge)) return dev_err_probe(&adev->dev, PTR_ERR(pdata->next_bridge), "failed to create panel bridge\n"); ti_sn_bridge_parse_lanes(pdata, np); ret = ti_sn_bridge_parse_dsi_host(pdata); if (ret) return ret; pdata->bridge.funcs = &ti_sn_bridge_funcs; pdata->bridge.of_node = np; pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP; if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort) pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT; drm_bridge_add(&pdata->bridge); ret = ti_sn_attach_host(adev, pdata); if (ret) { dev_err_probe(&adev->dev, ret, "failed to attach dsi host\n"); goto err_remove_bridge; } return 0; err_remove_bridge: drm_bridge_remove(&pdata->bridge); return ret; } static void ti_sn_bridge_remove(struct auxiliary_device *adev) { struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); if (!pdata) return; drm_bridge_remove(&pdata->bridge); of_node_put(pdata->host_node); } static const struct auxiliary_device_id ti_sn_bridge_id_table[] = { { .name = "ti_sn65dsi86.bridge", }, {}, }; static struct auxiliary_driver ti_sn_bridge_driver = { .name = "bridge", .probe = ti_sn_bridge_probe, .remove = ti_sn_bridge_remove, .id_table = ti_sn_bridge_id_table, }; /* ----------------------------------------------------------------------------- * PWM Controller */ #if defined(CONFIG_PWM) static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0; } static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) { atomic_set(&pdata->pwm_pin_busy, 0); } static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip) { return container_of(chip, struct ti_sn65dsi86, pchip); } static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); return ti_sn_pwm_pin_request(pdata); } static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); ti_sn_pwm_pin_release(pdata); } /* * Limitations: * - The PWM signal is not driven when the chip is powered down, or in its * reset state and the driver does not implement the "suspend state" * described in the documentation. In order to save power, state->enabled is * interpreted as denoting if the signal is expected to be valid, and is used * to determine if the chip needs to be kept powered. * - Changing both period and duty_cycle is not done atomically, neither is the * multi-byte register updates, so the output might briefly be undefined * during update. */ static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); unsigned int pwm_en_inv; unsigned int backlight; unsigned int pre_div; unsigned int scale; u64 period_max; u64 period; int ret; if (!pdata->pwm_enabled) { ret = pm_runtime_get_sync(pdata->dev); if (ret < 0) { pm_runtime_put_sync(pdata->dev); return ret; } } if (state->enabled) { if (!pdata->pwm_enabled) { /* * The chip might have been powered down while we * didn't hold a PM runtime reference, so mux in the * PWM function on the GPIO pin again. */ ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX), SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX)); if (ret) { dev_err(pdata->dev, "failed to mux in PWM function\n"); goto out; } } /* * Per the datasheet the PWM frequency is given by: * * REFCLK_FREQ * PWM_FREQ = ----------------------------------- * PWM_PRE_DIV * BACKLIGHT_SCALE + 1 * * However, after careful review the author is convinced that * the documentation has lost some parenthesis around * "BACKLIGHT_SCALE + 1". * * With the period T_pwm = 1/PWM_FREQ this can be written: * * T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1) * * In order to keep BACKLIGHT_SCALE within its 16 bits, * PWM_PRE_DIV must be: * * T_pwm * REFCLK_FREQ * PWM_PRE_DIV >= ------------------------- * BACKLIGHT_SCALE_MAX + 1 * * To simplify the search and to favour higher resolution of * the duty cycle over accuracy of the period, the lowest * possible PWM_PRE_DIV is used. Finally the scale is * calculated as: * * T_pwm * REFCLK_FREQ * BACKLIGHT_SCALE = ---------------------- - 1 * PWM_PRE_DIV * * Here T_pwm is represented in seconds, so appropriate scaling * to nanoseconds is necessary. */ /* Minimum T_pwm is 1 / REFCLK_FREQ */ if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) { ret = -EINVAL; goto out; } /* * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ * Limit period to this to avoid overflows */ period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1), pdata->pwm_refclk_freq); period = min(state->period, period_max); pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1)); scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1; /* * The documentation has the duty ratio given as: * * duty BACKLIGHT * ------- = --------------------- * period BACKLIGHT_SCALE + 1 * * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according * to definition above and adjusting for nanosecond * representation of duty cycle gives us: */ backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div); if (backlight > scale) backlight = scale; ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div); if (ret) { dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n"); goto out; } ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale); ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight); } pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) | FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED); ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv); if (ret) { dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n"); goto out; } pdata->pwm_enabled = state->enabled; out: if (!pdata->pwm_enabled) pm_runtime_put_sync(pdata->dev); return ret; } static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); unsigned int pwm_en_inv; unsigned int pre_div; u16 backlight; u16 scale; int ret; ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv); if (ret) return ret; ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale); if (ret) return ret; ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight); if (ret) return ret; ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div); if (ret) return ret; state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv); if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv)) state->polarity = PWM_POLARITY_INVERSED; else state->polarity = PWM_POLARITY_NORMAL; state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1), pdata->pwm_refclk_freq); state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight, pdata->pwm_refclk_freq); if (state->duty_cycle > state->period) state->duty_cycle = state->period; return 0; } static const struct pwm_ops ti_sn_pwm_ops = { .request = ti_sn_pwm_request, .free = ti_sn_pwm_free, .apply = ti_sn_pwm_apply, .get_state = ti_sn_pwm_get_state, .owner = THIS_MODULE, }; static int ti_sn_pwm_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id) { struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); pdata->pchip.dev = pdata->dev; pdata->pchip.ops = &ti_sn_pwm_ops; pdata->pchip.npwm = 1; pdata->pchip.of_xlate = of_pwm_single_xlate; pdata->pchip.of_pwm_n_cells = 1; return pwmchip_add(&pdata->pchip); } static void ti_sn_pwm_remove(struct auxiliary_device *adev) { struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); pwmchip_remove(&pdata->pchip); if (pdata->pwm_enabled) pm_runtime_put_sync(pdata->dev); } static const struct auxiliary_device_id ti_sn_pwm_id_table[] = { { .name = "ti_sn65dsi86.pwm", }, {}, }; static struct auxiliary_driver ti_sn_pwm_driver = { .name = "pwm", .probe = ti_sn_pwm_probe, .remove = ti_sn_pwm_remove, .id_table = ti_sn_pwm_id_table, }; static int __init ti_sn_pwm_register(void) { return auxiliary_driver_register(&ti_sn_pwm_driver); } static void ti_sn_pwm_unregister(void) { auxiliary_driver_unregister(&ti_sn_pwm_driver); } #else static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; } static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {} static inline int ti_sn_pwm_register(void) { return 0; } static inline void ti_sn_pwm_unregister(void) {} #endif /* ----------------------------------------------------------------------------- * GPIO Controller */ #if defined(CONFIG_OF_GPIO) static int tn_sn_bridge_of_xlate(struct gpio_chip *chip, const struct of_phandle_args *gpiospec, u32 *flags) { if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells)) return -EINVAL; if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1) return -EINVAL; if (flags) *flags = gpiospec->args[1]; return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET; } static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) { struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); /* * We already have to keep track of the direction because we use * that to figure out whether we've powered the device. We can * just return that rather than (maybe) powering up the device * to ask its direction. */ return test_bit(offset, pdata->gchip_output) ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; } static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset) { struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); unsigned int val; int ret; /* * When the pin is an input we don't forcibly keep the bridge * powered--we just power it on to read the pin. NOTE: part of * the