Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* multi_arith.h: multi-precision integer arithmetic functions, needed to do extended-precision floating point. (c) 1998 David Huggins-Daines. Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c) David Mosberger-Tang. */ /* Note: These are not general multi-precision math routines. Rather, they implement the subset of integer arithmetic that we need in order to multiply, divide, and normalize 128-bit unsigned mantissae. */ #ifndef MULTI_ARITH_H #define MULTI_ARITH_H static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt) { reg->exp += cnt; switch (cnt) { case 0 ... 8: reg->lowmant = reg->mant.m32[1] << (8 - cnt); reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | (reg->mant.m32[0] << (32 - cnt)); reg->mant.m32[0] = reg->mant.m32[0] >> cnt; break; case 9 ... 32: reg->lowmant = reg->mant.m32[1] >> (cnt - 8); if (reg->mant.m32[1] << (40 - cnt)) reg->lowmant |= 1; reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | (reg->mant.m32[0] << (32 - cnt)); reg->mant.m32[0] = reg->mant.m32[0] >> cnt; break; case 33 ... 39: asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant) : "m" (reg->mant.m32[0]), "d" (64 - cnt)); if (reg->mant.m32[1] << (40 - cnt)) reg->lowmant |= 1; reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); reg->mant.m32[0] = 0; break; case 40 ... 71: reg->lowmant = reg->mant.m32[0] >> (cnt - 40); if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1]) reg->lowmant |= 1; reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); reg->mant.m32[0] = 0; break; default: reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1]; reg->mant.m32[0] = 0; reg->mant.m32[1] = 0; break; } } static inline int fp_overnormalize(struct fp_ext *reg) { int shift; if (reg->mant.m32[0]) { asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0])); reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift)); reg->mant.m32[1] = (reg->mant.m32[1] << shift); } else { asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1])); reg->mant.m32[0] = (reg->mant.m32[1] << shift); reg->mant.m32[1] = 0; shift += 32; } return shift; } static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src) { int carry; /* we assume here, gcc only insert move and a clr instr */ asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant) : "g,d" (src->lowmant), "0,0" (dest->lowmant)); asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1]) : "d" (src->mant.m32[1]), "0" (dest->mant.m32[1])); asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0]) : "d" (src->mant.m32[0]), "0" (dest->mant.m32[0])); asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0)); return carry; } static inline int fp_addcarry(struct fp_ext *reg) { if (++reg->exp == 0x7fff) { if (reg->mant.m64) fp_set_sr(FPSR_EXC_INEX2); reg->mant.m64 = 0; fp_set_sr(FPSR_EXC_OVFL); return 0; } reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0); reg->mant.m32[1] = (reg->mant.m32[1] >> 1) | (reg->mant.m32[0] << 31); reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000; return 1; } static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1, struct fp_ext *src2) { /* we assume here, gcc only insert move and a clr instr */ asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant) : "g,d" (src2->lowmant), "0,0" (src1->lowmant)); asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1]) : "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1])); asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0]) : "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0])); } #define fp_mul64(desth, destl, src1, src2) ({ \ asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth) \ : "dm" (src1), "0" (src2)); \ }) #define fp_div64(quot, rem, srch, srcl, div) \ asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem) \ : "dm" (div), "1" (srch), "0" (srcl)) #define fp_add64(dest1, dest2, src1, src2) ({ \ asm ("add.l %1,%0" : "=d,dm" (dest2) \ : "dm,d" (src2), "0,0" (dest2)); \ asm ("addx.l %1,%0" : "=d" (dest1) \ : "d" (src1), "0" (dest1)); \ }) #define fp_addx96(dest, src) ({ \ /* we assume here, gcc only insert move and a clr instr */ \ asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2]) \ : "g,d" (temp.m32[1]), "0,0" (dest->m32[2])); \ asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1]) \ : "d" (temp.m32[0]), "0" (dest->m32[1])); \ asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0]) \ : "d" (0), "0" (dest->m32[0])); \ }) #define fp_sub64(dest, src) ({ \ asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1]) \ : "dm,d" (src.m32[1]), "0,0" (dest.m32[1])); \ asm ("subx.l %1,%0" : "=d" (dest.m32[0]) \ : "d" (src.m32[0]), "0" (dest.m32[0])); \ }) #define fp_sub96c(dest, srch, srcm, srcl) ({ \ char carry; \ asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2]) \ : "dm,d" (srcl), "0,0" (dest.m32[2])); \ asm ("subx.l %1,%0" : "=d" (dest.m32[1]) \ : "d" (srcm), "0" (dest.m32[1])); \ asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0]) \ : "d" (srch), "1" (dest.m32[0])); \ carry; \ }) static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1, struct fp_ext *src2) { union fp_mant64 temp; fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]); fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]); fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]); fp_addx96(dest, temp); fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]); fp_addx96(dest, temp); } static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src, struct fp_ext *div) { union fp_mant128 tmp; union fp_mant64 tmp64; unsigned long *mantp = dest->m32; unsigned long fix, rem, first, dummy; int i; /* the algorithm below requires dest to be smaller than div, but both have the high bit set */ if (src->mant.m64 >= div->mant.m64) { fp_sub64(src->mant, div->mant); *mantp = 1; } else *mantp = 0; mantp++; /* basic idea behind this algorithm: we can't divide two 64bit numbers (AB/CD) directly, but we can calculate AB/C0, but this means this quotient is off by C0/CD, so we have to multiply the first result to fix the result, after that we have nearly the correct result and only a few corrections are needed. */ /* C0/CD can be precalculated, but it's an 64bit division again, but we can make it a bit easier, by dividing first through C so we get 10/1D and now only a single shift and the value fits into 32bit. */ fix = 0x80000000; dummy = div->mant.m32[1] / div->mant.m32[0] + 1; dummy = (dummy >> 1) | fix; fp_div64(fix, dummy, fix, 0, dummy); fix--; for (i = 0; i < 3; i++, mantp++) { if (src->mant.m32[0] == div->mant.m32[0]) { fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]); fp_mul64(*mantp, dummy, first, fix); *mantp += fix; } else { fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]); fp_mul64(*mantp, dummy, first, fix); } fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp); fp_add64(tmp.m32[0], tmp.m32[1], 0, rem); tmp.m32[2] = 0; fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]); fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]); src->mant.m32[0] = tmp.m32[1]; src->mant.m32[1] = tmp.m32[2]; while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) { src->mant.m32[0] = tmp.m32[1]; src->mant.m32[1] = tmp.m32[2]; *mantp += 1; } } } static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src, int shift) { unsigned long tmp; switch (shift) { case 0: dest->mant.m64 = src->m64[0]; dest->lowmant = src->m32[2] >> 24; if (src->m32[3] || (src->m32[2] << 8)) dest->lowmant |= 1; break; case 1: asm volatile ("lsl.l #1,%0" : "=d" (tmp) : "0" (src->m32[2])); asm volatile ("roxl.l #1,%0" : "=d" (dest->mant.m32[1]) : "0" (src->m32[1])); asm volatile ("roxl.l #1,%0" : "=d" (dest->mant.m32[0]) : "0" (src->m32[0])); dest->lowmant = tmp >> 24; if (src->m32[3] || (tmp << 8)) dest->lowmant |= 1; break; case 31: asm volatile ("lsr.l #1,%1; roxr.l #1,%0" : "=d" (dest->mant.m32[0]) : "d" (src->m32[0]), "0" (src->m32[1])); asm volatile ("roxr.l #1,%0" : "=d" (dest->mant.m32[1]) : "0" (src->m32[2])); asm volatile ("roxr.l #1,%0" : "=d" (tmp) : "0" (src->m32[3])); dest->lowmant = tmp >> 24; if (src->m32[3] << 7) dest->lowmant |= 1; break; case 32: dest->mant.m32[0] = src->m32[1]; dest->mant.m32[1] = src->m32[2]; dest->lowmant = src->m32[3] >> 24; if (src->m32[3] << 8) dest->lowmant |= 1; break; } } #endif /* MULTI_ARITH_H */ |