Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 | /* * SPDX-License-Identifier: MIT * * Copyright © 2019 Intel Corporation */ #include <linux/debugobjects.h> #include "gt/intel_context.h" #include "gt/intel_engine_heartbeat.h" #include "gt/intel_engine_pm.h" #include "gt/intel_ring.h" #include "i915_drv.h" #include "i915_active.h" /* * Active refs memory management * * To be more economical with memory, we reap all the i915_active trees as * they idle (when we know the active requests are inactive) and allocate the * nodes from a local slab cache to hopefully reduce the fragmentation. */ static struct kmem_cache *slab_cache; struct active_node { struct rb_node node; struct i915_active_fence base; struct i915_active *ref; u64 timeline; }; #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) static inline struct active_node * node_from_active(struct i915_active_fence *active) { return container_of(active, struct active_node, base); } #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) static inline bool is_barrier(const struct i915_active_fence *active) { return IS_ERR(rcu_access_pointer(active->fence)); } static inline struct llist_node *barrier_to_ll(struct active_node *node) { GEM_BUG_ON(!is_barrier(&node->base)); return (struct llist_node *)&node->base.cb.node; } static inline struct intel_engine_cs * __barrier_to_engine(struct active_node *node) { return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); } static inline struct intel_engine_cs * barrier_to_engine(struct active_node *node) { GEM_BUG_ON(!is_barrier(&node->base)); return __barrier_to_engine(node); } static inline struct active_node *barrier_from_ll(struct llist_node *x) { return container_of((struct list_head *)x, struct active_node, base.cb.node); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) static void *active_debug_hint(void *addr) { struct i915_active *ref = addr; return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; } static const struct debug_obj_descr active_debug_desc = { .name = "i915_active", .debug_hint = active_debug_hint, }; static void debug_active_init(struct i915_active *ref) { debug_object_init(ref, &active_debug_desc); } static void debug_active_activate(struct i915_active *ref) { lockdep_assert_held(&ref->tree_lock); debug_object_activate(ref, &active_debug_desc); } static void debug_active_deactivate(struct i915_active *ref) { lockdep_assert_held(&ref->tree_lock); if (!atomic_read(&ref->count)) /* after the last dec */ debug_object_deactivate(ref, &active_debug_desc); } static void debug_active_fini(struct i915_active *ref) { debug_object_free(ref, &active_debug_desc); } static void debug_active_assert(struct i915_active *ref) { debug_object_assert_init(ref, &active_debug_desc); } #else static inline void debug_active_init(struct i915_active *ref) { } static inline void debug_active_activate(struct i915_active *ref) { } static inline void debug_active_deactivate(struct i915_active *ref) { } static inline void debug_active_fini(struct i915_active *ref) { } static inline void debug_active_assert(struct i915_active *ref) { } #endif static void __active_retire(struct i915_active *ref) { struct rb_root root = RB_ROOT; struct active_node *it, *n; unsigned long flags; GEM_BUG_ON(i915_active_is_idle(ref)); /* return the unused nodes to our slabcache -- flushing the allocator */ if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) return; GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); debug_active_deactivate(ref); /* Even if we have not used the cache, we may still have a barrier */ if (!ref->cache) ref->cache = fetch_node(ref->tree.rb_node); /* Keep the MRU cached node for reuse */ if (ref->cache) { /* Discard all other nodes in the tree */ rb_erase(&ref->cache->node, &ref->tree); root = ref->tree; /* Rebuild the tree with only the cached node */ rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); rb_insert_color(&ref->cache->node, &ref->tree); GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); /* Make the cached node available for reuse with any timeline */ ref->cache->timeline = 0; /* needs cmpxchg(u64) */ } spin_unlock_irqrestore(&ref->tree_lock, flags); /* After the final retire, the entire struct may be freed */ if (ref->retire) ref->retire(ref); /* ... except if you wait on it, you must manage your own references! */ wake_up_var(ref); /* Finally free the discarded timeline tree */ rbtree_postorder_for_each_entry_safe(it, n, &root, node) { GEM_BUG_ON(i915_active_fence_isset(&it->base)); kmem_cache_free(slab_cache, it); } } static void active_work(struct work_struct *wrk) { struct i915_active *ref = container_of(wrk, typeof(*ref), work); GEM_BUG_ON(!atomic_read(&ref->count)); if (atomic_add_unless(&ref->count, -1, 1)) return; __active_retire(ref); } static void active_retire(struct i915_active *ref) { GEM_BUG_ON(!atomic_read(&ref->count)); if (atomic_add_unless(&ref->count, -1, 1)) return; if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { queue_work(system_unbound_wq, &ref->work); return; } __active_retire(ref); } static inline struct dma_fence ** __active_fence_slot(struct i915_active_fence *active) { return (struct dma_fence ** __force)&active->fence; } static inline bool active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) { struct i915_active_fence *active = container_of(cb, typeof(*active), cb); return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; } static void node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) { if (active_fence_cb(fence, cb)) active_retire(container_of(cb, struct active_node, base.cb)->ref); } static void excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) { if (active_fence_cb(fence, cb)) active_retire(container_of(cb, struct i915_active, excl.cb)); } static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) { struct active_node *it; GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ /* * We track the most recently used timeline to skip a rbtree search * for the common case, under typical loads we never need the rbtree * at all. We can reuse the last slot if it is empty, that is * after the previous activity has been retired, or if it matches the * current timeline. */ it = READ_ONCE(ref->cache); if (it) { u64 cached = READ_ONCE(it->timeline); /* Once claimed, this slot will only belong to this idx */ if (cached == idx) return it; /* * An unclaimed cache [.timeline=0] can only be claimed once. * * If the value is already non-zero, some other thread has * claimed the cache and we know that is does not match our * idx. If, and only if, the timeline is currently zero is it * worth competing to claim it atomically for ourselves (for * only the winner of that race will cmpxchg return the old * value of 0). */ if (!cached && !cmpxchg64(&it->timeline, 0, idx)) return it; } BUILD_BUG_ON(offsetof(typeof(*it), node)); /* While active, the tree can only be built; not destroyed */ GEM_BUG_ON(i915_active_is_idle(ref)); it = fetch_node(ref->tree.rb_node); while (it) { if (it->timeline < idx) { it = fetch_node(it->node.rb_right); } else if (it->timeline > idx) { it = fetch_node(it->node.rb_left); } else { WRITE_ONCE(ref->cache, it); break; } } /* NB: If the tree rotated beneath us, we may miss our target. */ return it; } static struct i915_active_fence * active_instance(struct i915_active *ref, u64 idx) { struct active_node *node; struct rb_node **p, *parent; node = __active_lookup(ref, idx); if (likely(node)) return &node->base; spin_lock_irq(&ref->tree_lock); GEM_BUG_ON(i915_active_is_idle(ref)); parent = NULL; p = &ref->tree.rb_node; while (*p) { parent = *p; node = rb_entry(parent, struct active_node, node); if (node->timeline == idx) goto out; if (node->timeline < idx) p = &parent->rb_right; else p = &parent->rb_left; } /* * XXX: We should preallocate this before i915_active_ref() is ever * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC. */ node = kmem_cache_alloc(slab_cache, GFP_ATOMIC); if (!node) goto out; __i915_active_fence_init(&node->base, NULL, node_retire); node->ref = ref; node->timeline = idx; rb_link_node(&node->node, parent, p); rb_insert_color(&node->node, &ref->tree); out: WRITE_ONCE(ref->cache, node); spin_unlock_irq(&ref->tree_lock); return &node->base; } void __i915_active_init(struct