Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
// SPDX-License-Identifier: MIT
/*
 * Copyright 2022 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */
#include "dcn32_fpu.h"
#include "dcn32/dcn32_resource.h"
#include "dcn20/dcn20_resource.h"
#include "display_mode_vba_util_32.h"
#include "dml/dcn32/display_mode_vba_32.h"
// We need this includes for WATERMARKS_* defines
#include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
#include "dcn30/dcn30_resource.h"
#include "link.h"

#define DC_LOGGER_INIT(logger)

static const struct subvp_high_refresh_list subvp_high_refresh_list = {
			.min_refresh = 120,
			.max_refresh = 175,
			.res = {
				{.width = 3840, .height = 2160, },
				{.width = 3440, .height = 1440, },
				{.width = 2560, .height = 1440, }},
};

struct _vcs_dpi_ip_params_st dcn3_2_ip = {
	.gpuvm_enable = 0,
	.gpuvm_max_page_table_levels = 4,
	.hostvm_enable = 0,
	.rob_buffer_size_kbytes = 128,
	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
	.config_return_buffer_size_in_kbytes = 1280,
	.compressed_buffer_segment_size_in_kbytes = 64,
	.meta_fifo_size_in_kentries = 22,
	.zero_size_buffer_entries = 512,
	.compbuf_reserved_space_64b = 256,
	.compbuf_reserved_space_zs = 64,
	.dpp_output_buffer_pixels = 2560,
	.opp_output_buffer_lines = 1,
	.pixel_chunk_size_kbytes = 8,
	.alpha_pixel_chunk_size_kbytes = 4,
	.min_pixel_chunk_size_bytes = 1024,
	.dcc_meta_buffer_size_bytes = 6272,
	.meta_chunk_size_kbytes = 2,
	.min_meta_chunk_size_bytes = 256,
	.writeback_chunk_size_kbytes = 8,
	.ptoi_supported = false,
	.num_dsc = 4,
	.maximum_dsc_bits_per_component = 12,
	.maximum_pixels_per_line_per_dsc_unit = 6016,
	.dsc422_native_support = true,
	.is_line_buffer_bpp_fixed = true,
	.line_buffer_fixed_bpp = 57,
	.line_buffer_size_bits = 1171920,
	.max_line_buffer_lines = 32,
	.writeback_interface_buffer_size_kbytes = 90,
	.max_num_dpp = 4,
	.max_num_otg = 4,
	.max_num_hdmi_frl_outputs = 1,
	.max_num_wb = 1,
	.max_dchub_pscl_bw_pix_per_clk = 4,
	.max_pscl_lb_bw_pix_per_clk = 2,
	.max_lb_vscl_bw_pix_per_clk = 4,
	.max_vscl_hscl_bw_pix_per_clk = 4,
	.max_hscl_ratio = 6,
	.max_vscl_ratio = 6,
	.max_hscl_taps = 8,
	.max_vscl_taps = 8,
	.dpte_buffer_size_in_pte_reqs_luma = 64,
	.dpte_buffer_size_in_pte_reqs_chroma = 34,
	.dispclk_ramp_margin_percent = 1,
	.max_inter_dcn_tile_repeaters = 8,
	.cursor_buffer_size = 16,
	.cursor_chunk_size = 2,
	.writeback_line_buffer_buffer_size = 0,
	.writeback_min_hscl_ratio = 1,
	.writeback_min_vscl_ratio = 1,
	.writeback_max_hscl_ratio = 1,
	.writeback_max_vscl_ratio = 1,
	.writeback_max_hscl_taps = 1,
	.writeback_max_vscl_taps = 1,
	.dppclk_delay_subtotal = 47,
	.dppclk_delay_scl = 50,
	.dppclk_delay_scl_lb_only = 16,
	.dppclk_delay_cnvc_formatter = 28,
	.dppclk_delay_cnvc_cursor = 6,
	.dispclk_delay_subtotal = 125,
	.dynamic_metadata_vm_enabled = false,
	.odm_combine_4to1_supported = false,
	.dcc_supported = true,
	.max_num_dp2p0_outputs = 2,
	.max_num_dp2p0_streams = 4,
};

struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
	.clock_limits = {
		{
			.state = 0,
			.dcfclk_mhz = 1564.0,
			.fabricclk_mhz = 2500.0,
			.dispclk_mhz = 2150.0,
			.dppclk_mhz = 2150.0,
			.phyclk_mhz = 810.0,
			.phyclk_d18_mhz = 667.0,
			.phyclk_d32_mhz = 625.0,
			.socclk_mhz = 1200.0,
			.dscclk_mhz = 716.667,
			.dram_speed_mts = 18000.0,
			.dtbclk_mhz = 1564.0,
		},
	},
	.num_states = 1,
	.sr_exit_time_us = 42.97,
	.sr_enter_plus_exit_time_us = 49.94,
	.sr_exit_z8_time_us = 285.0,
	.sr_enter_plus_exit_z8_time_us = 320,
	.writeback_latency_us = 12.0,
	.round_trip_ping_latency_dcfclk_cycles = 263,
	.urgent_latency_pixel_data_only_us = 4.0,
	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
	.urgent_latency_vm_data_only_us = 4.0,
	.fclk_change_latency_us = 25,
	.usr_retraining_latency_us = 2,
	.smn_latency_us = 2,
	.mall_allocated_for_dcn_mbytes = 64,
	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
	.pct_ideal_sdp_bw_after_urgent = 90.0,
	.pct_ideal_fabric_bw_after_urgent = 67.0,
	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
	.max_avg_sdp_bw_use_normal_percent = 80.0,
	.max_avg_fabric_bw_use_normal_percent = 60.0,
	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
	.max_avg_dram_bw_use_normal_percent = 15.0,
	.num_chans = 24,
	.dram_channel_width_bytes = 2,
	.fabric_datapath_to_dcn_data_return_bytes = 64,
	.return_bus_width_bytes = 64,
	.downspread_percent = 0.38,
	.dcn_downspread_percent = 0.5,
	.dram_clock_change_latency_us = 400,
	.dispclk_dppclk_vco_speed_mhz = 4300.0,
	.do_urgent_latency_adjustment = true,
	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
	.urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
};

void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
{
	/* defaults */
	double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
	double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
	double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
	double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
	/* For min clocks use as reported by PM FW and report those as min */
	uint16_t min_uclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
	uint16_t min_dcfclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
	uint16_t setb_min_uclk_mhz		= min_uclk_mhz;
	uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;

	dc_assert_fp_enabled();

	/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
	if (dcfclk_mhz_for_the_second_state)
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
	else
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;

	if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
		setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;

	/* Set A - Normal - default values */
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;

	/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;

	/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
	/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
	if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
		clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
		clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
		clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
		clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
		clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
		clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
		clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
		clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
	}
	/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
	/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
}

/*
 * Finds dummy_latency_index when MCLK switching using firmware based
 * vblank stretch is enabled. This function will iterate through the
 * table of dummy pstate latencies until the lowest value that allows
 * dm_allow_self_refresh_and_mclk_switch to happen is found
 */
int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
							    struct dc_state *context,
							    display_e2e_pipe_params_st *pipes,
							    int pipe_cnt,
							    int vlevel)
{
	const int max_latency_table_entries = 4;
	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
	int dummy_latency_index = 0;
	enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];

	dc_assert_fp_enabled();

	while (dummy_latency_index < max_latency_table_entries) {
		if (temp_clock_change_support != dm_dram_clock_change_unsupported)
			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);

		/* for subvp + DRR case, if subvp pipes are still present we support pstate */
		if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
				dcn32_subvp_in_use(dc, context))
			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;

		if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
			break;

		dummy_latency_index++;
	}

	if (dummy_latency_index == max_latency_table_entries) {
		ASSERT(dummy_latency_index != max_latency_table_entries);
		/* If the execution gets here, it means dummy p_states are
		 * not possible. This should never happen and would mean
		 * something is severely wrong.
		 * Here we reset dummy_latency_index to 3, because it is
		 * better to have underflows than system crashes.
		 */
		dummy_latency_index = max_latency_table_entries - 1;
	}

	return dummy_latency_index;
}

/**
 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
 * and populate pipe_ctx with those params.
 * @dc: [in] current dc state
 * @context: [in] new dc state
 * @pipes: [in] DML pipe params array
 * @pipe_cnt: [in] DML pipe count
 *
 * This function must be called AFTER the phantom pipes are added to context
 * and run through DML (so that the DLG params for the phantom pipes can be
 * populated), and BEFORE we program the timing for the phantom pipes.
 */
void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
					      struct dc_state *context,
					      display_e2e_pipe_params_st *pipes,
					      int pipe_cnt)
{
	uint32_t i, pipe_idx;

	dc_assert_fp_enabled();

	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		if (!pipe->stream)
			continue;

		if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
			pipes[pipe_idx].pipe.dest.vstartup_start =
				get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
			pipes[pipe_idx].pipe.dest.vupdate_offset =
				get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
			pipes[pipe_idx].pipe.dest.vupdate_width =
				get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
			pipes[pipe_idx].pipe.dest.vready_offset =
				get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
			pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
		}
		pipe_idx++;
	}
}

