Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | // SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd. #include <linux/extable.h> #include <linux/kprobes.h> #include <linux/mmu_context.h> #include <linux/perf_event.h> int fixup_exception(struct pt_regs *regs) { const struct exception_table_entry *fixup; fixup = search_exception_tables(instruction_pointer(regs)); if (fixup) { regs->pc = fixup->fixup; return 1; } return 0; } static inline bool is_write(struct pt_regs *regs) { switch (trap_no(regs)) { case VEC_TLBINVALIDS: return true; case VEC_TLBMODIFIED: return true; } return false; } #ifdef CONFIG_CPU_HAS_LDSTEX static inline void csky_cmpxchg_fixup(struct pt_regs *regs) { return; } #else extern unsigned long csky_cmpxchg_ldw; extern unsigned long csky_cmpxchg_stw; static inline void csky_cmpxchg_fixup(struct pt_regs *regs) { if (trap_no(regs) != VEC_TLBMODIFIED) return; if (instruction_pointer(regs) == csky_cmpxchg_stw) instruction_pointer_set(regs, csky_cmpxchg_ldw); return; } #endif static inline void no_context(struct pt_regs *regs, unsigned long addr) { current->thread.trap_no = trap_no(regs); /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ bust_spinlocks(1); pr_alert("Unable to handle kernel paging request at virtual " "addr 0x%08lx, pc: 0x%08lx\n", addr, regs->pc); die(regs, "Oops"); make_task_dead(SIGKILL); } static inline void mm_fault_error(struct pt_regs *regs, unsigned long addr, vm_fault_t fault) { current->thread.trap_no = trap_no(regs); if (fault & VM_FAULT_OOM) { /* * We ran out of memory, call the OOM killer, and return the userspace * (which will retry the fault, or kill us if we got oom-killed). */ if (!user_mode(regs)) { no_context(regs, addr); return; } pagefault_out_of_memory(); return; } else if (fault & VM_FAULT_SIGBUS) { /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) { no_context(regs, addr); return; } do_trap(regs, SIGBUS, BUS_ADRERR, addr); return; } BUG(); } static inline void bad_area_nosemaphore(struct pt_regs *regs, struct mm_struct *mm, int code, unsigned long addr) { /* * Something tried to access memory that isn't in our memory map. * Fix it, but check if it's kernel or user first. */ /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { do_trap(regs, SIGSEGV, code, addr); return; } no_context(regs, addr); } static inline void vmalloc_fault(struct pt_regs *regs, int code, unsigned long addr) { pgd_t *pgd, *pgd_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; int offset; /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { do_trap(regs, SIGSEGV, code, addr); return; } /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "tsk" here. We might be inside * an interrupt in the middle of a task switch.. */ offset = pgd_index(addr); pgd = get_pgd() + offset; pgd_k = init_mm.pgd + offset; if (!pgd_present(*pgd_k)) { no_context(regs, addr); return; } set_pgd(pgd, *pgd_k); pud = (pud_t *)pgd; pud_k = (pud_t *)pgd_k; if (!pud_present(*pud_k)) { no_context(regs, addr); return; } pmd = pmd_offset(pud, addr); pmd_k = pmd_offset(pud_k, addr); if (!pmd_present(*pmd_k)) { no_context(regs, addr); return; } set_pmd(pmd, *pmd_k); pte_k = pte_offset_kernel(pmd_k, addr); if (!pte_present(*pte_k)) { no_context(regs, addr); return; } flush_tlb_one(addr); } static inline bool access_error(struct pt_regs *regs, struct vm_area_struct *vma) { if (is_write(regs)) { if (!(vma->vm_flags & VM_WRITE)) return true; } else { if (unlikely(!vma_is_accessible(vma))) return true; } return false; } /* * This routine handles page faults. It determines the address and the * problem, and then passes it off to one of the appropriate routines. */ asmlinkage void do_page_fault(struct pt_regs *regs) { struct task_struct *tsk; struct vm_area_struct *vma; struct mm_struct *mm; unsigned long addr = read_mmu_entryhi() & PAGE_MASK; unsigned int flags = FAULT_FLAG_DEFAULT; int code = SEGV_MAPERR; vm_fault_t fault; tsk = current; mm = tsk->mm; csky_cmpxchg_fixup(regs); if (kprobe_page_fault(regs, tsk->thread.trap_no)) return; /* * Fault-in kernel-space virtual memory on-demand. * The 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. */ if (unlikely((addr >= VMALLOC_START) && (addr <= VMALLOC_END))) { vmalloc_fault(regs, code, addr); return; } /* Enable interrupts if they were enabled in the parent context. */ if (likely(regs->sr & BIT(6))) local_irq_enable(); /* * If we're in an interrupt, have no user context, or are running * in an atomic region, then we must not take the fault. */ if (unlikely(faulthandler_disabled() || !mm)) { no_context(regs, addr); return; } if (user_mode(regs)) flags |= FAULT_FLAG_USER; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); if (is_write(regs)) flags |= FAULT_FLAG_WRITE; retry: vma = lock_mm_and_find_vma(mm, addr, regs); if (unlikely(!vma)) { bad_area_nosemaphore(regs, mm, code, addr); return; } /* * Ok, we have a good vm_area for this memory access, so * we can handle it. */ code = SEGV_ACCERR; if (unlikely(access_error(regs, vma))) { mmap_read_unlock(mm); bad_area_nosemaphore(regs, mm, code, addr); return; } /* * If for any reason at all we could not handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(vma, addr, flags, regs); /* * If we need to retry but a fatal signal is pending, handle the * signal first. We do not need to release the mmap_lock because it * would already be released in __lock_page_or_retry in mm/filemap.c. */ if (fault_signal_pending(fault, regs)) { if (!user_mode(regs)) no_context(regs, addr); return; } /* The fault is fully completed (including releasing mmap lock) */ if (fault & VM_FAULT_COMPLETED) return; if (unlikely((fault & VM_FAULT_RETRY) && (flags & FAULT_FLAG_ALLOW_RETRY))) { flags |= FAULT_FLAG_TRIED; /* * No need to mmap_read_unlock(mm) as we would * have already released it in __lock_page_or_retry * in mm/filemap.c. */ goto retry; } mmap_read_unlock(mm); if (unlikely(fault & VM_FAULT_ERROR)) { mm_fault_error(regs, addr, fault); return; } return; } |