i915_active *ref, int (*active)(struct i915_active *ref), void (*retire)(struct i915_active *ref), unsigned long flags, struct lock_class_key *mkey, struct lock_class_key *wkey) { debug_active_init(ref); ref->flags = flags; ref->active = active; ref->retire = retire; spin_lock_init(&ref->tree_lock); ref->tree = RB_ROOT; ref->cache = NULL; init_llist_head(&ref->preallocated_barriers); atomic_set(&ref->count, 0); __mutex_init(&ref->mutex, "i915_active", mkey); __i915_active_fence_init(&ref->excl, NULL, excl_retire); INIT_WORK(&ref->work, active_work); #if IS_ENABLED(CONFIG_LOCKDEP) lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); #endif } static bool ____active_del_barrier(struct i915_active *ref, struct active_node *node, struct intel_engine_cs *engine) { struct llist_node *head = NULL, *tail = NULL; struct llist_node *pos, *next; GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); /* * Rebuild the llist excluding our node. We may perform this * outside of the kernel_context timeline mutex and so someone * else may be manipulating the engine->barrier_tasks, in * which case either we or they will be upset :) * * A second __active_del_barrier() will report failure to claim * the active_node and the caller will just shrug and know not to * claim ownership of its node. * * A concurrent i915_request_add_active_barriers() will miss adding * any of the tasks, but we will try again on the next -- and since * we are actively using the barrier, we know that there will be * at least another opportunity when we idle. */ llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { if (node == barrier_from_ll(pos)) { node = NULL; continue; } pos->next = head; head = pos; if (!tail) tail = pos; } if (head) llist_add_batch(head, tail, &engine->barrier_tasks); return !node; } static bool __active_del_barrier(struct i915_active *ref, struct active_node *node) { return ____active_del_barrier(ref, node, barrier_to_engine(node)); } static bool replace_barrier(struct i915_active *ref, struct i915_active_fence *active) { if (!is_barrier(active)) /* proto-node used by our idle barrier? */ return false; /* * This request is on the kernel_context timeline, and so * we can use it to substitute for the pending idle-barrer * request that we want to emit on the kernel_context. */ return __active_del_barrier(ref, node_from_active(active)); } int i915_active_add_request(struct i915_active *ref, struct i915_request *rq) { u64 idx = i915_request_timeline(rq)->fence_context; struct dma_fence *fence = &rq->fence; struct i915_active_fence *active; int err; /* Prevent reaping in case we malloc/wait while building the tree */ err = i915_active_acquire(ref); if (err) return err; do { active = active_instance(ref, idx); if (!active) { err = -ENOMEM; goto out; } if (replace_barrier(ref, active)) { RCU_INIT_POINTER(active->fence, NULL); atomic_dec(&ref->count); } } while (unlikely(is_barrier(active))); fence = __i915_active_fence_set(active, fence); if (!fence) __i915_active_acquire(ref); else dma_fence_put(fence); out: i915_active_release(ref); return err; } static struct dma_fence * __i915_active_set_fence(struct i915_active *ref, struct i915_active_fence *active, struct dma_fence *fence) { struct dma_fence *prev; if (replace_barrier(ref, active)) { RCU_INIT_POINTER(active->fence, fence); return NULL; } prev = __i915_active_fence_set(active, fence); if (!prev) __i915_active_acquire(ref); return prev; } struct dma_fence * i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) { /* We expect the caller to manage the exclusive timeline ordering */ return __i915_active_set_fence(ref, &ref->excl, f); } bool i915_active_acquire_if_busy(struct i915_active *ref) { debug_active_assert(ref); return atomic_add_unless(&ref->count, 1, 0); } static void __i915_active_activate(struct i915_active *ref) { spin_lock_irq(&ref->tree_lock); /* __active_retire() */ if (!atomic_fetch_inc(&ref->count)) debug_active_activate(ref); spin_unlock_irq(&ref->tree_lock); } int i915_active_acquire(struct i915_active *ref) { int err; if (i915_active_acquire_if_busy(ref)) return 0; if (!ref->active) { __i915_active_activate(ref); return 