/**
 * dcn32_predict_pipe_split - Predict if pipe split will occur for a given DML pipe
 * @context: [in] New DC state to be programmed
 * @pipe_e2e: [in] DML pipe end to end context
 *
 * This function takes in a DML pipe (pipe_e2e) and predicts if pipe split is required (both
 * ODM and MPC). For pipe split, ODM combine is determined by the ODM mode, and MPC combine is
 * determined by DPPClk requirements
 *
 * This function follows the same policy as DML:
 * - Check for ODM combine requirements / policy first
 * - MPC combine is only chosen if there is no ODM combine requirements / policy in place, and
 *   MPC is required
 *
 * Return: Number of splits expected (1 for 2:1 split, 3 for 4:1 split, 0 for no splits).
 */
uint8_t dcn32_predict_pipe_split(struct dc_state *context,
				  display_e2e_pipe_params_st *pipe_e2e)
{
	double pscl_throughput;
	double pscl_throughput_chroma;
	double dpp_clk_single_dpp, clock;
	double clk_frequency = 0.0;
	double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
	bool total_available_pipes_support = false;
	uint32_t number_of_dpp = 0;
	enum odm_combine_mode odm_mode = dm_odm_combine_mode_disabled;
	double req_dispclk_per_surface = 0;
	uint8_t num_splits = 0;

	dc_assert_fp_enabled();

	dml32_CalculateODMMode(context->bw_ctx.dml.ip.maximum_pixels_per_line_per_dsc_unit,
			pipe_e2e->pipe.dest.hactive,
			pipe_e2e->dout.output_format,
			pipe_e2e->dout.output_type,
			pipe_e2e->pipe.dest.odm_combine_policy,
			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
			pipe_e2e->dout.dsc_enable != 0,
			0, /* TotalNumberOfActiveDPP can be 0 since we're predicting pipe split requirement */
			context->bw_ctx.dml.ip.max_num_dpp,
			pipe_e2e->pipe.dest.pixel_rate_mhz,
			context->bw_ctx.dml.soc.dcn_downspread_percent,
			context->bw_ctx.dml.ip.dispclk_ramp_margin_percent,
			context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz,
			pipe_e2e->dout.dsc_slices,
			/* Output */
			&total_available_pipes_support,
			&number_of_dpp,
			&odm_mode,
			&req_dispclk_per_surface);

	dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe_e2e->pipe.scale_ratio_depth.hscl_ratio,
			pipe_e2e->pipe.scale_ratio_depth.hscl_ratio_c,
			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio,
			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio_c,
			context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
			context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
			pipe_e2e->pipe.dest.pixel_rate_mhz,
			pipe_e2e->pipe.src.source_format,
			pipe_e2e->pipe.scale_taps.htaps,
			pipe_e2e->pipe.scale_taps.htaps_c,
			pipe_e2e->pipe.scale_taps.vtaps,
			pipe_e2e->pipe.scale_taps.vtaps_c,
			/* Output */
			&pscl_throughput, &pscl_throughput_chroma,
			&dpp_clk_single_dpp);

	clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);

	if (clock > 0)
		clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0) / clock);

	if (odm_mode == dm_odm_combine_mode_2to1)
		num_splits = 1;
	else if (odm_mode == dm_odm_combine_mode_4to1)
		num_splits = 3;
	else if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dppclk_mhz)
		num_splits = 1;

	return num_splits;
}

static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
{
	float memory_bw_kbytes_sec;
	float fabric_bw_kbytes_sec;
	float sdp_bw_kbytes_sec;
	float limiting_bw_kbytes_sec;

	memory_bw_kbytes_sec = entry->dram_speed_mts *
				dcn3_2_soc.num_chans *
				dcn3_2_soc.dram_channel_width_bytes *
				((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);

	fabric_bw_kbytes_sec = entry->fabricclk_mhz *
				dcn3_2_soc.return_bus_width_bytes *
				((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);

	sdp_bw_kbytes_sec = entry->dcfclk_mhz *
				dcn3_2_soc.return_bus_width_bytes *
				((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);

	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;

	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;

	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;

	return limiting_bw_kbytes_sec;
}

static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
{
	if (entry->dcfclk_mhz > 0) {
		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);

		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
	} else if (entry->fabricclk_mhz > 0) {
		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);

		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
	} else if (entry->dram_speed_mts > 0) {
		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);

		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
	}
}

static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
				    unsigned int *num_entries,
				    struct _vcs_dpi_voltage_scaling_st *entry)
{
	int i = 0;
	int index = 0;

	dc_assert_fp_enabled();

	if (*num_entries == 0) {
		table[0] = *entry;
		(*num_entries)++;
	} else {
		while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
			index++;
			if (index >= *num_entries)
				break;
		}

		for (i = *num_entries; i > index; i--)
			table[i] = table[i - 1];

		table[index] = *entry;
		(*num_entries)++;
	}
}

/**
 * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
 * @dc: current dc state
 * @context: new dc state
 * @ref_pipe: Main pipe for the phantom stream
 * @phantom_stream: target phantom stream state
 * @pipes: DML pipe params
 * @pipe_cnt: number of DML pipes
 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
 *
 * Set timing params of the phantom stream based on calculated output from DML.
 * This function first gets the DML pipe index using the DC pipe index, then
 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
 * lines required for SubVP MCLK switching and assigns to the phantom stream
 * accordingly.
 *
 * - The number of SubVP lines calculated in DML does not take into account
 * FW processing delays and required pstate allow width, so we must include
 * that separately.
 *
 * - Set phantom backporch = vstartup of main pipe
 */
void dcn32_set_phantom_stream_timing(struct dc *dc,
				     struct dc_state *context,
				     struct pipe_ctx *ref_pipe,
				     struct dc_stream_state *phantom_stream,
				     display_e2e_pipe_params_st *pipes,
				     unsigned int pipe_cnt,
				     unsigned int dc_pipe_idx)
{
	unsigned int i, pipe_idx;
	struct pipe_ctx *pipe;
	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
	unsigned int num_dpp;
	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
	struct dc_stream_state *main_stream = ref_pipe->stream;

	dc_assert_fp_enabled();

	// Find DML pipe index (pipe_idx) using dc_pipe_idx
	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
		pipe = &context->res_ctx.pipe_ctx[i];

		if (!pipe->stream)
			continue;

		if (i == dc_pipe_idx)
			break;

		pipe_idx++;
	}

	// Calculate lines required for pstate allow width and FW processing delays
	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
			(double)ref_pipe->stream->timing.h_total;

	// Update clks_cfg for calling into recalculate
	pipes[0].clks_cfg.voltage = vlevel;
	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
	pipes[0].clks_cfg.socclk_mhz = socclk;

	// DML calculation for MALL region doesn't take into account FW delay
	// and required pstate allow width for multi-display cases
	/* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
	 * to 2 swaths (i.e. 16 lines)
	 */
	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
				pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;

	// W/A for DCC corruption with certain high resolution timings.
	// Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
	num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
	phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;

	/* dc->debug.subvp_extra_lines 0 by default*/
	phantom_vactive += dc->debug.subvp_extra_lines;

	// For backporch of phantom pipe, use vstartup of the main pipe
	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);

	phantom_stream->dst.y = 0;
	phantom_stream->dst.height = phantom_vactive;
	/* When scaling, DML provides the end to end required number of lines for MALL.
	 * dst.height is always correct for this case, but src.height is not which causes a
	 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
	 * phantom for this case.
	 */
	phantom_stream->src.y = 0;
	phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;

	phantom_stream->timing.v_addressable = phantom_vactive;
	phantom_stream->timing.v_front_porch = 1;
	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
						phantom_stream->timing.v_front_porch +
						phantom_stream->timing.v_sync_width +
						phantom_bp;
	phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
}

/**
 * dcn32_get_num_free_pipes - Calculate number of free pipes
 * @dc: current dc state
 * @context: new dc state
 *
 * This function assumes that a "used" pipe is a pipe that has
 * both a stream and a plane assigned to it.
 *
 * Return: Number of free pipes available in the context
 */
static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
{
	unsigned int i;
	unsigned int free_pipes = 0;
	unsigned int num_pipes = 0;

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		if (pipe->stream && !pipe->top_pipe) {
			while (pipe) {
				num_pipes++;
				pipe = pipe->bottom_pipe;
			}
		}
	}

	free_pipes = dc->res_pool->pipe_count - num_pipes;
	return free_pipes;
}

/**
 * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
 * @dc: current dc state
 * @context: new dc state
 * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
 *
 * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
 * we are forcing SubVP P-State switching on the current config.
 *
 * The number of pipes used for the chosen surface must be less than or equal to the
 * number of free pipes available.
 *
 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
 *
 * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
 */
static bool dcn32_assign_subvp_pipe(struct dc *dc,
				    struct dc_state *context,
				    unsigned int *index)
{
	unsigned int i, pipe_idx;
	unsigned int max_frame_time = 0;
	bool valid_assignment_found = false;
	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;