reason this works is that the bridge defaults (when * powered back on) to all 4 GPIOs being configured as GPIO input. * Also note that if something else is keeping the chip powered the * pm_runtime functions are lightweight increments of a refcount. */ pm_runtime_get_sync(pdata->dev); ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val); pm_runtime_put_autosuspend(pdata->dev); if (ret) return ret; return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset)); } static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset, int val) { struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); int ret; if (!test_bit(offset, pdata->gchip_output)) { dev_err(pdata->dev, "Ignoring GPIO set while input\n"); return; } val &= 1; ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG, BIT(SN_GPIO_OUTPUT_SHIFT + offset), val << (SN_GPIO_OUTPUT_SHIFT + offset)); if (ret) dev_warn(pdata->dev, "Failed to set bridge GPIO %u: %d\n", offset, ret); } static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip, unsigned int offset) { struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); int shift = offset * 2; int ret; if (!test_and_clear_bit(offset, pdata->gchip_output)) return 0; ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, SN_GPIO_MUX_MASK << shift, SN_GPIO_MUX_INPUT << shift); if (ret) { set_bit(offset, pdata->gchip_output); return ret; } /* * NOTE: if nobody else is powering the device this may fully power * it off and when it comes back it will have lost all state, but * that's OK because the default is input and we're now an input. */ pm_runtime_put_autosuspend(pdata->dev); return 0; } static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip, unsigned int offset, int val) { struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); int shift = offset * 2; int ret; if (test_and_set_bit(offset, pdata->gchip_output)) return 0; pm_runtime_get_sync(pdata->dev); /* Set value first to avoid glitching */ ti_sn_bridge_gpio_set(chip, offset, val); /* Set direction */ ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, SN_GPIO_MUX_MASK << shift, SN_GPIO_MUX_OUTPUT << shift); if (ret) { clear_bit(offset, pdata->gchip_output); pm_runtime_put_autosuspend(pdata->dev); } return ret; } static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset) { struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); if (offset == SN_PWM_GPIO_IDX) return ti_sn_pwm_pin_request(pdata); return 0; } static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset) { struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); /* We won't keep pm_runtime if we're input, so switch there on free */ ti_sn_bridge_gpio_direction_input(chip, offset); if (offset == SN_PWM_GPIO_IDX) ti_sn_pwm_pin_release(pdata); } static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = { "GPIO1", "GPIO2", "GPIO3", "GPIO4" }; static int ti_sn_gpio_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id) { struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); int ret; /* Only init if someone is going to use us as a GPIO controller */ if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller")) return 0; pdata->gchip.label = dev_name(pdata->dev); pdata->gchip.parent = pdata->dev; pdata->gchip.owner = THIS_MODULE; pdata->gchip.of_xlate = tn_sn_bridge_of_xlate; pdata->gchip.of_gpio_n_cells = 2; pdata->gchip.request = ti_sn_bridge_gpio_request; pdata->gchip.free = ti_sn_bridge_gpio_free; pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction; pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input; pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output; pdata->gchip.get = ti_sn_bridge_gpio_get; pdata->gchip.set = ti_sn_bridge_gpio_set; pdata->gchip.can_sleep = true; pdata->gchip.names = ti_sn_bridge_gpio_names; pdata->gchip.ngpio = SN_NUM_GPIOS; pdata->gchip.base = -1; ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata); if (ret) dev_err(pdata->dev, "can't add gpio chip\n"); return ret; } static const struct auxiliary_device_id ti_sn_gpio_id_table[] = { { .name = "ti_sn65dsi86.gpio", }, {}, }; MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table); static struct auxiliary_driver ti_sn_gpio_driver = { .name = "gpio", .probe = ti_sn_gpio_probe, .id_table = ti_sn_gpio_id_table, }; static int __init ti_sn_gpio_register(void) { return auxiliary_driver_register(&ti_sn_gpio_driver); } static void ti_sn_gpio_unregister(void) { auxiliary_driver_unregister(&ti_sn_gpio_driver); } #else static inline int ti_sn_gpio_register(void) { return 0; } static inline void ti_sn_gpio_unregister(void) {} #endif /* ----------------------------------------------------------------------------- * Probe & Remove */ static void ti_sn65dsi86_runtime_disable(void *data) { pm_runtime_dont_use_autosuspend(data); pm_runtime_disable(data); } static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata) { unsigned int i; const char * const ti_sn_bridge_supply_names[] = { "vcca", "vcc", "vccio", "vpll", }; for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++) pdata->supplies[i].supply = ti_sn_bridge_supply_names[i]; return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM, pdata->supplies); } static int ti_sn65dsi86_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct ti_sn65dsi86 *pdata; int ret; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { DRM_ERROR("device doesn't support I2C\n"); return -ENODEV; } pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL); if (!pdata) return -ENOMEM; dev_set_drvdata(dev, pdata); pdata->dev = dev; mutex_init(&pdata->comms_mutex); pdata->regmap = devm_regmap_init_i2c(client, &ti_sn65dsi86_regmap_config); if (IS_ERR(pdata->regmap)) return dev_err_probe(dev, PTR_ERR(pdata->regmap), "regmap i2c init failed\n"); pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(pdata->enable_gpio)) return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio), "failed to get enable gpio from DT\n"); ret = ti_sn65dsi86_parse_regulators(pdata); if (ret) return dev_err_probe(dev, ret, "failed to parse regulators\n"); pdata->refclk = devm_clk_get_optional(dev, "refclk"); if (IS_ERR(pdata->refclk)) return dev_err_probe(dev, PTR_ERR(pdata->refclk), "failed to get reference clock\n"); pm_runtime_enable(dev); pm_runtime_set_autosuspend_delay(pdata->dev, 500); pm_runtime_use_autosuspend(pdata->dev); ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev); if (ret) return ret; ti_sn65dsi86_debugfs_init(pdata); /* * Break ourselves up into a collection of aux devices. The only real * motiviation here is to solve the chicken-and-egg problem of probe * ordering. The bridge wants the panel to be there when it probes. * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards) * when it probes. The panel and maybe backlight might want the DDC * bus or the pwm_chip. Having sub-devices allows the some sub devices * to finish probing even if others return -EPROBE_DEFER and gets us * around the problems. */ if (IS_ENABLED(CONFIG_OF_GPIO)) { ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio"); if (ret) return ret; } if (IS_ENABLED(CONFIG_PWM)) { ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm"); if (ret) return ret; } /* * NOTE: At the end of the AUX channel probe we'll add the aux device * for the bridge. This is because the bridge can't be used until the * AUX channel is there and this is a very simple solution to the * dependency problem. */ return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux"); } static struct i2c_device_id ti_sn65dsi86_id[] = { { "ti,sn65dsi86", 0}, {}, }; MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id); static const struct of_device_id ti_sn65dsi86_match_table[] = { {.compatible = "ti,sn65dsi86"}, {}, }; MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table); static struct i2c_driver ti_sn65dsi86_driver = { .driver = { .name = "ti_sn65dsi86", .of_match_table = ti_sn65dsi86_match_table, .pm = &ti_sn65dsi86_pm_ops, }, .probe = ti_sn65dsi86_probe, .id_table = ti_sn65dsi86_id, }; static int __init ti_sn65dsi86_init(void) { int ret; ret = i2c_add_driver(&ti_sn65dsi86_driver); if (ret) return ret; ret = ti_sn_gpio_register(); if (ret) goto err_main_was_registered; ret = ti_sn_pwm_register(); if (ret) goto err_gpio_was_registered; ret = auxiliary_driver_register(&ti_sn_aux_driver); if (ret) goto err_pwm_was_registered; ret = auxiliary_driver_register(&ti_sn_bridge_driver); if (ret) goto err_aux_was_registered; return 0; err_aux_was_registered: auxiliary_driver_unregister(&ti_sn_aux_driver); err_pwm_was_registered: ti_sn_pwm_unregister(); err_gpio_was_registered: ti_sn_gpio_unregister(); err_main_was_registered: i2c_del_driver(&ti_sn65dsi86_driver); return ret; } module_init(ti_sn65dsi86_init); static void __exit ti_sn65dsi86_exit(void) { auxiliary_driver_unregister(&ti_sn_bridge_driver); auxiliary_driver_unregister(&ti_sn_aux_driver); ti_sn_pwm_unregister(); ti_sn_gpio_unregister(); i2c_del_driver(&ti_sn65dsi86_driver); } module_exit(ti_sn65dsi86_exit); MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>"); MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver"); MODULE_LICENSE("GPL v2"); |