Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Modifications by Kumar Gala (galak@kernel.crashing.org) to support * E500 Book E processors. * * Copyright 2004,2010 Freescale Semiconductor, Inc. * * This file contains the routines for initializing the MMU * on the 4xx series of chips. * -- paulus * * Derived from arch/ppc/mm/init.c: * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/stddef.h> #include <linux/vmalloc.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/highmem.h> #include <linux/memblock.h> #include <linux/of_fdt.h> #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/mmu.h> #include <linux/uaccess.h> #include <asm/smp.h> #include <asm/machdep.h> #include <asm/setup.h> #include <asm/paca.h> #include <mm/mmu_decl.h> unsigned int tlbcam_index; struct tlbcam TLBCAM[NUM_TLBCAMS]; static struct { unsigned long start; unsigned long limit; phys_addr_t phys; } tlbcam_addrs[NUM_TLBCAMS]; #ifdef CONFIG_PPC_85xx /* * Return PA for this VA if it is mapped by a CAM, or 0 */ phys_addr_t v_block_mapped(unsigned long va) { int b; for (b = 0; b < tlbcam_index; ++b) if (va >= tlbcam_addrs[b].start && va < tlbcam_addrs[b].limit) return tlbcam_addrs[b].phys + (va - tlbcam_addrs[b].start); return 0; } /* * Return VA for a given PA or 0 if not mapped */ unsigned long p_block_mapped(phys_addr_t pa) { int b; for (b = 0; b < tlbcam_index; ++b) if (pa >= tlbcam_addrs[b].phys && pa < (tlbcam_addrs[b].limit-tlbcam_addrs[b].start) +tlbcam_addrs[b].phys) return tlbcam_addrs[b].start+(pa-tlbcam_addrs[b].phys); return 0; } #endif /* * Set up a variable-size TLB entry (tlbcam). The parameters are not checked; * in particular size must be a power of 4 between 4k and the max supported by * an implementation; max may further be limited by what can be represented in * an unsigned long (for example, 32-bit implementations cannot support a 4GB * size). */ static void settlbcam(int index, unsigned long virt, phys_addr_t phys, unsigned long size, unsigned long flags, unsigned int pid) { unsigned int tsize; tsize = __ilog2(size) - 10; #if defined(CONFIG_SMP) || defined(CONFIG_PPC_E500MC) if ((flags & _PAGE_NO_CACHE) == 0) flags |= _PAGE_COHERENT; #endif TLBCAM[index].MAS0 = MAS0_TLBSEL(1) | MAS0_ESEL(index) | MAS0_NV(index+1); TLBCAM[index].MAS1 = MAS1_VALID | MAS1_IPROT | MAS1_TSIZE(tsize) | MAS1_TID(pid); TLBCAM[index].MAS2 = virt & PAGE_MASK; TLBCAM[index].MAS2 |= (flags & _PAGE_WRITETHRU) ? MAS2_W : 0; TLBCAM[index].MAS2 |= (flags & _PAGE_NO_CACHE) ? MAS2_I : 0; TLBCAM[index].MAS2 |= (flags & _PAGE_COHERENT) ? MAS2_M : 0; TLBCAM[index].MAS2 |= (flags & _PAGE_GUARDED) ? MAS2_G : 0; TLBCAM[index].MAS2 |= (flags & _PAGE_ENDIAN) ? MAS2_E : 0; TLBCAM[index].MAS3 = (phys & MAS3_RPN) | MAS3_SR; TLBCAM[index].MAS3 |= (flags & _PAGE_RW) ? MAS3_SW : 0; if (mmu_has_feature(MMU_FTR_BIG_PHYS)) TLBCAM[index].MAS7 = (u64)phys >> 32; /* Below is unlikely -- only for large user pages or similar */ if (pte_user(__pte(flags))) { TLBCAM[index].MAS3 |= MAS3_UR; TLBCAM[index].MAS3 |= (flags & _PAGE_EXEC) ? MAS3_UX : 0; TLBCAM[index].MAS3 |= (flags & _PAGE_RW) ? MAS3_UW : 0; } else { TLBCAM[index].MAS3 |= (flags & _PAGE_EXEC) ? MAS3_SX : 0; } tlbcam_addrs[index].start = virt; tlbcam_addrs[index].limit = virt + size - 1; tlbcam_addrs[index].phys = phys; } static unsigned long calc_cam_sz(unsigned long ram, unsigned long virt, phys_addr_t phys) { unsigned int camsize = __ilog2(ram); unsigned int align = __ffs(virt | phys); unsigned long max_cam; if ((mfspr(SPRN_MMUCFG) & MMUCFG_MAVN) == MMUCFG_MAVN_V1) { /* Convert (4^max) kB to (2^max) bytes */ max_cam = ((mfspr(SPRN_TLB1CFG) >> 16) & 0xf) * 2 + 10; camsize &= ~1U; align &= ~1U; } else { /* Convert (2^max) kB to (2^max) bytes */ max_cam = __ilog2(mfspr(SPRN_TLB1PS)) + 10; } if (camsize > align) camsize = align; if (camsize > max_cam) camsize = max_cam; return 1UL << camsize; } static unsigned long map_mem_in_cams_addr(phys_addr_t phys, unsigned long virt, unsigned long ram, int max_cam_idx, bool dryrun, bool init) { int i; unsigned long amount_mapped = 0; unsigned long boundary; if (strict_kernel_rwx_enabled()) boundary = (unsigned long)(_sinittext - _stext); else boundary = ram; /* Calculate CAM values */ for (i = 0; boundary && i < max_cam_idx; i++) { unsigned long cam_sz; pgprot_t prot = init ? PAGE_KERNEL_X : PAGE_KERNEL_ROX; cam_sz = calc_cam_sz(boundary, virt, phys); if (!dryrun) settlbcam(i, virt, phys, cam_sz, pgprot_val(prot), 0); boundary -= cam_sz; amount_mapped += cam_sz; virt += cam_sz; phys += cam_sz; } for (ram -= amount_mapped; ram && i < max_cam_idx; i++) { unsigned long cam_sz; pgprot_t prot = init ? PAGE_KERNEL_X : PAGE_KERNEL; cam_sz = calc_cam_sz(ram, virt, phys); if (!dryrun) settlbcam(i, virt, phys, cam_sz, pgprot_val(prot), 0); ram -= cam_sz; amount_mapped += cam_sz; virt += cam_sz; phys += cam_sz; } if (dryrun) return amount_mapped; if (init) { loadcam_multi(0, i, max_cam_idx); tlbcam_index = i; } else { loadcam_multi(0, i, 0); WARN_ON(i > tlbcam_index); } #ifdef CONFIG_PPC64 get_paca()->tcd.esel_next = i; get_paca()->tcd.esel_max = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; get_paca()->tcd.esel_first = i; #endif return amount_mapped; } unsigned long map_mem_in_cams(unsigned long ram, int max_cam_idx, bool dryrun, bool init) { unsigned long virt = PAGE_OFFSET; phys_addr_t phys = memstart_addr; return map_mem_in_cams_addr(phys, virt, ram, max_cam_idx, dryrun, init); } #ifdef CONFIG_PPC32 #if defined(CONFIG_LOWMEM_CAM_NUM_BOOL) && (CONFIG_LOWMEM_CAM_NUM >= NUM_TLBCAMS) #error "LOWMEM_CAM_NUM must be less than NUM_TLBCAMS" #endif unsigned long __init mmu_mapin_ram(unsigned long base, unsigned long top) { return tlbcam_addrs[tlbcam_index - 1].limit - PAGE_OFFSET + 1; } void flush_instruction_cache(void) { unsigned long tmp; tmp = mfspr(SPRN_L1CSR1); tmp |= L1CSR1_ICFI | L1CSR1_ICLFR; mtspr(SPRN_L1CSR1, tmp); isync(); } /* * MMU_init_hw does the chip-specific initialization of the MMU hardware. */ void __init