0; } err = mutex_lock_interruptible(&ref->mutex); if (err) return err; if (likely(!i915_active_acquire_if_busy(ref))) { err = ref->active(ref); if (!err) __i915_active_activate(ref); } mutex_unlock(&ref->mutex); return err; } int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) { struct i915_active_fence *active; int err; err = i915_active_acquire(ref); if (err) return err; active = active_instance(ref, idx); if (!active) { i915_active_release(ref); return -ENOMEM; } return 0; /* return with active ref */ } void i915_active_release(struct i915_active *ref) { debug_active_assert(ref); active_retire(ref); } static void enable_signaling(struct i915_active_fence *active) { struct dma_fence *fence; if (unlikely(is_barrier(active))) return; fence = i915_active_fence_get(active); if (!fence) return; dma_fence_enable_sw_signaling(fence); dma_fence_put(fence); } static int flush_barrier(struct active_node *it) { struct intel_engine_cs *engine; if (likely(!is_barrier(&it->base))) return 0; engine = __barrier_to_engine(it); smp_rmb(); /* serialise with add_active_barriers */ if (!is_barrier(&it->base)) return 0; return intel_engine_flush_barriers(engine); } static int flush_lazy_signals(struct i915_active *ref) { struct active_node *it, *n; int err = 0; enable_signaling(&ref->excl); rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { err = flush_barrier(it); /* unconnected idle barrier? */ if (err) break; enable_signaling(&it->base); } return err; } int __i915_active_wait(struct i915_active *ref, int state) { might_sleep(); /* Any fence added after the wait begins will not be auto-signaled */ if (i915_active_acquire_if_busy(ref)) { int err; err = flush_lazy_signals(ref); i915_active_release(ref); if (err) return err; if (___wait_var_event(ref, i915_active_is_idle(ref), state, 0, 0, schedule())) return -EINTR; } /* * After the wait is complete, the caller may free the active. * We have to flush any concurrent retirement before returning. */ flush_work(&ref->work); return 0; } static int __await_active(struct i915_active_fence *active, int (*fn)(void *arg, struct dma_fence *fence), void *arg) { struct dma_fence *fence; if (is_barrier(active)) /* XXX flush the barrier? */ return 0; fence = i915_active_fence_get(active); if (fence) { int err; err = fn(arg, fence); dma_fence_put(fence); if (err < 0) return err; } return 0; } struct wait_barrier { struct wait_queue_entry base; struct i915_active *ref; }; static int barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) { struct wait_barrier *wb = container_of(wq, typeof(*wb), base); if (i915_active_is_idle(wb->ref)) { list_del(&wq->entry); i915_sw_fence_complete(wq->private); kfree(wq); } return 0; } static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) { struct wait_barrier *wb; wb = kmalloc(sizeof(*wb), GFP_KERNEL); if (unlikely(!wb)) return -ENOMEM; GEM_BUG_ON(i915_active_is_idle(ref)); if (!i915_sw_fence_await(fence)) { kfree(wb); return -EINVAL; } wb->base.flags = 0; wb->base.func = barrier_wake; wb->base.private = fence; wb->ref = ref; add_wait_queue(__var_waitqueue(ref), &wb->base); return 0; } static int await_active(struct i915_active *ref, unsigned int flags, int (*fn)(void *arg, struct dma_fence *fence), void *arg, struct i915_sw_fence *barrier) { int err = 0; if (!i915_active_acquire_if_busy(ref)) return 0; if (flags & I915_ACTIVE_AWAIT_EXCL && rcu_access_pointer(ref->excl.fence)) { err = __await_active(&ref->excl, fn, arg); if (err) goto out; } if (flags & I915_ACTIVE_AWAIT_ACTIVE) { struct active_node *it, *n; rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { err = __await_active(&it->base, fn, arg); if (err) goto out; } } if (flags & I915_ACTIVE_AWAIT_BARRIER) { err = flush_lazy_signals(ref); if (err) goto out; err = __await_barrier(ref, barrier); if (err) goto out; } out: i915_active_release(ref); return err; } static int rq_await_fence(void *arg, struct dma_fence *fence) { return i915_request_await_dma_fence(arg, fence); } int i915_request_await_active(struct i915_request *rq, struct i915_active *ref, unsigned int flags) { return