	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
		unsigned int num_pipes = 0;
		unsigned int refresh_rate = 0;

		if (!pipe->stream)
			continue;

		// Round up
		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
				pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
				/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
		/* SubVP pipe candidate requirements:
		 * - Refresh rate < 120hz
		 * - Not able to switch in vactive naturally (switching in active means the
		 *   DET provides enough buffer to hide the P-State switch latency -- trying
		 *   to combine this with SubVP can cause issues with the scheduling).
		 * - Not TMZ surface
		 */
		if (pipe->plane_state && !pipe->top_pipe && !dcn32_is_center_timing(pipe) &&
				!(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
				(!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
				pipe->stream->mall_stream_config.type == SUBVP_NONE &&
				(refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
				!pipe->plane_state->address.tmz_surface &&
				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
						dcn32_allow_subvp_with_active_margin(pipe)))) {
			while (pipe) {
				num_pipes++;
				pipe = pipe->bottom_pipe;
			}

			pipe = &context->res_ctx.pipe_ctx[i];
			if (num_pipes <= free_pipes) {
				struct dc_stream_state *stream = pipe->stream;
				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
				if (frame_us > max_frame_time) {
					*index = i;
					max_frame_time = frame_us;
					valid_assignment_found = true;
				}
			}
		}
		pipe_idx++;
	}
	return valid_assignment_found;
}

/**
 * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
 * @dc: current dc state
 * @context: new dc state
 *
 * This function returns true if there are enough free pipes
 * to create the required phantom pipes for any given stream
 * (that does not already have phantom pipe assigned).
 *
 * e.g. For a 2 stream config where the first stream uses one
 * pipe and the second stream uses 2 pipes (i.e. pipe split),
 * this function will return true because there is 1 remaining
 * pipe which can be used as the phantom pipe for the non pipe
 * split pipe.
 *
 * Return:
 * True if there are enough free pipes to assign phantom pipes to at least one
 * stream that does not already have phantom pipes assigned. Otherwise false.
 */
static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
{
	unsigned int i, split_cnt, free_pipes;
	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
	bool subvp_possible = false;

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		// Find the minimum pipe split count for non SubVP pipes
		if (resource_is_pipe_type(pipe, OPP_HEAD) &&
		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
			split_cnt = 0;
			while (pipe) {
				split_cnt++;
				pipe = pipe->bottom_pipe;
			}

			if (split_cnt < min_pipe_split)
				min_pipe_split = split_cnt;
		}
	}

	free_pipes = dcn32_get_num_free_pipes(dc, context);

	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
	// should not equal to the pipe_count)
	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
		subvp_possible = true;

	return subvp_possible;
}

/**
 * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
 * @dc: current dc state
 * @context: new dc state
 *
 * High level algorithm:
 * 1. Find longest microschedule length (in us) between the two SubVP pipes
 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
 * pipes still allows for the maximum microschedule to fit in the active
 * region for both pipes.
 *
 * Return: True if the SubVP + SubVP config is schedulable, false otherwise
 */
static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
{
	struct pipe_ctx *subvp_pipes[2];
	struct dc_stream_state *phantom = NULL;
	uint32_t microschedule_lines = 0;
	uint32_t index = 0;
	uint32_t i;
	uint32_t max_microschedule_us = 0;
	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
		uint32_t time_us = 0;

		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
		 */
		if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
		    pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
			phantom = pipe->stream->mall_stream_config.paired_stream;
			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
					phantom->timing.v_addressable;

			// Round up when calculating microschedule time (+ 1 at the end)
			time_us = (microschedule_lines * phantom->timing.h_total) /
					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
						dc->caps.subvp_prefetch_end_to_mall_start_us +
						dc->caps.subvp_fw_processing_delay_us + 1;
			if (time_us > max_microschedule_us)
				max_microschedule_us = time_us;

			subvp_pipes[index] = pipe;
			index++;

			// Maximum 2 SubVP pipes
			if (index == 2)
				break;
		}
	}
	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
			subvp_pipes[0]->stream->timing.h_total) /
			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
			subvp_pipes[1]->stream->timing.h_total) /
			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;

	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
	    (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
		return true;

	return false;
}

/**
 * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
 * @dc: current dc state
 * @context: new dc state
 *
 * High level algorithm:
 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
 * (the margin is equal to the MALL region + DRR margin (500us))
 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
 * then report the configuration as supported
 *
 * Return: True if the SubVP + DRR config is schedulable, false otherwise
 */
static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
{
	bool schedulable = false;
	uint32_t i;
	struct pipe_ctx *pipe = NULL;
	struct pipe_ctx *drr_pipe = NULL;
	struct dc_crtc_timing *main_timing = NULL;
	struct dc_crtc_timing *phantom_timing = NULL;
	struct dc_crtc_timing *drr_timing = NULL;
	int16_t prefetch_us = 0;
	int16_t mall_region_us = 0;
	int16_t drr_frame_us = 0;	// nominal frame time
	int16_t subvp_active_us = 0;
	int16_t stretched_drr_us = 0;
	int16_t drr_stretched_vblank_us = 0;
	int16_t max_vblank_mallregion = 0;

	// Find SubVP pipe
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		pipe = &context->res_ctx.pipe_ctx[i];

		// We check for master pipe, but it shouldn't matter since we only need
		// the pipe for timing info (stream should be same for any pipe splits)
		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
				!resource_is_pipe_type(pipe, DPP_PIPE))
			continue;

		// Find the SubVP pipe
		if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
			break;
	}

	// Find the DRR pipe
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		drr_pipe = &context->res_ctx.pipe_ctx[i];

		// We check for master pipe only
		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
				!resource_is_pipe_type(pipe, DPP_PIPE))
			continue;

		if (drr_pipe->stream->mall_stream_config.type == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
				(drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable))
			break;
	}

	main_timing = &pipe->stream->timing;
	phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
	drr_timing = &drr_pipe->stream->timing;
	prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
			dc->caps.subvp_prefetch_end_to_mall_start_us;
	subvp_active_us = main_timing->v_addressable * main_timing->h_total /
			(double)(main_timing->pix_clk_100hz * 100) * 1000000;
	drr_frame_us = drr_timing->v_total * drr_timing->h_total /
			(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
	// P-State allow width and FW delays already included phantom_timing->v_addressable
	mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
	stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
	drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
			(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
	max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;

	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
	 * and the max of (VBLANK blanking time, MALL region)).
	 */
	if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
			subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
		schedulable = true;

	return schedulable;
}


/**
 * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
 * @dc: current dc state
 * @context: new dc state
 *
 * High level algorithm:
 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
 * then report the configuration as supported
 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
 *
 * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
 */
static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
{
	struct pipe_ctx *pipe = NULL;
	struct pipe_ctx *subvp_pipe = NULL;
	bool found = false;
	bool schedulable = false;
	uint32_t i = 0;
	uint8_t vblank_index = 0;
	uint16_t prefetch_us = 0;
	uint16_t mall_region_us = 0;
	uint16_t vblank_frame_us = 0;
	uint16_t subvp_active_us = 0;
	uint16_t vblank_blank_us = 0;
	uint16_t max_vblank_mallregion = 0;
	struct dc_crtc_timing *main_timing = NULL;
	struct dc_crtc_timing *phantom_timing = NULL;
	struct dc_crtc_timing *vblank_timing = NULL;

	/* For SubVP + VBLANK/DRR cases, we assume there can only be
	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
	 * is supported, it is either a single VBLANK case or two VBLANK
	 * displays which are synchronized (in which case they have identical
	 * timings).
	 */
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		pipe = &context->res_ctx.pipe_ctx[i];

		// We check for master pipe, but it shouldn't matter since we only need
		// the pipe for timing info (stream should be same for any pipe splits)
		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
				!resource_is_pipe_type(pipe, DPP_PIPE))
			continue;

		if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
			vblank_index = i;
			found = true;
		}

		if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
			subvp_pipe = pipe;
	}
	if (found) {
		main_timing = &subvp_pipe->stream->timing;
		phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
		// Also include the prefetch end to mallstart delay time
		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
				dc->caps.subvp_prefetch_end_to_mall_start_us;
		// P-State allow width and FW delays already included phantom_timing->v_addressable
		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;

		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
		// and the max of (VBLANK blanking time, MALL region)
		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
			schedulable = true;
	}
	return schedulable;
}

/**
 * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
 *
 * @dc: Current DC state
 * @context: New DC state to be programmed
 *
 * SubVP + SubVP is admissible under the following conditions:
 * - All SubVP pipes are < 120Hz OR
 * - All SubVP pipes are >= 120hz
 *
 * Return: True if admissible, false otherwise
 */
static bool subvp_subvp_admissable(struct dc *dc,
				struct dc_state *context)
{
	bool result = false;
	uint32_t i;
	uint8_t subvp_count = 0;
	uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
	uint64_t refresh_rate = 0;