MMU_init_hw(void) { flush_instruction_cache(); } static unsigned long __init tlbcam_sz(int idx) { return tlbcam_addrs[idx].limit - tlbcam_addrs[idx].start + 1; } void __init adjust_total_lowmem(void) { unsigned long ram; int i; /* adjust lowmem size to __max_low_memory */ ram = min((phys_addr_t)__max_low_memory, (phys_addr_t)total_lowmem); i = switch_to_as1(); __max_low_memory = map_mem_in_cams(ram, CONFIG_LOWMEM_CAM_NUM, false, true); restore_to_as0(i, 0, NULL, 1); pr_info("Memory CAM mapping: "); for (i = 0; i < tlbcam_index - 1; i++) pr_cont("%lu/", tlbcam_sz(i) >> 20); pr_cont("%lu Mb, residual: %dMb\n", tlbcam_sz(tlbcam_index - 1) >> 20, (unsigned int)((total_lowmem - __max_low_memory) >> 20)); memblock_set_current_limit(memstart_addr + __max_low_memory); } #ifdef CONFIG_STRICT_KERNEL_RWX void mmu_mark_rodata_ro(void) { unsigned long remapped; remapped = map_mem_in_cams(__max_low_memory, CONFIG_LOWMEM_CAM_NUM, false, false); WARN_ON(__max_low_memory != remapped); } #endif void mmu_mark_initmem_nx(void) { /* Everything is done in mmu_mark_rodata_ro() */ } void setup_initial_memory_limit(phys_addr_t first_memblock_base, phys_addr_t first_memblock_size) { phys_addr_t limit = first_memblock_base + first_memblock_size; /* 64M mapped initially according to head_fsl_booke.S */ memblock_set_current_limit(min_t(u64, limit, 0x04000000)); } #ifdef CONFIG_RELOCATABLE int __initdata is_second_reloc; notrace void __init relocate_init(u64 dt_ptr, phys_addr_t start) { unsigned long base = kernstart_virt_addr; phys_addr_t size; kernstart_addr = start; if (is_second_reloc) { virt_phys_offset = PAGE_OFFSET - memstart_addr; kaslr_late_init(); return; } /* * Relocatable kernel support based on processing of dynamic * relocation entries. Before we get the real memstart_addr, * We will compute the virt_phys_offset like this: * virt_phys_offset = stext.run - kernstart_addr * * stext.run = (KERNELBASE & ~0x3ffffff) + * (kernstart_addr & 0x3ffffff) * When we relocate, we have : * * (kernstart_addr & 0x3ffffff) = (stext.run & 0x3ffffff) * * hence: * virt_phys_offset = (KERNELBASE & ~0x3ffffff) - * (kernstart_addr & ~0x3ffffff) * */ start &= ~0x3ffffff; base &= ~0x3ffffff; virt_phys_offset = base - start; early_get_first_memblock_info(__va(dt_ptr), &size); /* * We now get the memstart_addr, then we should check if this * address is the same as what the PAGE_OFFSET map to now. If * not we have to change the map of PAGE_OFFSET to memstart_addr * and do a second relocation. */ if (start != memstart_addr) { int n; long offset = start - memstart_addr; is_second_reloc = 1; n = switch_to_as1(); /* map a 64M area for the second relocation */ if (memstart_addr > start) map_mem_in_cams(0x4000000, CONFIG_LOWMEM_CAM_NUM, false, true); else map_mem_in_cams_addr(start, PAGE_OFFSET + offset, 0x4000000, CONFIG_LOWMEM_CAM_NUM, false, true); restore_to_as0(n, offset, __va(dt_ptr), 1); /* We should never reach here */ panic("Relocation error"); } kaslr_early_init(__va(dt_ptr), size); } #endif #endif |