Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 | // SPDX-License-Identifier: GPL-2.0-or-later /* Driver for Philips tda1004xh OFDM Demodulator (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach */ /* * This driver needs external firmware. Please use the commands * "<kerneldir>/scripts/get_dvb_firmware tda10045", * "<kerneldir>/scripts/get_dvb_firmware tda10046" to * download/extract them, and then copy them to /usr/lib/hotplug/firmware * or /lib/firmware (depending on configuration of firmware hotplug). */ #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw" #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw" #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/jiffies.h> #include <linux/string.h> #include <linux/slab.h> #include <media/dvb_frontend.h> #include "tda1004x.h" static int debug; #define dprintk(args...) \ do { \ if (debug) printk(KERN_DEBUG "tda1004x: " args); \ } while (0) #define TDA1004X_CHIPID 0x00 #define TDA1004X_AUTO 0x01 #define TDA1004X_IN_CONF1 0x02 #define TDA1004X_IN_CONF2 0x03 #define TDA1004X_OUT_CONF1 0x04 #define TDA1004X_OUT_CONF2 0x05 #define TDA1004X_STATUS_CD 0x06 #define TDA1004X_CONFC4 0x07 #define TDA1004X_DSSPARE2 0x0C #define TDA10045H_CODE_IN 0x0D #define TDA10045H_FWPAGE 0x0E #define TDA1004X_SCAN_CPT 0x10 #define TDA1004X_DSP_CMD 0x11 #define TDA1004X_DSP_ARG 0x12 #define TDA1004X_DSP_DATA1 0x13 #define TDA1004X_DSP_DATA2 0x14 #define TDA1004X_CONFADC1 0x15 #define TDA1004X_CONFC1 0x16 #define TDA10045H_S_AGC 0x1a #define TDA10046H_AGC_TUN_LEVEL 0x1a #define TDA1004X_SNR 0x1c #define TDA1004X_CONF_TS1 0x1e #define TDA1004X_CONF_TS2 0x1f #define TDA1004X_CBER_RESET 0x20 #define TDA1004X_CBER_MSB 0x21 #define TDA1004X_CBER_LSB 0x22 #define TDA1004X_CVBER_LUT 0x23 #define TDA1004X_VBER_MSB 0x24 #define TDA1004X_VBER_MID 0x25 #define TDA1004X_VBER_LSB 0x26 #define TDA1004X_UNCOR 0x27 #define TDA10045H_CONFPLL_P 0x2D #define TDA10045H_CONFPLL_M_MSB 0x2E #define TDA10045H_CONFPLL_M_LSB 0x2F #define TDA10045H_CONFPLL_N 0x30 #define TDA10046H_CONFPLL1 0x2D #define TDA10046H_CONFPLL2 0x2F #define TDA10046H_CONFPLL3 0x30 #define TDA10046H_TIME_WREF1 0x31 #define TDA10046H_TIME_WREF2 0x32 #define TDA10046H_TIME_WREF3 0x33 #define TDA10046H_TIME_WREF4 0x34 #define TDA10046H_TIME_WREF5 0x35 #define TDA10045H_UNSURW_MSB 0x31 #define TDA10045H_UNSURW_LSB 0x32 #define TDA10045H_WREF_MSB 0x33 #define TDA10045H_WREF_MID 0x34 #define TDA10045H_WREF_LSB 0x35 #define TDA10045H_MUXOUT 0x36 #define TDA1004X_CONFADC2 0x37 #define TDA10045H_IOFFSET 0x38 #define TDA10046H_CONF_TRISTATE1 0x3B #define TDA10046H_CONF_TRISTATE2 0x3C #define TDA10046H_CONF_POLARITY 0x3D #define TDA10046H_FREQ_OFFSET 0x3E #define TDA10046H_GPIO_OUT_SEL 0x41 #define TDA10046H_GPIO_SELECT 0x42 #define TDA10046H_AGC_CONF 0x43 #define TDA10046H_AGC_THR 0x44 #define TDA10046H_AGC_RENORM 0x45 #define TDA10046H_AGC_GAINS 0x46 #define TDA10046H_AGC_TUN_MIN 0x47 #define TDA10046H_AGC_TUN_MAX 0x48 #define TDA10046H_AGC_IF_MIN 0x49 #define TDA10046H_AGC_IF_MAX 0x4A #define TDA10046H_FREQ_PHY2_MSB 0x4D #define TDA10046H_FREQ_PHY2_LSB 0x4E #define TDA10046H_CVBER_CTRL 0x4F #define TDA10046H_AGC_IF_LEVEL 0x52 #define TDA10046H_CODE_CPT 0x57 #define TDA10046H_CODE_IN 0x58 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data) { int ret; u8 buf[] = { reg, data }; struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 }; dprintk("%s: reg=0x%x, data=0x%x\n", __func__, reg, data); msg.addr = state->config->demod_address; ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n", __func__, reg, data, ret); dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__, reg, data, ret); return (ret != 1) ? -1 : 0; } static int tda1004x_read_byte(struct tda1004x_state *state, int reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 }, { .flags = I2C_M_RD, .buf = b1, .len = 1 }}; dprintk("%s: reg=0x%x\n", __func__, reg); msg[0].addr = state->config->demod_address; msg[1].addr = state->config->demod_address; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) { dprintk("%s: error reg=0x%x, ret=%i\n", __func__, reg, ret); return -EINVAL; } dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__, reg, b1[0], ret); return b1[0]; } static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data) { int val; dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __func__, reg, mask, data); // read a byte and check val = tda1004x_read_byte(state, reg); if (val < 0) return val; // mask if off val = val & ~mask; val |= data & 0xff; // write it out again return tda1004x_write_byteI(state, reg, val); } static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len) { int i; int result; dprintk("%s: reg=0x%x, len=0x%x\n", __func__, reg, len); result = 0; for (i = 0; i < len; i++) { result = tda1004x_write_byteI(state, reg + i, buf[i]); if (result != 0) break; } return result; } static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state) { int result; dprintk("%s\n", __func__); result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2); msleep(20); return result; } static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state) { dprintk("%s\n", __func__); return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0); } static int tda10045h_set_bandwidth(struct tda1004x_state *state, u32 bandwidth) { static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f }; static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb }; static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 }; switch (bandwidth) { case 6000000: tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz)); break; case 7000000: tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz)); break; case 8000000: tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz)); break; default: return -EINVAL; } tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0); return 0; } static int tda10046h_set_bandwidth(struct tda1004x_state *state, u32 bandwidth) { static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 }; static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f }; static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d }; static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 }; static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab }; static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 }; int tda10046_clk53m; if ((state->config->if_freq == TDA10046_FREQ_045) || (state->config->if_freq == TDA10046_FREQ_052)) tda10046_clk53m = 0; else tda10046_clk53m = 1; switch (bandwidth) { case 6000000: if (tda10046_clk53m) tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M, sizeof(bandwidth_6mhz_53M)); else tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M, sizeof(bandwidth_6mhz_48M)); if (state->config->if_freq == TDA10046_FREQ_045) { tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a); tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab); } break; case 7000000: if (tda10046_clk53m) tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M, sizeof(bandwidth_7mhz_53M)); else tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M, sizeof(bandwidth_7mhz_48M)); if (state->config->if_freq == TDA10046_FREQ_045) { tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c); tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00); } break; case 8000000: if (tda10046_clk53m) tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M, sizeof(bandwidth_8mhz_53M)); else tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M, sizeof(bandwidth_8mhz_48M)); if (state->config->if_freq == TDA10046_FREQ_045) { tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d); tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55); } break; default: return -EINVAL; } return 0; } static int tda1004x_do_upload(struct tda1004x_state *state, const unsigned char *mem, unsigned int len, u8 dspCodeCounterReg, u8 dspCodeInReg) { u8 buf[65]; struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 }; int tx_size; int pos = 0; /* clear code counter */ tda1004x_write_byteI(state, dspCodeCounterReg, 0); fw_msg.addr = state->config->demod_address; i2c_lock_bus(state->i2c, I2C_LOCK_SEGMENT); buf[0] = dspCodeInReg; while (pos != len) { // work out how much to send this time tx_size = len - pos; if (tx_size > 0x10) tx_size = 0x10; // send the chunk memcpy(buf + 1, mem + pos, tx_size); fw_msg.len = tx_size + 1; if (__i2c_transfer(state->i2c, &fw_msg, 1) != 1) { printk(KERN_ERR "tda1004x: Error during firmware upload\n"); i2c_unlock_bus(state->i2c, I2C_LOCK_SEGMENT); return -EIO; } pos += tx_size; dprintk("%s: fw_pos=0x%x\n", __func__, pos); } i2c_unlock_bus(state->i2c, I2C_LOCK_SEGMENT); /* give the DSP a chance to settle 03/10/05 Hac */ msleep(100); return 0; } static int tda1004x_check_upload_ok(struct tda1004x_state *state) { u8 data1, data2; unsigned long timeout; if (state->demod_type == TDA1004X_DEMOD_TDA10046) { timeout = jiffies + 2 * HZ; while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) { if (time_after(jiffies, timeout)) { printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n"); break; } msleep(1); } } else msleep(100); // check upload was OK tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67); data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1); data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2); if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) { printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2); return -EIO; } printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2); return 0; } static int