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		if (!pipe->stream)
			continue;

		if (pipe->plane_state && !pipe->top_pipe &&
				pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
			refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
				pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);

			if ((uint32_t)refresh_rate < min_refresh)
				min_refresh = (uint32_t)refresh_rate;
			if ((uint32_t)refresh_rate > max_refresh)
				max_refresh = (uint32_t)refresh_rate;
			subvp_count++;
		}
	}

	if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
		(min_refresh >= subvp_high_refresh_list.min_refresh &&
				max_refresh <= subvp_high_refresh_list.max_refresh)))
		result = true;

	return result;
}

/**
 * subvp_validate_static_schedulability - Check which SubVP case is calculated
 * and handle static analysis based on the case.
 * @dc: current dc state
 * @context: new dc state
 * @vlevel: Voltage level calculated by DML
 *
 * Three cases:
 * 1. SubVP + SubVP
 * 2. SubVP + VBLANK (DRR checked internally)
 * 3. SubVP + VACTIVE (currently unsupported)
 *
 * Return: True if statically schedulable, false otherwise
 */
static bool subvp_validate_static_schedulability(struct dc *dc,
				struct dc_state *context,
				int vlevel)
{
	bool schedulable = false;
	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
	uint32_t i, pipe_idx;
	uint8_t subvp_count = 0;
	uint8_t vactive_count = 0;
	uint8_t non_subvp_pipes = 0;

	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		if (!pipe->stream)
			continue;

		if (pipe->plane_state && !pipe->top_pipe) {
			if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
				subvp_count++;
			if (pipe->stream->mall_stream_config.type == SUBVP_NONE) {
				non_subvp_pipes++;
			}
		}

		// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
		// switching (SubVP + VACTIVE unsupported). In situations where we force
		// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
			vactive_count++;
		}
		pipe_idx++;
	}

	if (subvp_count == 2) {
		// Static schedulability check for SubVP + SubVP case
		schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
	} else if (subvp_count == 1 && non_subvp_pipes == 0) {
		// Single SubVP configs will be supported by default as long as it's suppported by DML
		schedulable = true;
	} else if (subvp_count == 1 && non_subvp_pipes == 1) {
		if (dcn32_subvp_drr_admissable(dc, context))
			schedulable = subvp_drr_schedulable(dc, context);
		else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
			schedulable = subvp_vblank_schedulable(dc, context);
	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
			vactive_count > 0) {
		// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
		// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
		// SubVP + VACTIVE currently unsupported
		schedulable = false;
	}
	return schedulable;
}

static void dcn32_full_validate_bw_helper(struct dc *dc,
				   struct dc_state *context,
				   display_e2e_pipe_params_st *pipes,
				   int *vlevel,
				   int *split,
				   bool *merge,
				   int *pipe_cnt)
{
	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
	unsigned int dc_pipe_idx = 0;
	int i = 0;
	bool found_supported_config = false;

	dc_assert_fp_enabled();

	/*
	 * DML favors voltage over p-state, but we're more interested in
	 * supporting p-state over voltage. We can't support p-state in
	 * prefetch mode > 0 so try capping the prefetch mode to start.
	 * Override present for testing.
	 */
	if (dc->debug.dml_disallow_alternate_prefetch_modes)
		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
			dm_prefetch_support_uclk_fclk_and_stutter;
	else
		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
			dm_prefetch_support_uclk_fclk_and_stutter_if_possible;

	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
	/* This may adjust vlevel and maxMpcComb */
	if (*vlevel < context->bw_ctx.dml.soc.num_states) {
		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
		vba->VoltageLevel = *vlevel;
	}

	/* Conditions for setting up phantom pipes for SubVP:
	 * 1. Not force disable SubVP
	 * 2. Full update (i.e. !fast_validate)
	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
	 * 4. Display configuration passes validation
	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
	 */
	if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
	    !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) &&
		(*vlevel == context->bw_ctx.dml.soc.num_states ||
	    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
	    dc->debug.force_subvp_mclk_switch)) {

		dcn32_merge_pipes_for_subvp(dc, context);
		memset(merge, 0, MAX_PIPES * sizeof(bool));

		/* to re-initialize viewport after the pipe merge */
		for (i = 0; i < dc->res_pool->pipe_count; i++) {
			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];

			if (!pipe_ctx->plane_state || !pipe_ctx->stream)
				continue;

			resource_build_scaling_params(pipe_ctx);
		}

		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
			dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
			 * Adding phantom pipes won't change the validation result, so change the DML input param
			 * for P-State support before adding phantom pipes and recalculating the DML result.
			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
			 * enough to support MCLK switching.
			 */
			if (*vlevel == context->bw_ctx.dml.soc.num_states &&
				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
					dm_prefetch_support_uclk_fclk_and_stutter) {
				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
								dm_prefetch_support_fclk_and_stutter;
				/* There are params (such as FabricClock) that need to be recalculated
				 * after validation fails (otherwise it will be 0). Calculation for
				 * phantom vactive requires call into DML, so we must ensure all the
				 * vba params are valid otherwise we'll get incorrect phantom vactive.
				 */
				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
			}

			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);

			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
			// Populate dppclk to trigger a recalculate in dml_get_voltage_level
			// so the phantom pipe DLG params can be assigned correctly.
			pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);

			/* Check that vlevel requested supports pstate or not
			 * if not, select the lowest vlevel that supports it
			 */
			for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
				if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
					*vlevel = i;
					break;
				}
			}

			if (*vlevel < context->bw_ctx.dml.soc.num_states
			    && subvp_validate_static_schedulability(dc, context, *vlevel))
				found_supported_config = true;
			if (found_supported_config) {
				// For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
				if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
					/* find lowest vlevel that supports the config */
					for (i = *vlevel; i >= 0; i--) {
						if (vba->ModeSupport[i][vba->maxMpcComb]) {
							*vlevel = i;
						} else {
							break;
						}
					}
				}
			}
		}

		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
		// remove phantom pipes and repopulate dml pipes
		if (!found_supported_config) {
			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);

			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
			/* This may adjust vlevel and maxMpcComb */
			if (*vlevel < context->bw_ctx.dml.soc.num_states) {
				*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
				vba->VoltageLevel = *vlevel;
			}
		} else {
			// Most populate phantom DLG params before programming hardware / timing for phantom pipe
			dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);

			/* Call validate_apply_pipe_split flags after calling DML getters for
			 * phantom dlg params, or some of the VBA params indicating pipe split
			 * can be overwritten by the getters.
			 *
			 * When setting up SubVP config, all pipes are merged before attempting to
			 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
			 * and phantom pipes will be split in the regular pipe splitting sequence.
			 */
			memset(split, 0, MAX_PIPES * sizeof(int));
			memset(merge, 0, MAX_PIPES * sizeof(bool));
			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
			vba->VoltageLevel = *vlevel;
			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
			// until driver has acquired the DMCUB lock to do it safely.
		}
	}
}

static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
{
	int i;

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		if (!context->res_ctx.pipe_ctx[i].stream)
			continue;
		if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
			return true;
	}
	return false;
}

static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
{
	struct dc_crtc_timing patched_crtc_timing;
	uint32_t asic_blank_end   = 0;
	uint32_t asic_blank_start = 0;
	uint32_t newVstartup	  = 0;

	patched_crtc_timing = *dc_crtc_timing;

	if (patched_crtc_timing.flags.INTERLACE == 1) {
		if (patched_crtc_timing.v_front_porch < 2)
			patched_crtc_timing.v_front_porch = 2;
	} else {
		if (patched_crtc_timing.v_front_porch < 1)
			patched_crtc_timing.v_front_porch = 1;
	}

	/* blank_start = frame end - front porch */
	asic_blank_start = patched_crtc_timing.v_total -
					patched_crtc_timing.v_front_porch;

	/* blank_end = blank_start - active */
	asic_blank_end = asic_blank_start -
					patched_crtc_timing.v_border_bottom -
					patched_crtc_timing.v_addressable -
					patched_crtc_timing.v_border_top;

	newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);

	*vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
}

static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
				       display_e2e_pipe_params_st *pipes,
				       int pipe_cnt, int vlevel)
{
	int i, pipe_idx, active_hubp_count = 0;
	bool usr_retraining_support = false;
	bool unbounded_req_enabled = false;
	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;

	dc_assert_fp_enabled();

	/* Writeback MCIF_WB arbitration parameters */
	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);

	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
	context->bw_ctx.bw.dcn.clk.p_state_change_support =
			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
					!= dm_dram_clock_change_unsupported;

	/* Pstate change might not be supported by hardware, but it might be
	 * possible with firmware driven vertical blank stretching.
	 */
	context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;

	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
	else
		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;

	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
	ASSERT(usr_retraining_support);

	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;

	unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);

	if (unbounded_req_enabled && pipe_cnt > 1) {
		// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
		ASSERT(false);
		unbounded_req_enabled = false;
	}

	context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
	context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
	context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;