await_active(ref, flags, rq_await_fence, rq, &rq->submit); } static int sw_await_fence(void *arg, struct dma_fence *fence) { return i915_sw_fence_await_dma_fence(arg, fence, 0, GFP_NOWAIT | __GFP_NOWARN); } int i915_sw_fence_await_active(struct i915_sw_fence *fence, struct i915_active *ref, unsigned int flags) { return await_active(ref, flags, sw_await_fence, fence, fence); } void i915_active_fini(struct i915_active *ref) { debug_active_fini(ref); GEM_BUG_ON(atomic_read(&ref->count)); GEM_BUG_ON(work_pending(&ref->work)); mutex_destroy(&ref->mutex); if (ref->cache) kmem_cache_free(slab_cache, ref->cache); } static inline bool is_idle_barrier(struct active_node *node, u64 idx) { return node->timeline == idx && !i915_active_fence_isset(&node->base); } static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) { struct rb_node *prev, *p; if (RB_EMPTY_ROOT(&ref->tree)) return NULL; GEM_BUG_ON(i915_active_is_idle(ref)); /* * Try to reuse any existing barrier nodes already allocated for this * i915_active, due to overlapping active phases there is likely a * node kept alive (as we reuse before parking). We prefer to reuse * completely idle barriers (less hassle in manipulating the llists), * but otherwise any will do. */ if (ref->cache && is_idle_barrier(ref->cache, idx)) { p = &ref->cache->node; goto match; } prev = NULL; p = ref->tree.rb_node; while (p) { struct active_node *node = rb_entry(p, struct active_node, node); if (is_idle_barrier(node, idx)) goto match; prev = p; if (node->timeline < idx) p = READ_ONCE(p->rb_right); else p = READ_ONCE(p->rb_left); } /* * No quick match, but we did find the leftmost rb_node for the * kernel_context. Walk the rb_tree in-order to see if there were * any idle-barriers on this timeline that we missed, or just use * the first pending barrier. */ for (p = prev; p; p = rb_next(p)) { struct active_node *node = rb_entry(p, struct active_node, node); struct intel_engine_cs *engine; if (node->timeline > idx) break; if (node->timeline < idx) continue; if (is_idle_barrier(node, idx)) goto match; /* * The list of pending barriers is protected by the * kernel_context timeline, which notably we do not hold * here. i915_request_add_active_barriers() may consume * the barrier before we claim it, so we have to check * for success. */ engine = __barrier_to_engine(node); smp_rmb(); /* serialise with add_active_barriers */ if (is_barrier(&node->base) && ____active_del_barrier(ref, node, engine)) goto match; } return NULL; match: spin_lock_irq(&ref->tree_lock); rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ if (p == &ref->cache->node) WRITE_ONCE(ref->cache, NULL); spin_unlock_irq(&ref->tree_lock); return rb_entry(p, struct active_node, node); } int i915_active_acquire_preallocate_barrier(struct i915_active *ref, struct intel_engine_cs *engine) { intel_engine_mask_t tmp, mask = engine->mask; struct llist_node *first = NULL, *last = NULL; struct intel_gt *gt = engine->gt; GEM_BUG_ON(i915_active_is_idle(ref)); /* Wait until the previous preallocation is completed */ while (!llist_empty(&ref->preallocated_barriers)) cond_resched(); /* * Preallocate a node for each physical engine supporting the target * engine (remember virtual engines have more than one sibling). * We can then use the preallocated nodes in * i915_active_acquire_barrier() */ GEM_BUG_ON(!mask); for_each_engine_masked(engine, gt, mask, tmp) { u64 idx = engine->kernel_context->timeline->fence_context; struct llist_node *prev = first; struct active_node *node; rcu_read_lock(); node = reuse_idle_barrier(ref, idx); rcu_read_unlock(); if (!node) { node = kmem_cache_alloc(slab_cache, GFP_KERNEL); if (!node) goto unwind; RCU_INIT_POINTER(node->base.fence, NULL); node->base.cb.func = node_retire; node->timeline = idx; node->ref = ref; } if (!i915_active_fence_isset(&node->base)) { /* * Mark this as being *our* unconnected proto-node. * * Since this node is not in any list, and we have * decoupled it from the rbtree, we can reuse the * request to indicate this is an idle-barrier node * and then we can use the rb_node and list pointers * for our tracking of the pending barrier. */ RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); node->base.cb.node.prev = (void *)engine; __i915_active_acquire(ref); } GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); GEM_BUG_ON(barrier_to_engine(node) != engine); first = barrier_to_ll(node); first->next = prev; if (!last) last = first; intel_engine_pm_get(engine); } GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); llist_add_batch(first, last, &ref->preallocated_barriers); return 0; unwind: while (first) { struct active_node *node = barrier_from_ll(first); first = first->next; atomic_dec(&ref->count); intel_engine_pm_put(barrier_to_engine(node)); kmem_cache_free(slab_cache, node); } return -ENOMEM; } void i915_active_acquire_barrier(struct i915_active *ref) { struct llist_node *pos, *next; unsigned long flags; GEM_BUG_ON(i915_active_is_idle(ref)); /* * Transfer the list of preallocated barriers into the * i915_active rbtree, but only as proto-nodes. They will be * populated by i915_request_add_active_barriers() to point to the * request that will eventually release them. */ llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { struct active_node *node = barrier_from_ll(pos); struct intel_engine_cs *engine = barrier_to_engine(node); struct rb_node **p, *parent; spin_lock_irqsave_nested(&ref->tree_lock, flags, SINGLE_DEPTH_NESTING); parent = NULL; p = &ref->tree.rb_node; while (*p) { struct active_node *it; parent = *p; it = rb_entry(parent, struct active_node, node); if (it->timeline < node->timeline) p = &parent->rb_right; else p = &parent->rb_left; } rb_link_node(&node->node, parent, p); rb_insert_color(&node->node, &ref->tree); spin_unlock_irqrestore(&ref->tree_lock, flags); GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); llist_add(barrier_to_ll(node), &engine->barrier_tasks); intel_engine_pm_put_delay(engine, 2); } } static struct dma_fence **ll_to_fence_slot(struct llist_node *node) { return __active_fence_slot(&barrier_from_ll(node)->base); } void i915_request_add_active_barriers(struct i915_request *rq) { struct intel_engine_cs *engine = rq->engine; struct llist_node *node, *next; unsigned long flags; GEM_BUG_ON(!intel_context_is_barrier(rq->context)); GEM_BUG_ON(intel_engine_is_virtual(engine)); GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); node = llist_del_all(&engine->barrier_tasks); if (!node) return; /* * Attach the list of proto-fences to the in-flight request such * that the parent i915_active will be released when this request * is retired. */ spin_lock_irqsave(&rq->lock, flags); llist_for_each_safe(node, next, node) { /* serialise with reuse_idle_barrier */ smp_store_mb(*ll_to_fence_slot(node), &rq->fence); list_add_tail((struct list_head *)node, &rq->fence.cb_list); } spin_unlock_irqrestore(&rq->lock, flags); } /* * __i915_active_fence_set: Update the last active fence along its timeline * @active: the active tracker * @fence: the new fence (under construction) * * Records the new @fence as the last active fence along its timeline in * this active tracker, moving the tracking callbacks from the previous * fence onto this one. Gets and returns a reference to the previous fence * (if not already completed), which the caller must put after making sure * that it is executed before the new fence. To ensure that the order of * fences within the timeline of the i915_active_fence is understood, it * should be locked by the caller. */ struct dma_fence * __i915_active_fence_set(struct i915_active_fence *active, struct dma_fence *fence) { struct dma_fence *prev; unsigned long flags; /* * In case of fences embedded in i915_requests, their memory is * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release * by new requests. Then, there is a risk of passing back a pointer * to a new, completely unrelated fence that reuses the same memory * while tracked under a different active tracker. Combined with i915 * perf open/close operations that build await dependencies between * engine kernel context requests and user requests from different * timelines, this can lead to dependency loops and infinite waits. * * As a countermeasure, we try to get a reference to the active->fence * first, so if we succeed and pass it back to our user then it is not * released and potentially reused by an unrelated request before the * user has a chance to set up an await dependency on it. */ prev = i915_active_fence_get(active); if (fence == prev) return fence; GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); /* * Consider that we have two threads arriving (A and B), with * C already resident as the active->fence. * * Both A and B have got a reference to C or NULL, depending on the * timing of the interrupt handler. Let's assume that if A has got C * then it has locked C first (before B). * * Note the strong ordering of the timeline also provides consistent * nesting rules for the fence->lock; the inner lock is always the * older lock. */ spin_lock_irqsave(fence->lock, flags); if (prev) spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); /* * A does the cmpxchg first, and so it sees C or NULL, as before, or * something else, depending on the timing of other threads and/or * interrupt handler. If not the same as before then A unlocks C if * applicable and retries, starting from an attempt to get a new * active->fence. Meanwhile, B follows the same path as A. * Once A succeeds with cmpxch, B fails again, retires, gets A from * active->fence, locks it as soon as A completes, and possibly * succeeds with cmpxchg. */ while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) { if (prev) { spin_unlock(prev->lock); dma_fence_put(prev); } spin_unlock_irqrestore(fence->lock, flags); prev = i915_active_fence_get(active); GEM_BUG_ON(prev == fence); spin_lock_irqsave(fence->lock, flags); if (prev) spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); } /* * If prev is NULL then the previous fence must have been signaled * and we know that we are first on the timeline. If it is still * present then, having the lock on that fence already acquired, we * serialise with the interrupt handler, in the process of removing it * from any future interrupt callback. A will then wait on C before * executing (if present). * * As B is second, it sees A as the previous fence and so waits for * it to complete its transition and takes over the occupancy for * itself -- remembering that it needs to wait on A before executing. */ if (prev) { __list_del_entry(&active->cb.node); spin_unlock(prev->lock); /* serialise with prev->cb_list */ } list_add_tail(&active->cb.node, &fence->cb_list); spin_unlock_irqrestore(fence->lock, flags); return prev; } int i915_active_fence_set(struct i915_active_fence *active, struct i915_request *rq) { struct dma_fence *fence; int err = 0; /* Must maintain timeline ordering wrt previous active requests */ fence = __i915_active_fence_set(active, &rq->fence); if (fence) { err = i915_request_await_dma_fence(rq, fence); dma_fence_put(fence); } return err; } void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) { active_fence_cb(fence, cb); } struct auto_active { struct i915_active base; struct kref ref; }; struct i915_active *i915_active_get(struct i915_active *ref) { struct auto_active *aa = container_of(ref, typeof(*aa), base); kref_get(&aa->ref); return &aa->base; } static void auto_release(struct kref *ref) { struct auto_active *aa = container_of(ref, typeof(*aa), ref); i915_active_fini(&aa->base); kfree(aa); } void i915_active_put(struct i915_active *ref) { struct auto_active *aa = container_of(ref, typeof(*aa), base); kref_put(&aa->ref, auto_release); } static int auto_active(struct i915_active *ref) { i915_active_get(ref); return 0; } static void auto_retire(struct i915_active *ref) { i915_active_put(ref); } struct i915_active *i915_active_create(void) { struct auto_active *aa; aa = kmalloc(sizeof(*aa), GFP_KERNEL); if (!aa) return NULL; kref_init(&aa->ref); i915_active_init(&aa->base, auto_active, auto_retire, 0); return &aa->base; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/i915_active.c" #endif void i915_active_module_exit(void) { kmem_cache_destroy(slab_cache); } int __init i915_active_module_init(void) { slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); if (!slab_cache) return -ENOMEM; return 0; } |