Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | // SPDX-License-Identifier: GPL-2.0-or-later /* * linux/arch/arm/mach-at91/at91rm9200_time.c * * Copyright (C) 2003 SAN People * Copyright (C) 2003 ATMEL */ #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/export.h> #include <linux/mfd/syscon.h> #include <linux/mfd/syscon/atmel-st.h> #include <linux/of_irq.h> #include <linux/regmap.h> static unsigned long last_crtr; static u32 irqmask; static struct clock_event_device clkevt; static struct regmap *regmap_st; static int timer_latch; /* * The ST_CRTR is updated asynchronously to the master clock ... but * the updates as seen by the CPU don't seem to be strictly monotonic. * Waiting until we read the same value twice avoids glitching. */ static inline unsigned long read_CRTR(void) { unsigned int x1, x2; regmap_read(regmap_st, AT91_ST_CRTR, &x1); do { regmap_read(regmap_st, AT91_ST_CRTR, &x2); if (x1 == x2) break; x1 = x2; } while (1); return x1; } /* * IRQ handler for the timer. */ static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id) { u32 sr; regmap_read(regmap_st, AT91_ST_SR, &sr); sr &= irqmask; /* * irqs should be disabled here, but as the irq is shared they are only * guaranteed to be off if the timer irq is registered first. */ WARN_ON_ONCE(!irqs_disabled()); /* simulate "oneshot" timer with alarm */ if (sr & AT91_ST_ALMS) { clkevt.event_handler(&clkevt); return IRQ_HANDLED; } /* periodic mode should handle delayed ticks */ if (sr & AT91_ST_PITS) { u32 crtr = read_CRTR(); while (((crtr - last_crtr) & AT91_ST_CRTV) >= timer_latch) { last_crtr += timer_latch; clkevt.event_handler(&clkevt); } return IRQ_HANDLED; } /* this irq is shared ... */ return IRQ_NONE; } static u64 read_clk32k(struct clocksource *cs) { return read_CRTR(); } static struct clocksource clk32k = { .name = "32k_counter", .rating = 150, .read = read_clk32k, .mask = CLOCKSOURCE_MASK(20), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static void clkdev32k_disable_and_flush_irq(void) { unsigned int val; /* Disable and flush pending timer interrupts */ regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS); regmap_read(regmap_st, AT91_ST_SR, &val); last_crtr = read_CRTR(); } static int clkevt32k_shutdown(struct clock_event_device *evt) { clkdev32k_disable_and_flush_irq(); irqmask = 0; regmap_write(regmap_st, AT91_ST_IER, irqmask); return 0; } static int clkevt32k_set_oneshot(struct clock_event_device *dev) { clkdev32k_disable_and_flush_irq(); /* * ALM for oneshot irqs, set by next_event() * before 32 seconds have passed. */ irqmask = AT91_ST_ALMS; regmap_write(regmap_st, AT91_ST_RTAR, last_crtr); regmap_write(regmap_st, AT91_ST_IER, irqmask); return 0; } static int clkevt32k_set_periodic(struct clock_event_device *dev) { clkdev32k_disable_and_flush_irq(); /* PIT for periodic irqs; fixed rate of 1/HZ */ irqmask = AT91_ST_PITS; regmap_write(regmap_st, AT91_ST_PIMR, timer_latch); regmap_write(regmap_st, AT91_ST_IER, irqmask); return 0; } static int clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev) { u32 alm; unsigned int val; BUG_ON(delta < 2); /* The alarm IRQ uses absolute time (now+delta), not the relative * time (delta) in our calling convention. Like all clockevents * using such "match" hardware, we have a race to defend against. * * Our defense here is to have set up the clockevent device so the * delta is at least two. That way we never end up writing RTAR * with the value then held in CRTR ... which would mean the match * wouldn't trigger until 32 seconds later, after CRTR wraps. */ alm = read_CRTR(); /* Cancel any pending alarm; flush any pending IRQ */ regmap_write(regmap_st, AT91_ST_RTAR, alm); regmap_read(regmap_st, AT91_ST_SR, &val); /* Schedule alarm by writing RTAR. */ alm += delta; regmap_write(regmap_st, AT91_ST_RTAR, alm); return 0; } static struct clock_event_device clkevt = { .name = "at91_tick", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .rating = 150, .set_next_event = clkevt32k_next_event, .set_state_shutdown = clkevt32k_shutdown, .set_state_periodic = clkevt32k_set_periodic, .set_state_oneshot = clkevt32k_set_oneshot, .tick_resume = clkevt32k_shutdown, }; /* * ST (system timer) module supports both clockevents and clocksource. */ static int __init atmel_st_timer_init(struct device_node *node) { struct clk *sclk; unsigned int sclk_rate, val; int irq, ret; regmap_st = syscon_node_to_regmap(node); if (IS_ERR(regmap_st)) { pr_err("Unable to get regmap\n"); return PTR_ERR(regmap_st); } /* Disable all timer interrupts, and clear any pending ones */ regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS); regmap_read(regmap_st, AT91_ST_SR, &val); /* Get the interrupts property */ irq = irq_of_parse_and_map(node, 0); if (!irq) { pr_err("Unable to get IRQ from DT\n"); return -EINVAL; } /* Make IRQs happen for the system timer */ ret = request_irq(irq, at91rm9200_timer_interrupt, IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL, "at91_tick", regmap_st); if (ret) { pr_err("Unable to setup IRQ\n"); return ret; } sclk = of_clk_get(node, 0); if (IS_ERR(sclk)) { pr_err("Unable to get slow clock\n"); return PTR_ERR(sclk); } ret = clk_prepare_enable(sclk); if (ret) { pr_err("Could not enable slow clock\n"); return ret; } sclk_rate = clk_get_rate(sclk); if (!sclk_rate) { pr_err("Invalid slow clock rate\n"); return -EINVAL; } timer_latch = (sclk_rate + HZ / 2) / HZ; /* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used * directly for the clocksource and all clockevents, after adjusting * its prescaler from the 1 Hz default. */ regmap_write(regmap_st, AT91_ST_RTMR, 1); /* Setup timer clockevent, with minimum of two ticks (important!!) */ clkevt.cpumask = cpumask_of(0); clockevents_config_and_register(&clkevt, sclk_rate, 2, AT91_ST_ALMV); /* register clocksource */ return clocksource_register_hz(&clk32k, sclk_rate); } TIMER_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st", atmel_st_timer_init); |