	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
		if (!context->res_ctx.pipe_ctx[i].stream)
			continue;
		if (context->res_ctx.pipe_ctx[i].plane_state)
			active_hubp_count++;
		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
				pipe_idx);
		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
				pipe_idx);
		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
				pipe_idx);
		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
				pipe_idx);

		if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
			context->res_ctx.pipe_ctx[i].unbounded_req = false;
		} else {
			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
							pipe_idx);
			context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
		}

		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
		if (context->res_ctx.pipe_ctx[i].plane_state)
			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
		else
			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;

		context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);

		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
			context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
		else
			context->res_ctx.pipe_ctx[i].has_vactive_margin = false;

		/* MALL Allocation Sizes */
		/* count from active, top pipes per plane only */
		if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
				(context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
				context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
				context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
			/* SS: all active surfaces stored in MALL */
			if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type != SUBVP_PHANTOM) {
				context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;

				if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
					/* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
					context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
				}
			} else {
				/* SUBVP: phantom surfaces only stored in MALL */
				context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
			}
		}

		if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
			dcn20_adjust_freesync_v_startup(
				&context->res_ctx.pipe_ctx[i].stream->timing,
				&context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);

		pipe_idx++;
	}
	/* If DCN isn't making memory requests we can allow pstate change and lower clocks */
	if (!active_hubp_count) {
		context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
		context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
		context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
		context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
		context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
		context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
		context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
	}
	/*save a original dppclock copy*/
	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
			* 1000;
	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
			* 1000;

	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);

	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		if (context->res_ctx.pipe_ctx[i].stream)
			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
	}

	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {

		if (!context->res_ctx.pipe_ctx[i].stream)
			continue;

		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
				pipe_cnt, pipe_idx);

		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
		pipe_idx++;
	}
}

static struct pipe_ctx *dcn32_find_split_pipe(
		struct dc *dc,
		struct dc_state *context,
		int old_index)
{
	struct pipe_ctx *pipe = NULL;
	int i;

	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
		pipe = &context->res_ctx.pipe_ctx[old_index];
		pipe->pipe_idx = old_index;
	}

	if (!pipe)
		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
					pipe = &context->res_ctx.pipe_ctx[i];
					pipe->pipe_idx = i;
					break;
				}
			}
		}

	/*
	 * May need to fix pipes getting tossed from 1 opp to another on flip
	 * Add for debugging transient underflow during topology updates:
	 * ASSERT(pipe);
	 */
	if (!pipe)
		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
				pipe = &context->res_ctx.pipe_ctx[i];
				pipe->pipe_idx = i;
				break;
			}
		}

	return pipe;
}

static bool dcn32_split_stream_for_mpc_or_odm(
		const struct dc *dc,
		struct resource_context *res_ctx,
		struct pipe_ctx *pri_pipe,
		struct pipe_ctx *sec_pipe,
		bool odm)
{
	int pipe_idx = sec_pipe->pipe_idx;
	const struct resource_pool *pool = dc->res_pool;

	DC_LOGGER_INIT(dc->ctx->logger);

	if (odm && pri_pipe->plane_state) {
		/* ODM + window MPO, where MPO window is on left half only */
		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {

			DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
					__func__,
					pri_pipe->pipe_idx);
			return true;
		}

		/* ODM + window MPO, where MPO window is on right half only */
		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {

			DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
					__func__,
					pri_pipe->pipe_idx);
			return true;
		}
	}

	*sec_pipe = *pri_pipe;

	sec_pipe->pipe_idx = pipe_idx;
	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
	sec_pipe->stream_res.dsc = NULL;
	if (odm) {
		if (pri_pipe->next_odm_pipe) {
			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
		}
		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
		}
		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
		}
		pri_pipe->next_odm_pipe = sec_pipe;
		sec_pipe->prev_odm_pipe = pri_pipe;
		ASSERT(sec_pipe->top_pipe == NULL);

		if (!sec_pipe->top_pipe)
			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
		else
			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
		if (sec_pipe->stream->timing.flags.DSC == 1) {
			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
			ASSERT(sec_pipe->stream_res.dsc);
			if (sec_pipe->stream_res.dsc == NULL)
				return false;
		}
	} else {
		if (pri_pipe->bottom_pipe) {
			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
		}
		pri_pipe->bottom_pipe = sec_pipe;
		sec_pipe->top_pipe = pri_pipe;

		ASSERT(pri_pipe->plane_state);
	}

	return true;
}

bool dcn32_internal_validate_bw(struct dc *dc,
				struct dc_state *context,
				display_e2e_pipe_params_st *pipes,
				int *pipe_cnt_out,
				int *vlevel_out,
				bool fast_validate)
{
	bool out = false;
	bool repopulate_pipes = false;
	int split[MAX_PIPES] = { 0 };
	bool merge[MAX_PIPES] = { false };
	bool newly_split[MAX_PIPES] = { false };
	int pipe_cnt, i, pipe_idx;
	int vlevel = context->bw_ctx.dml.soc.num_states;
	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;

	dc_assert_fp_enabled();

	ASSERT(pipes);
	if (!pipes)
		return false;

	// For each full update, remove all existing phantom pipes first
	dc->res_pool->funcs->remove_phantom_pipes(dc, context, fast_validate);

	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);

	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);

	if (!pipe_cnt) {
		out = true;
		goto validate_out;
	}

	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
	context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);

	if (!fast_validate)
		dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);

	if (fast_validate ||
			(dc->debug.dml_disallow_alternate_prefetch_modes &&
			(vlevel == context->bw_ctx.dml.soc.num_states ||
				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
		/*
		 * If dml_disallow_alternate_prefetch_modes is false, then we have already
		 * tried alternate prefetch modes during full validation.
		 *
		 * If mode is unsupported or there is no p-state support, then
		 * fall back to favouring voltage.
		 *
		 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
		 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
		 */
		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
			dm_prefetch_support_none;

		context->bw_ctx.dml.validate_max_state = fast_validate;
		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);

		context->bw_ctx.dml.validate_max_state = false;

		if (vlevel < context->bw_ctx.dml.soc.num_states) {
			memset(split, 0, sizeof(split));
			memset(merge, 0, sizeof(merge));
			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
			// dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
			vba->VoltageLevel = vlevel;
		}
	}

	dml_log_mode_support_params(&context->bw_ctx.dml);

	if (vlevel == context->bw_ctx.dml.soc.num_states)
		goto validate_fail;

	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;

		if (!pipe->stream)
			continue;

		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
				&& !dc->config.enable_windowed_mpo_odm
				&& pipe->plane_state && mpo_pipe
				&& memcmp(&mpo_pipe->plane_state->clip_rect,
						&pipe->stream->src,
						sizeof(struct rect)) != 0) {
			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
			goto validate_fail;
		}
		pipe_idx++;
	}

	/* merge pipes if necessary */
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		/*skip pipes that don't need merging*/
		if (!merge[i])
			continue;

		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
		if (pipe->prev_odm_pipe) {
			/*split off odm pipe*/
			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
			if (pipe->next_odm_pipe)
				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;

			/*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
			if (pipe->bottom_pipe) {
				if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
					/*MPC split rules will handle this case*/
					pipe->bottom_pipe->top_pipe = NULL;
				} else {
					/* when merging an ODM pipes, the bottom MPC pipe must now point to
					 * the previous ODM pipe and its associated stream assets
					 */
					if (pipe->prev_odm_pipe->bottom_pipe) {
						/* 3 plane MPO*/
						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
						pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
					} else {
						/* 2 plane MPO*/
						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
						pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
					}

					memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
				}
			}

			if (pipe->top_pipe) {
				pipe->top_pipe->bottom_pipe = NULL;
			}

			pipe->bottom_pipe = NULL;
			pipe->next_odm_pipe = NULL;
			pipe->plane_state = NULL;
			pipe->stream = NULL;
			pipe->top_pipe = NULL;
			pipe->prev_odm_pipe = NULL;
			if (pipe->stream_res.dsc)
				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
			repopulate_pipes = true;
		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
			struct pipe_ctx *top_pipe = pipe->top_pipe;
			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;

			top_pipe->bottom_pipe = bottom_pipe;
			if (bottom_pipe)
				bottom_pipe->top_pipe = top_pipe;

			pipe->top_pipe = NULL;
			pipe->bottom_pipe = NULL;
			pipe->plane_state = NULL;
			pipe->stream = NULL;
			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
			repopulate_pipes = true;
		} else
			ASSERT(0); /* Should never try to merge master pipe */