tda10045_fwupload(struct dvb_frontend* fe) { struct tda1004x_state* state = fe->demodulator_priv; int ret; const struct firmware *fw; /* don't re-upload unless necessary */ if (tda1004x_check_upload_ok(state) == 0) return 0; /* request the firmware, this will block until someone uploads it */ printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE); ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE); if (ret) { printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n"); return ret; } /* reset chip */ tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0); msleep(10); /* set parameters */ tda10045h_set_bandwidth(state, 8000000); ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN); release_firmware(fw); if (ret) return ret; printk(KERN_INFO "tda1004x: firmware upload complete\n"); /* wait for DSP to initialise */ /* DSPREADY doesn't seem to work on the TDA10045H */ msleep(100); return tda1004x_check_upload_ok(state); } static void tda10046_init_plls(struct dvb_frontend* fe) { struct tda1004x_state* state = fe->demodulator_priv; int tda10046_clk53m; if ((state->config->if_freq == TDA10046_FREQ_045) || (state->config->if_freq == TDA10046_FREQ_052)) tda10046_clk53m = 0; else tda10046_clk53m = 1; tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0); if(tda10046_clk53m) { printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n"); tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8 } else { printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n"); tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3 } if (state->config->xtal_freq == TDA10046_XTAL_4M ) { dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __func__); tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0 } else { dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __func__); tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3 } if(tda10046_clk53m) tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67); else tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72); /* Note clock frequency is handled implicitly */ switch (state->config->if_freq) { case TDA10046_FREQ_045: tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c); tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00); break; case TDA10046_FREQ_052: tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d); tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7); break; case TDA10046_FREQ_3617: tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7); tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59); break; case TDA10046_FREQ_3613: tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7); tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f); break; } tda10046h_set_bandwidth(state, 8000000); /* default bandwidth 8 MHz */ /* let the PLLs settle */ msleep(120); } static int tda10046_fwupload(struct dvb_frontend* fe) { struct tda1004x_state* state = fe->demodulator_priv; int ret, confc4; const struct firmware *fw; /* reset + wake up chip */ if (state->config->xtal_freq == TDA10046_XTAL_4M) { confc4 = 0; } else { dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __func__); confc4 = 0x80; } tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4); tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0); /* set GPIO 1 and 3 */ if (state->config->gpio_config != TDA10046_GPTRI) { tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0x33); tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f, state->config->gpio_config &0x0f); } /* let the clocks recover from sleep */ msleep(10); /* The PLLs need to be reprogrammed after sleep */ tda10046_init_plls(fe); tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0); /* don't re-upload unless necessary */ if (tda1004x_check_upload_ok(state) == 0) return 0; /* For i2c normal work, we need to slow down the bus speed. However, the slow down breaks the eeprom firmware load. So, use normal speed for eeprom booting and then restore the i2c speed after that. Tested with MSI TV @nyware A/D board, that comes with firmware version 29 inside their eeprom. It should also be noticed that no other I2C transfer should be in course while booting from eeprom, otherwise, tda10046 goes into an instable state. So, proper locking are needed at the i2c bus master. */ printk(KERN_INFO "tda1004x: trying to boot from eeprom\n"); tda1004x_write_byteI(state, TDA1004X_CONFC4, 4); msleep(300); tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4); /* Checks if eeprom firmware went without troubles */ if (tda1004x_check_upload_ok(state) == 0) return 0; /* eeprom firmware didn't work. Load one manually. */ if (state->config->request_firmware != NULL) { /* request the firmware, this will block until someone uploads it */ printk(KERN_INFO "tda1004x: waiting for firmware upload...