	}

	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
		struct pipe_ctx *hsplit_pipe = NULL;
		bool odm;
		int old_index = -1;

		if (!pipe->stream || newly_split[i])
			continue;

		pipe_idx++;
		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;

		if (!pipe->plane_state && !odm)
			continue;

		if (split[i]) {
			if (odm) {
				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
				else if (old_pipe->next_odm_pipe)
					old_index = old_pipe->next_odm_pipe->pipe_idx;
			} else {
				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
				else if (old_pipe->bottom_pipe &&
						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
					old_index = old_pipe->bottom_pipe->pipe_idx;
			}
			hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
			ASSERT(hsplit_pipe);
			if (!hsplit_pipe)
				goto validate_fail;

			if (!dcn32_split_stream_for_mpc_or_odm(
					dc, &context->res_ctx,
					pipe, hsplit_pipe, odm))
				goto validate_fail;

			newly_split[hsplit_pipe->pipe_idx] = true;
			repopulate_pipes = true;
		}
		if (split[i] == 4) {
			struct pipe_ctx *pipe_4to1;

			if (odm && old_pipe->next_odm_pipe)
				old_index = old_pipe->next_odm_pipe->pipe_idx;
			else if (!odm && old_pipe->bottom_pipe &&
						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
				old_index = old_pipe->bottom_pipe->pipe_idx;
			else
				old_index = -1;
			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
			ASSERT(pipe_4to1);
			if (!pipe_4to1)
				goto validate_fail;
			if (!dcn32_split_stream_for_mpc_or_odm(
					dc, &context->res_ctx,
					pipe, pipe_4to1, odm))
				goto validate_fail;
			newly_split[pipe_4to1->pipe_idx] = true;

			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
			else
				old_index = -1;
			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
			ASSERT(pipe_4to1);
			if (!pipe_4to1)
				goto validate_fail;
			if (!dcn32_split_stream_for_mpc_or_odm(
					dc, &context->res_ctx,
					hsplit_pipe, pipe_4to1, odm))
				goto validate_fail;
			newly_split[pipe_4to1->pipe_idx] = true;
		}
		if (odm)
			dcn20_build_mapped_resource(dc, context, pipe->stream);
	}

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		if (pipe->plane_state) {
			if (!resource_build_scaling_params(pipe))
				goto validate_fail;
		}
	}

	/* Actual dsc count per stream dsc validation*/
	if (!dcn20_validate_dsc(dc, context)) {
		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
		goto validate_fail;
	}

	if (repopulate_pipes) {
		int flag_max_mpc_comb = vba->maxMpcComb;
		int flag_vlevel = vlevel;
		int i;

		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);

		/* repopulate_pipes = 1 means the pipes were either split or merged. In this case
		 * we have to re-calculate the DET allocation and run through DML once more to
		 * ensure all the params are calculated correctly. We do not need to run the
		 * pipe split check again after this call (pipes are already split / merged).
		 * */
		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
					dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
		if (vlevel == context->bw_ctx.dml.soc.num_states) {
			/* failed after DET size changes */
			goto validate_fail;
		} else if (flag_max_mpc_comb == 0 &&
				flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
			/* check the context constructed with pipe split flags is still valid*/
			bool flags_valid = false;
			for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
				if (vba->ModeSupport[i][flag_max_mpc_comb]) {
					vba->maxMpcComb = flag_max_mpc_comb;
					vba->VoltageLevel = i;
					vlevel = i;
					flags_valid = true;
				}
			}

			/* this should never happen */
			if (!flags_valid)
				goto validate_fail;
		}
	}
	*vlevel_out = vlevel;
	*pipe_cnt_out = pipe_cnt;

	out = true;
	goto validate_out;

validate_fail:
	out = false;

validate_out:
	return out;
}


void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
				display_e2e_pipe_params_st *pipes,
				int pipe_cnt,
				int vlevel)
{
	int i, pipe_idx, vlevel_temp = 0;
	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
	double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
	double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
			dm_dram_clock_change_unsupported;
	unsigned int dummy_latency_index = 0;
	int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
	bool subvp_in_use = dcn32_subvp_in_use(dc, context);
	unsigned int min_dram_speed_mts_margin;
	bool need_fclk_lat_as_dummy = false;
	bool is_subvp_p_drr = false;
	struct dc_stream_state *fpo_candidate_stream = NULL;

	dc_assert_fp_enabled();

	/* need to find dummy latency index for subvp */
	if (subvp_in_use) {
		/* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
		if (!pstate_en) {
			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
			pstate_en = true;
			is_subvp_p_drr = true;
		}
		dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
						context, pipes, pipe_cnt, vlevel);

		/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
		 * scheduled correctly to account for dummy pstate.
		 */
		if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
			need_fclk_lat_as_dummy = true;
			context->bw_ctx.dml.soc.fclk_change_latency_us =
					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
		}
		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
							dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
		maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
		if (is_subvp_p_drr) {
			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
		}
	}

	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
	for (i = 0; i < context->stream_count; i++) {
		if (context->streams[i])
			context->streams[i]->fpo_in_use = false;
	}

	if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
			pstate_en && vlevel != 0)) {
		/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
		fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
		if (fpo_candidate_stream) {
			fpo_candidate_stream->fpo_in_use = true;
			context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
		}

		if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
			dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
				context, pipes, pipe_cnt, vlevel);

			/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
			 * we reinstate the original dram_clock_change_latency_us on the context
			 * and all variables that may have changed up to this point, except the
			 * newly found dummy_latency_index
			 */
			context->bw_ctx.dml.soc.dram_clock_change_latency_us =
					dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
			/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
			 * prefetch is scheduled correctly to account for dummy pstate.
			 */
			if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
				need_fclk_lat_as_dummy = true;
				context->bw_ctx.dml.soc.fclk_change_latency_us =
						dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
			}
			dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
			if (vlevel_temp < vlevel) {
				vlevel = vlevel_temp;
				maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
				dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
				pstate_en = true;
				context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
			} else {
				/* Restore FCLK latency and re-run validation to go back to original validation
				 * output if we find that enabling FPO does not give us any benefit (i.e. lower
				 * voltage level)
				 */
				context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
				for (i = 0; i < context->stream_count; i++) {
					if (context->streams[i])
						context->streams[i]->fpo_in_use = false;
				}
				context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
				dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
			}
		}
	}

	/* Set B:
	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
	 * calculations to cover bootup clocks.
	 * DCFCLK: soc.clock_limits[2] when available
	 * UCLK: soc.clock_limits[2] when available
	 */
	if (dcn3_2_soc.num_states > 2) {
		vlevel_temp = 2;
		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
	} else
		dcfclk = 615; //DCFCLK Vmin_lv

	pipes[0].clks_cfg.voltage = vlevel_temp;
	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;

	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
	}
	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;

	/* Set D:
	 * All clocks min.
	 * DCFCLK: Min, as reported by PM FW when available
	 * UCLK  : Min, as reported by PM FW when available
	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
	 */

	/*
	if (dcn3_2_soc.num_states > 2) {
		vlevel_temp = 0;
		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
	} else
		dcfclk = 615; //DCFCLK Vmin_lv

	pipes[0].clks_cfg.voltage = vlevel_temp;
	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;

	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
	}
	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	*/

	/* Set C, for Dummy P-State:
	 * All clocks min.
	 * DCFCLK: Min, as reported by PM FW, when available
	 * UCLK  : Min,  as reported by PM FW, when available
	 * pstate latency as per UCLK state dummy pstate latency
	 */

	// For Set A and Set C use values from validation
	pipes[0].clks_cfg.voltage = vlevel;
	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;

	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
		pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
	}

	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
		min_dram_speed_mts = dram_speed_from_validation;
		min_dram_speed_mts_margin = 160;

		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
			dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;

		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
			dm_dram_clock_change_unsupported) {
			int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;

			min_dram_speed_mts =
				dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
		}

		if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
			/* find largest table entry that is lower than dram speed,
			 * but lower than DPM0 still uses DPM0
			 */
			for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
				if (min_dram_speed_mts + min_dram_speed_mts_margin >
					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
					break;
		}

		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
			dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;

		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
	}

	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	/* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
	 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
	 * value.
	 */
	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;

	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
		/* The only difference between A and C is p-state latency, if p-state is not supported
		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
		 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
		 */
		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
		/* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
		 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
		 */
		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	} else {
		/* Set A:
		 * All clocks min.
		 * DCFCLK: Min, as reported by PM FW, when available
		 * UCLK: Min, as reported by PM FW, when available
		 */

		/* For set A set the correct latency values (i.e. non-dummy values) unconditionally
		 */
		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;

		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
	}

	/* Make set D = set A since we do not optimized watermarks for MALL */
	context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;

	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
		if (!context->res_ctx.pipe_ctx[i].stream)
			continue;

		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);

		if (dc->config.forced_clocks) {
			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
		}
		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;

		pipe_idx++;
	}

	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;

	/* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
	if (need_fclk_lat_as_dummy)
		context->bw_ctx.dml.soc.fclk_change_latency_us =
				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;

	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);

	if (!pstate_en)
		/* Restore full p-state latency */
		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;

	/* revert fclk lat changes if required */
	if (need_fclk_lat_as_dummy)
		context->bw_ctx.dml.soc.fclk_change_latency_us =
				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
}

static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
		unsigned int *optimal_dcfclk,
		unsigned int *optimal_fclk)
{
	double bw_from_dram, bw_from_dram1, bw_from_dram2;

	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);

	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;

	if (optimal_fclk)
		*optimal_fclk = bw_from_dram /
		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));

	if (optimal_dcfclk)
		*optimal_dcfclk =  bw_from_dram /
		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
}

static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
		unsigned int index)
{
	int i;

	if (*num_entries == 0)
		return;

	for (i = index; i < *num_entries - 1; i++) {
		table[i] = table[i + 1];
	}
	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
}

void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
{
	int i;
	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;

	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
	}

	/* Scan through clock values we currently have and if they are 0,
	 *  then populate it with dcn3_2_soc.clock_limits[] value.
	 *
	 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
	 *  0, will cause it to skip building the clock table.
	 */
	if (max_dcfclk_mhz == 0)
		bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
	if (max_dispclk_mhz == 0)
		bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
	if (max_dtbclk_mhz == 0)
		bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
	if (max_uclk_mhz == 0)
		bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
}

static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
		struct _vcs_dpi_voltage_scaling_st *second_entry)
{
	struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
	*first_entry = *second_entry;
	*second_entry = temp_entry;
}

/*
 * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
 */
static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
{
	unsigned int start_index = 0;
	unsigned int end_index = 0;
	unsigned int current_bw = 0;

	for (int i = 0; i < (*num_entries - 1); i++) {
		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
			current_bw = table[i].net_bw_in_kbytes_sec;
			start_index = i;
			end_index = ++i;

			while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
				end_index = ++i;
		}

		if (start_index != end_index) {
			for (int j = start_index; j < end_index; j++) {
				for (int k = start_index; k < end_index; k++) {
					if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
						swap_table_entries(&table[k], &table[k+1]);
				}
			}
		}

		start_index = 0;
		end_index = 0;

	}
}

/*
 * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
 *                               and remove entries that do not
 */
static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
{
	for (int i = 0; i < (*num_entries - 1); i++) {
		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
			if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
				(table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
				remove_entry_from_table_at_index(table, num_entries, i);
		}
	}
}

/*
 * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
 * Input:
 *	max_clk_limit - struct containing the desired clock timings
 * Output:
 *	curr_clk_limit  - struct containing the timings that need to be overwritten
 * Return: 0 upon success, non-zero for failure
 */
static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
		struct clk_limit_table_entry *curr_clk_limit)
{
	if (NULL == max_clk_limit || NULL == curr_clk_limit)
		return -1; //invalid parameters

	//only overwrite if desired max clock frequency is initialized
	if (max_clk_limit->dcfclk_mhz != 0)
		curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;

	if (max_clk_limit->fclk_mhz != 0)
		curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;

	if (max_clk_limit->memclk_mhz != 0)
		curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;

	if (max_clk_limit->socclk_mhz != 0)
		curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;

	if (max_clk_limit->dtbclk_mhz != 0)
		curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;

	if (max_clk_limit->dispclk_mhz != 0)
		curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;

	return 0;
}

static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
{
	int i, j;
	struct _vcs_dpi_voltage_scaling_st entry = {0};
	struct clk_limit_table_entry max_clk_data = {0};

	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;

	static const unsigned int num_dcfclk_stas = 5;
	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};

	unsigned int num_uclk_dpms = 0;
	unsigned int num_fclk_dpms = 0;
	unsigned int num_dcfclk_dpms = 0;

	unsigned int num_dc_uclk_dpms = 0;
	unsigned int num_dc_fclk_dpms = 0;
	unsigned int num_dc_dcfclk_dpms = 0;

	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
			max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
		if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
			max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
		if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
			max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
		if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
			max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
		if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
			max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
		if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
			max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
			max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;

		if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
			num_uclk_dpms++;
			if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
				num_dc_uclk_dpms++;
		}
		if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
			num_fclk_dpms++;
			if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
				num_dc_fclk_dpms++;
		}
		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
			num_dcfclk_dpms++;
			if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
				num_dc_dcfclk_dpms++;
		}
	}

	if (!disable_dc_mode_overwrite) {
		//Overwrite max frequencies with max DC mode frequencies for DC mode systems
		override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
		num_uclk_dpms = num_dc_uclk_dpms;
		num_fclk_dpms = num_dc_fclk_dpms;
		num_dcfclk_dpms = num_dc_dcfclk_dpms;
		bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
		bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
	}

	if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
		min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;

	if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
		return -1;

	if (max_clk_data.dppclk_mhz == 0)
		max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;

	if (max_clk_data.fclk_mhz == 0)
		max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
				dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
				dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;

	if (max_clk_data.phyclk_mhz == 0)
		max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;

	*num_entries = 0;
	entry.dispclk_mhz = max_clk_data.dispclk_mhz;
	entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
	entry.dppclk_mhz = max_clk_data.dppclk_mhz;
	entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
	entry.phyclk_mhz = max_clk_data.phyclk_mhz;
	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;

	// Insert all the DCFCLK STAs
	for (i = 0; i < num_dcfclk_stas; i++) {
		entry.dcfclk_mhz = dcfclk_sta_targets[i];
		entry.fabricclk_mhz = 0;
		entry.dram_speed_mts = 0;

		get_optimal_ntuple(&entry);
		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
		insert_entry_into_table_sorted(table, num_entries, &entry);
	}

	// Insert the max DCFCLK
	entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
	entry.fabricclk_mhz = 0;
	entry.dram_speed_mts = 0;

	get_optimal_ntuple(&entry);
	entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
	insert_entry_into_table_sorted(table, num_entries, &entry);

	// Insert the UCLK DPMS
	for (i = 0; i < num_uclk_dpms; i++) {
		entry.dcfclk_mhz = 0;
		entry.fabricclk_mhz = 0;
		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;

		get_optimal_ntuple(&entry);
		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
		insert_entry_into_table_sorted(table, num_entries, &entry);
	}

	// If FCLK is coarse grained, insert individual DPMs.
	if (num_fclk_dpms > 2) {
		for (i = 0; i < num_fclk_dpms; i++) {
			entry.dcfclk_mhz = 0;
			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
			entry.dram_speed_mts = 0;

			get_optimal_ntuple(&entry);
			entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
			insert_entry_into_table_sorted(table, num_entries, &entry);
		}
	}
	// If FCLK fine grained, only insert max
	else {
		entry.dcfclk_mhz = 0;
		entry.fabricclk_mhz = max_clk_data.fclk_mhz;
		entry.dram_speed_mts = 0;

		get_optimal_ntuple(&entry);
		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
		insert_entry_into_table_sorted(table, num_entries, &entry);
	}

	// At this point, the table contains all "points of interest" based on
	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
	// ratios (by derate, are exact).

	// Remove states that require higher clocks than are supported
	for (i = *num_entries - 1; i >= 0 ; i--) {
		if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
				table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
				table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
			remove_entry_from_table_at_index(table, num_entries, i);
	}

	// Insert entry with all max dc limits without bandwidth matching
	if (!disable_dc_mode_overwrite) {
		struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;

		max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
		max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
		max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;

		max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
		insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);

		sort_entries_with_same_bw(table, num_entries);
		remove_inconsistent_entries(table, num_entries);
	}

	// At this point, the table only contains supported points of interest
	// it could be used as is, but some states may be redundant due to
	// coarse grained nature of some clocks, so we want to round up to
	// coarse grained DPMs and remove duplicates.

	// Round up UCLKs
	for (i = *num_entries - 1; i >= 0 ; i--) {
		for (j = 0; j < num_uclk_dpms; j++) {
			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
				break;
			}
		}
	}

	// If FCLK is coarse grained, round up to next DPMs
	if (num_fclk_dpms > 2) {
		for (i = *num_entries - 1; i >= 0 ; i--) {
			for (j = 0; j < num_fclk_dpms; j++) {
				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
					break;
				}
			}
		}
	}
	// Otherwise, round up to minimum.
	else {
		for (i = *num_entries - 1; i >= 0 ; i--) {
			if (table[i].fabricclk_mhz < min_fclk_mhz) {
				table[i].fabricclk_mhz = min_fclk_mhz;
			}
		}
	}

	// Round DCFCLKs up to minimum
	for (i = *num_entries - 1; i >= 0 ; i--) {
		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
			table[i].dcfclk_mhz = min_dcfclk_mhz;
		}
	}

	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
	i = 0;
	while (i < *num_entries - 1) {
		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
			remove_entry_from_table_at_index(table, num_entries, i + 1);
		else
			i++;
	}

	// Fix up the state indicies
	for (i = *num_entries - 1; i >= 0 ; i--) {
		table[i].state = i;
	}

	return 0;
}

/*
 * dcn32_update_bw_bounding_box
 *
 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
 * spreadsheet with actual values as per dGPU SKU:
 * - with passed few options from dc->config
 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
 *   need to get it from PM FW)
 * - with passed latency values (passed in ns units) in dc-> bb override for
 *   debugging purposes
 * - with passed latencies from VBIOS (in 100_ns units) if available for
 *   certain dGPU SKU
 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
 *   of the same ASIC)
 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
 *   FW for different clocks (which might differ for certain dGPU SKU of the
 *   same ASIC)
 */
void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
{
	dc_assert_fp_enabled();