\n"); ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE); if (ret) { /* remain compatible to old bug: try to load with tda10045 image name */ ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE); if (ret) { printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n"); return ret; } else { printk(KERN_INFO "tda1004x: please rename the firmware file to %s\n", TDA10046_DEFAULT_FIRMWARE); } } } else { printk(KERN_ERR "tda1004x: no request function defined, can't upload from file\n"); return -EIO; } tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN); release_firmware(fw); return tda1004x_check_upload_ok(state); } static int tda1004x_encode_fec(int fec) { // convert known FEC values switch (fec) { case FEC_1_2: return 0; case FEC_2_3: return 1; case FEC_3_4: return 2; case FEC_5_6: return 3; case FEC_7_8: return 4; } // unsupported return -EINVAL; } static int tda1004x_decode_fec(int tdafec) { // convert known FEC values switch (tdafec) { case 0: return FEC_1_2; case 1: return FEC_2_3; case 2: return FEC_3_4; case 3: return FEC_5_6; case 4: return FEC_7_8; } // unsupported return -1; } static int tda1004x_write(struct dvb_frontend* fe, const u8 buf[], int len) { struct tda1004x_state* state = fe->demodulator_priv; if (len != 2) return -EINVAL; return tda1004x_write_byteI(state, buf[0], buf[1]); } static int tda10045_init(struct dvb_frontend* fe) { struct tda1004x_state* state = fe->demodulator_priv; dprintk("%s\n", __func__); if (tda10045_fwupload(fe)) { printk("tda1004x: firmware upload failed\n"); return -EIO; } tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC // tda setup tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e); tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk); return 0; } static int tda10046_init(struct dvb_frontend* fe) { struct tda1004x_state* state = fe->demodulator_priv; dprintk("%s\n", __func__); if (tda10046_fwupload(fe)) { printk("tda1004x: firmware upload failed\n"); return -EIO; } // tda setup tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87); // 100 ppm crystal, select HP stream tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88); // enable pulse killer switch (state->config->agc_config) { case TDA10046_AGC_DEFAULT: tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities break; case TDA10046_AGC_IFO_AUTO_NEG: tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities break; case TDA10046_AGC_IFO_AUTO_POS: tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x00); // set AGC polarities break; case TDA10046_AGC_TDA827X: tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities break; } if (state->config->ts_mode == 0) { tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x40); tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7); } else { tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x80); tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x10, state->config->invert_oclk << 4); } tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38); tda1004x_write_mask (state, TDA10046H_CONF_TRISTATE1, 0x3e, 0x38); // Turn IF AGC output on tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // } tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // } tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // } tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1 tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config // tda1004x_write_mask(state, 0x50, 0x80, 0x80); // handle out of guard echoes return 0; } static int tda1004x_set_fe(struct dvb_frontend *fe) { struct dtv_frontend_properties *fe_params = &fe->dtv_property_cache; struct tda1004x_state* state = fe->demodulator_priv; int tmp; int inversion; dprintk("%s\n", __func__); if (state->demod_type == TDA1004X_DEMOD_TDA10046) { // setup auto offset tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0); tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0); // disable agc_conf[2] tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0); } // set frequency if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } // Hardcoded to use auto as much as possible on the TDA10045 as it // is very unreliable if AUTO mode is _not_ used. if (state->demod_type == TDA1004X_DEMOD_TDA10045) { fe_params->code_rate_HP = FEC_AUTO; fe_params->guard_interval = GUARD_INTERVAL_AUTO; fe_params->transmission_mode = TRANSMISSION_MODE_AUTO; } // Set standard params.. or put them to auto if ((fe_params->code_rate_HP == FEC_AUTO) || (fe_params->code_rate_LP == FEC_AUTO) || (fe_params->modulation == QAM_AUTO) || (fe_params->hierarchy == HIERARCHY_AUTO)) { tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); /* turn off modulation bits */ tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits } else { tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto // set HP FEC tmp = tda1004x_encode_fec(fe_params->code_rate_HP); if (tmp < 0) return tmp; tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp); // set LP FEC tmp = tda1004x_encode_fec(fe_params->code_rate_LP); if (tmp < 0) return tmp; tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3); /* set modulation */ switch (fe_params->modulation) { case QPSK: tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0); break; case QAM_16: tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1); break; case QAM_64: tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2); break; default: return -EINVAL; } // set hierarchy switch (fe_params->hierarchy) { case HIERARCHY_NONE: tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5); break; case HIERARCHY_1: tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5); break; case HIERARCHY_2: tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5); break; case HIERARCHY_4: tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5); break; default: return -EINVAL; } } // set bandwidth switch (state->demod_type) { case TDA1004X_DEMOD_TDA10045: tda10045h_set_bandwidth(state, fe_params->bandwidth_hz); break; case TDA1004X_DEMOD_TDA10046: tda10046h_set_bandwidth(state, fe_params->bandwidth_hz); break; } // set inversion inversion = fe_params->inversion; if (state->config->invert) inversion = inversion ? INVERSION_OFF : INVERSION_ON; switch (inversion) { case INVERSION_OFF: tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0); break; case INVERSION_ON: tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20); break; default: return -EINVAL; } // set guard interval switch (fe_params->guard_interval) { case GUARD_INTERVAL_1_32: tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0); tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2); break; case GUARD_INTERVAL_1_16: tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0); tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2); break; case GUARD_INTERVAL_1_8: tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0); tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2); break; case GUARD_INTERVAL_1_4: tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0); tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2); break; case GUARD_INTERVAL_AUTO: tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2); tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2); break; default: return -EINVAL; } // set transmission mode switch (fe_params->transmission_mode) { case TRANSMISSION_MODE_2K: tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0); tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4); break; case TRANSMISSION_MODE_8K: tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0); tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4); break; case TRANSMISSION_MODE_AUTO: tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4); tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0); break; default: return -EINVAL; } // start the lock switch (state->demod_type) { case TDA1004X_DEMOD_TDA10045: tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0); break; case TDA1004X_DEMOD_TDA10046: tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40); msleep(1); tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1); break; } msleep(10); return 0; } static int tda1004x_get_fe(struct dvb_frontend *fe, struct dtv_frontend_properties *fe_params) { struct tda1004x_state* state = fe->demodulator_priv; int status; dprintk("%s\n", __func__); status = tda1004x_read_byte(state, TDA1004X_STATUS_CD); if (status == -1) return -EIO; /* Only update the properties cache if device is locked */ if (!(status & 8)) return 0; // inversion status fe_params->inversion = INVERSION_OFF; if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20) fe_params->inversion = INVERSION_ON; if (state->config->invert) fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON; // bandwidth switch (state->demod_type) { case TDA1004X_DEMOD_TDA10045: switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) { case 0x14: fe_params->bandwidth_hz = 8000000; break; case 0xdb: fe_params->bandwidth_hz = 7000000; break; case 0x4f: fe_params->bandwidth_hz = 6000000; break; } break; case TDA1004X_DEMOD_TDA10046: switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) { case 0x5c: case 0x54: fe_params->bandwidth_hz = 8000000; break; case 0x6a: case 0x60: fe_params->bandwidth_hz = 7000000; break; case 0x7b: case 0x70: fe_params->bandwidth_hz = 6000000; break; } break; } // FEC fe_params->code_rate_HP = tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7); fe_params->code_rate_LP = tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7); /* modulation */ switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) { case 0: fe_params->modulation = QPSK; break; case 1: fe_params->modulation = QAM_16; break; case 2: fe_params->modulation = QAM_64; break; } // transmission mode fe_params->transmission_mode = TRANSMISSION_MODE_2K; if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10) fe_params->transmission_mode = TRANSMISSION_MODE_8K; // guard interval switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) { case 0: fe_params->guard_interval = GUARD_INTERVAL_1_32; break; case 1: fe_params->guard_interval = GUARD_INTERVAL_1_16; break; case 2: fe_params->guard_interval = GUARD_INTERVAL_1_8; break; case 3: fe_params->guard_interval = GUARD_INTERVAL_1_4; break; } // hierarchy switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) { case 0: fe_params->hierarchy = HIERARCHY_NONE; break; case 1: fe_params->hierarchy = HIERARCHY_1; break; case 2: fe_params->hierarchy = HIERARCHY_2; break; case 3: fe_params->hierarchy = HIERARCHY_4; break; } return 0; } static int tda1004x_read_status(struct dvb_frontend *fe, enum fe_status *fe_status) { struct tda1004x_state* state = fe->demodulator_priv; int status; int cber; int vber; dprintk("%s\n", __func__); // read status status = tda1004x_read_byte(state, TDA1004X_STATUS_CD); if (status == -1) return -EIO; // decode *fe_status = 0; if (status & 4) *fe_status |= FE_HAS_SIGNAL; if (status & 2) *fe_status |= FE_HAS_CARRIER; if (status & 8) *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi // is getting anything valid if (!(*fe_status & FE_HAS_VITERBI)) { // read the CBER cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB); if (cber == -1) return -EIO; status = tda1004x_read_byte(state, TDA1004X_CBER_MSB); if (status == -1) return -EIO; cber |= (status << 8); // The address 0x20 should be read to cope with a TDA10046 bug tda1004x_read_byte(state, TDA1004X_CBER_RESET); if (cber != 65535) *fe_status |= FE_HAS_VITERBI; } // if we DO have some valid VITERBI output, but don't already have SYNC // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid. if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) { // read the VBER vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB); if (vber == -1) return -EIO; status = tda1004x_read_byte(state, TDA1004X_VBER_MID); if (status == -1) return -EIO; vber |= (status << 8); status = tda1004x_read_byte(state, TDA1004X_VBER_MSB); if (status == -1) return -EIO; vber |= (status & 0x0f) << 16; // The CVBER_LUT should be read to cope with TDA10046 hardware bug tda1004x_read_byte(state, TDA1004X_CVBER_LUT); // if RS has passed some valid TS packets, then we must be // getting some SYNC bytes if (vber < 16632) *fe_status |= FE_HAS_SYNC; } // success dprintk("%s: fe_status=0x%x\n", __func__, *fe_status); return 0; } static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal) { struct tda1004x_state* state = fe->demodulator_priv; int tmp; int reg = 0; dprintk("%s\n", __func__); // determine the register to use switch (state->demod_type) { case TDA1004X_DEMOD_TDA10045: reg = TDA10045H_S_AGC; break; case TDA1004X_DEMOD_TDA10046: reg = TDA10046H_AGC_IF_LEVEL; break; } // read it tmp = tda1004x_read_byte(state, reg); if (tmp < 0) return -EIO; *signal = (tmp << 8) | tmp; dprintk("%s: signal=0x%x\n", __func__, *signal); return 0; } static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr) { struct tda1004x_state* state = fe->demodulator_priv; int tmp; dprintk("%s\n", __func__); // read it tmp = tda1004x_read_byte(state, TDA1004X_SNR); if (tmp < 0) return -EIO; tmp = 255 - tmp; *snr = ((tmp << 8) | tmp); dprintk("%s: snr=0x%x\n", __func__, *snr); return 0; } static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) { struct tda1004x_state* state = fe->demodulator_priv; int tmp; int tmp2; int counter; dprintk("%s\n", __func__); // read the UCBLOCKS and reset counter = 0; tmp = tda1004x_read_byte(state, TDA1004X_UNCOR); if (tmp < 0) return -EIO; tmp &= 0x7f; while (counter++ < 5) { tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0); tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0); tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0); tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR); if (tmp2 < 0) return -EIO; tmp2 &= 0x7f; if ((tmp2 < tmp) || (tmp2 == 0)) break; } if (tmp != 0x7f) *ucblocks = tmp; else *ucblocks = 0xffffffff; dprintk("%s: ucblocks=0x%x\n", __func__, *ucblocks); return 0; } static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber) { struct tda1004x_state* state = fe->demodulator_priv; int tmp; dprintk("%s\n", __func__); // read it in tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB); if (tmp < 0) return -EIO; *ber = tmp << 1; tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB); if (tmp < 0) return -EIO; *ber |= (tmp << 9); // The address 0x20 should be read to cope with a TDA10046 bug tda1004x_read_byte(state, TDA1004X_CBER_RESET); dprintk("%s: ber=0x%x\n", __func__, *ber); return 0; } static int tda1004x_sleep(struct dvb_frontend* fe) { struct tda1004x_state* state = fe->demodulator_priv; int gpio_conf; switch (state->demod_type) { case TDA1004X_DEMOD_TDA10045: tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10); break; case TDA1004X_DEMOD_TDA10046: /* set outputs to tristate */ tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff); /* invert GPIO 1 and 3 if desired*/ gpio_conf = state->config->gpio_config; if (gpio_conf >= TDA10046_GP00_I) tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f, (gpio_conf & 0x0f) ^ 0x0a); tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0xc0); tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1); break; } return 0; } static int tda1004x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) { struct tda1004x_state* state = fe->demodulator_priv; if (enable) { return tda1004x_enable_tuner_i2c(state); } else { return tda1004x_disable_tuner_i2c(state); } } static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings) { fesettings->min_delay_ms = 800; /* Drift compensation makes no sense for DVB-T */ fesettings->step_size = 0; fesettings->max_drift = 0; return 0; } static void tda1004x_release(struct dvb_frontend* fe) { struct tda1004x_state *state = fe->demodulator_priv; kfree(state); } static const struct dvb_frontend_ops tda10045_ops = { .delsys = { SYS_DVBT }, .info = { .name = "Philips TDA10045H DVB-T", .frequency_min_hz = 51 * MHz, .frequency_max_hz = 858 * MHz, .frequency_stepsize_hz = 166667, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO }, .release = tda1004x_release, .init = tda10045_init, .sleep = tda1004x_sleep, .write = tda1004x_write, .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl, .set_frontend = tda1004x_set_fe, .get_frontend = tda1004x_get_fe, .get_tune_settings = tda1004x_get_tune_settings, .read_status = tda1004x_read_status, .read_ber = tda1004x_read_ber, .read_signal_strength = tda1004x_read_signal_strength, .read_snr = tda1004x_read_snr, .read_ucblocks = tda1004x_read_ucblocks, }; struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config, struct i2c_adapter* i2c) { struct tda1004x_state *state; int id; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL); if (!state) { printk(KERN_ERR "Can't allocate memory for tda10045 state\n"); return NULL; } /* setup the state */ state->config = config; state->i2c = i2c; state->demod_type = TDA1004X_DEMOD_TDA10045; /* check if the demod is there */ id = tda1004x_read_byte(state, TDA1004X_CHIPID); if (id < 0) { printk(KERN_ERR "tda10045: chip is not answering. Giving up.\n"); kfree(state); return NULL; } if (id != 0x25) { printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id); kfree(state); return NULL; } /* create dvb_frontend */ memcpy(&state->frontend.ops, &tda10045_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; } static const struct dvb_frontend_ops tda10046_ops = { .delsys = { SYS_DVBT }, .info = { .name = "Philips TDA10046H DVB-T", .frequency_min_hz = 51 * MHz, .frequency_max_hz = 858 * MHz, .frequency_stepsize_hz = 166667, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO }, .release = tda1004x_release, .init = tda10046_init, .sleep = tda1004x_sleep, .write = tda1004x_write, .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl, .set_frontend = tda1004x_set_fe, .get_frontend = tda1004x_get_fe, .get_tune_settings = tda1004x_get_tune_settings, .read_status = tda1004x_read_status, .read_ber = tda1004x_read_ber, .read_signal_strength = tda1004x_read_signal_strength, .read_snr = tda1004x_read_snr, .read_ucblocks = tda1004x_read_ucblocks, }; struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config, struct i2c_adapter* i2c) { struct tda1004x_state *state; int id; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL); if (!state) { printk(KERN_ERR "Can't allocate memory for tda10046 state\n"); return NULL; } /* setup the state */ state->config = config; state->i2c = i2c; state->demod_type = TDA1004X_DEMOD_TDA10046; /* check if the demod is there */ id = tda1004x_read_byte(state, TDA1004X_CHIPID); if (id < 0) { printk(KERN_ERR "tda10046: chip is not answering. Giving up.\n"); kfree(state); return NULL; } if (id != 0x46) { printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id); kfree(state); return NULL; } /* create dvb_frontend */ memcpy(&state->frontend.ops, &tda10046_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; } module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator"); MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL_GPL(tda10045_attach); EXPORT_SYMBOL_GPL(tda10046_attach); |