	/* Overrides from dc->config options */
	dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;

	/* Override from passed dc->bb_overrides if available*/
	if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
			&& dc->bb_overrides.sr_exit_time_ns) {
		dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
	}

	if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
			!= dc->bb_overrides.sr_enter_plus_exit_time_ns
			&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
		dcn3_2_soc.sr_enter_plus_exit_time_us =
			dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
	}

	if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
		&& dc->bb_overrides.urgent_latency_ns) {
		dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
		dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
	}

	if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
			!= dc->bb_overrides.dram_clock_change_latency_ns
			&& dc->bb_overrides.dram_clock_change_latency_ns) {
		dcn3_2_soc.dram_clock_change_latency_us =
			dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
	}

	if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
			!= dc->bb_overrides.fclk_clock_change_latency_ns
			&& dc->bb_overrides.fclk_clock_change_latency_ns) {
		dcn3_2_soc.fclk_change_latency_us =
			dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
	}

	if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
			!= dc->bb_overrides.dummy_clock_change_latency_ns
			&& dc->bb_overrides.dummy_clock_change_latency_ns) {
		dcn3_2_soc.dummy_pstate_latency_us =
			dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
	}

	/* Override from VBIOS if VBIOS bb_info available */
	if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
		struct bp_soc_bb_info bb_info = {0};

		if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
			if (bb_info.dram_clock_change_latency_100ns > 0)
				dcn3_2_soc.dram_clock_change_latency_us =
					bb_info.dram_clock_change_latency_100ns * 10;

			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
				dcn3_2_soc.sr_enter_plus_exit_time_us =
					bb_info.dram_sr_enter_exit_latency_100ns * 10;

			if (bb_info.dram_sr_exit_latency_100ns > 0)
				dcn3_2_soc.sr_exit_time_us =
					bb_info.dram_sr_exit_latency_100ns * 10;
		}
	}

	/* Override from VBIOS for num_chan */
	if (dc->ctx->dc_bios->vram_info.num_chans) {
		dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
		dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
			dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
	}

	if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
		dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;

	/* DML DSC delay factor workaround */
	dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;

	dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;

	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;

	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
	if (bw_params->clk_table.entries[0].memclk_mhz) {
		if (dc->debug.use_legacy_soc_bb_mechanism) {
			unsigned int i = 0, j = 0, num_states = 0;

			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
			unsigned int min_dcfclk = UINT_MAX;
			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;

			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
			}
			if (min_dcfclk > dcfclk_sta_targets[0])
				dcfclk_sta_targets[0] = min_dcfclk;
			if (!max_dcfclk_mhz)
				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
			if (!max_dispclk_mhz)
				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
			if (!max_dppclk_mhz)
				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
			if (!max_phyclk_mhz)
				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;

			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
				num_dcfclk_sta_targets++;
			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
				for (i = 0; i < num_dcfclk_sta_targets; i++) {
					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
						dcfclk_sta_targets[i] = max_dcfclk_mhz;
						break;
					}
				}
				// Update size of array since we "removed" duplicates
				num_dcfclk_sta_targets = i + 1;
			}

			num_uclk_states = bw_params->clk_table.num_entries;

			// Calculate optimal dcfclk for each uclk
			for (i = 0; i < num_uclk_states; i++) {
				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
						&optimal_dcfclk_for_uclk[i], NULL);
				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
				}
			}

			// Calculate optimal uclk for each dcfclk sta target
			for (i = 0; i < num_dcfclk_sta_targets; i++) {
				for (j = 0; j < num_uclk_states; j++) {
					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
						optimal_uclk_for_dcfclk_sta_targets[i] =
								bw_params->clk_table.entries[j].memclk_mhz * 16;
						break;
					}
				}
			}

			i = 0;
			j = 0;
			// create the final dcfclk and uclk table
			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
				} else {
					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
					} else {
						j = num_uclk_states;
					}
				}
			}

			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
			}

			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
			}

			/* bw_params->clk_table.entries[MAX_NUM_DPM_LVL].
			 * MAX_NUM_DPM_LVL is 8.
			 * dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES].
			 * DC__VOLTAGE_STATES is 40.
			 */
			if (num_states > MAX_NUM_DPM_LVL) {
				ASSERT(0);
				return;
			}

			dcn3_2_soc.num_states = num_states;
			for (i = 0; i < dcn3_2_soc.num_states; i++) {
				dcn3_2_soc.clock_limits[i].state = i;
				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];

				/* Fill all states with max values of all these clocks */
				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;

				/* Populate from bw_params for DTBCLK, SOCCLK */
				if (i > 0) {
					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
					} else {
						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
					}
				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
				}

				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
				else
					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;

				if (!dram_speed_mts[i] && i > 0)
					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
				else
					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];

				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
				/* PHYCLK_D18, PHYCLK_D32 */
				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
			}
		} else {
			build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
					dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
		}

		/* Re-init DML with updated bb */
		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
		if (dc->current_state)
			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
	}
}

void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
				  int pipe_cnt)
{
	dc_assert_fp_enabled();

	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
}

bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
{
	bool allow = false;
	uint32_t refresh_rate = 0;

	/* Allow subvp on displays that have active margin for 2560x1440@60hz displays
	 * only for now. There must be no scaling as well.
	 *
	 * For now we only enable on 2560x1440@60hz displays to enable 4K60 + 1440p60 configs
	 * for p-state switching.
	 */
	if (pipe->stream && pipe->plane_state) {
		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
		if (pipe->stream->timing.v_addressable == 1440 &&
				pipe->stream->timing.h_addressable == 2560 &&
				refresh_rate >= 55 && refresh_rate <= 65 &&
				pipe->plane_state->src_rect.height == 1440 &&
				pipe->plane_state->src_rect.width == 2560 &&
				pipe->plane_state->dst_rect.height == 1440 &&
				pipe->plane_state->dst_rect.width == 2560)
			allow = true;
	}
	return allow;
}

/**
 * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
 *
 * @dc: Current DC state
 * @context: New DC state to be programmed
 * @pipe: Pipe to be considered for use in subvp
 *
 * On high refresh rate display configs, we will allow subvp under the following conditions:
 * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
 * 2. Refresh rate is between 120hz - 165hz
 * 3. No scaling
 * 4. Freesync is inactive
 * 5. For single display cases, freesync must be disabled
 *
 * Return: True if pipe can be used for subvp, false otherwise
 */
bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
{
	bool allow = false;
	uint32_t refresh_rate = 0;
	uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
	uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
	uint32_t min_refresh = subvp_max_refresh;
	uint32_t i;

	/* Only allow SubVP on high refresh displays if all connected displays
	 * are considered "high refresh" (i.e. >= 120hz). We do not want to
	 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
	 */
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];

		if (!pipe_ctx->stream)
			continue;
		refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
				pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
						/ (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);

		if (refresh_rate < min_refresh)
			min_refresh = refresh_rate;
	}

	if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
			pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
		if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
			for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
				uint32_t width = subvp_high_refresh_list.res[i].width;
				uint32_t height = subvp_high_refresh_list.res[i].height;

				if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
					if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
						allow = true;
						break;
					}
				}
			}
		}
	}
	return allow;
}

/**
 * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
 *
 * @dc: Current DC state
 * @context: New DC state to be programmed
 *
 * Return: Max vratio for prefetch
 */
double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
{
	double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
	int i;

	/* For single display MPO configs, allow the max vratio to be 8
	 * if any plane is YUV420 format
	 */
	if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
		for (i = 0; i < context->stream_status[0].plane_count; i++) {
			if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
					context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
				max_vratio_pre = __DML_MAX_VRATIO_PRE__;
			}
		}
	}
	return max_vratio_pre;
}

/**
 * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
 *
 * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
 * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
 * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
 * ActiveMargin <= 0 to be the FPO stream candidate if found.
 *
 *
 * @dc: current dc state
 * @context: new dc state
 * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
 *
 * Return: void
 */
void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
{
	unsigned int i, pipe_idx;
	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;

	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		if (!pipe->stream)
			continue;

		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
			*fpo_candidate_stream = pipe->stream;
			break;
		}
		pipe_idx++;
	}
}

/**
 * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
 *
 * @dc: current dc state
 * @context: new dc state
 * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
 *
 * Return: True if VACTIVE display is found, false otherwise
 */
bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us)
{
	unsigned int i, pipe_idx;
	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
	bool vactive_found = false;
	unsigned int blank_us = 0;

	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		if (!pipe->stream)
			continue;

		blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
				(double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us &&
				!(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed) && blank_us < dc->debug.fpo_vactive_max_blank_us) {
			vactive_found = true;
			break;
		}
		pipe_idx++;
	}
	return vactive_found;
}

void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
{
	dc_assert_fp_enabled();
	dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
}

void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
{
	// WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
	if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
			dc->dml.soc.num_chans <= 8) {
		int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;

		if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
				num_mclk_levels > 1) {
			context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
			context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
		}
	}
}