Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (c) 2018, Intel Corporation. */ #ifndef _ICE_TXRX_H_ #define _ICE_TXRX_H_ #include "ice_type.h" #define ICE_DFLT_IRQ_WORK 256 #define ICE_RXBUF_3072 3072 #define ICE_RXBUF_2048 2048 #define ICE_RXBUF_1664 1664 #define ICE_RXBUF_1536 1536 #define ICE_MAX_CHAINED_RX_BUFS 5 #define ICE_MAX_BUF_TXD 8 #define ICE_MIN_TX_LEN 17 #define ICE_MAX_FRAME_LEGACY_RX 8320 /* The size limit for a transmit buffer in a descriptor is (16K - 1). * In order to align with the read requests we will align the value to * the nearest 4K which represents our maximum read request size. */ #define ICE_MAX_READ_REQ_SIZE 4096 #define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1) #define ICE_MAX_DATA_PER_TXD_ALIGNED \ (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD) #define ICE_MAX_TXQ_PER_TXQG 128 /* Attempt to maximize the headroom available for incoming frames. We use a 2K * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame. * This leaves us with 512 bytes of room. From that we need to deduct the * space needed for the shared info and the padding needed to IP align the * frame. * * Note: For cache line sizes 256 or larger this value is going to end * up negative. In these cases we should fall back to the legacy * receive path. */ #if (PAGE_SIZE < 8192) #define ICE_2K_TOO_SMALL_WITH_PADDING \ ((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \ SKB_WITH_OVERHEAD(ICE_RXBUF_2048)) /** * ice_compute_pad - compute the padding * @rx_buf_len: buffer length * * Figure out the size of half page based on given buffer length and * then subtract the skb_shared_info followed by subtraction of the * actual buffer length; this in turn results in the actual space that * is left for padding usage */ static inline int ice_compute_pad(int rx_buf_len) { int half_page_size; half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len; } /** * ice_skb_pad - determine the padding that we can supply * * Figure out the right Rx buffer size and based on that calculate the * padding */ static inline int ice_skb_pad(void) { int rx_buf_len; /* If a 2K buffer cannot handle a standard Ethernet frame then * optimize padding for a 3K buffer instead of a 1.5K buffer. * * For a 3K buffer we need to add enough padding to allow for * tailroom due to NET_IP_ALIGN possibly shifting us out of * cache-line alignment. */ if (ICE_2K_TOO_SMALL_WITH_PADDING) rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); else rx_buf_len = ICE_RXBUF_1536; /* if needed make room for NET_IP_ALIGN */ rx_buf_len -= NET_IP_ALIGN; return ice_compute_pad(rx_buf_len); } #define ICE_SKB_PAD ice_skb_pad() #else #define ICE_2K_TOO_SMALL_WITH_PADDING false #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) #endif /* We are assuming that the cache line is always 64 Bytes here for ice. * In order to make sure that is a correct assumption there is a check in probe * to print a warning if the read from GLPCI_CNF2 tells us that the cache line * size is 128 bytes. We do it this way because we do not want to read the * GLPCI_CNF2 register or a variable containing the value on every pass through * the Tx path. */ #define ICE_CACHE_LINE_BYTES 64 #define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \ sizeof(struct ice_tx_desc)) #define ICE_DESCS_FOR_CTX_DESC 1 #define ICE_DESCS_FOR_SKB_DATA_PTR 1 /* Tx descriptors needed, worst case */ #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \ ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR) #define ICE_DESC_UNUSED(R) \ (u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ (R)->next_to_clean - (R)->next_to_use - 1) #define ICE_RX_DESC_UNUSED(R) \ ((((R)->first_desc > (R)->next_to_use) ? 0 : (R)->count) + \ (R)->first_desc - (R)->next_to_use - 1) #define ICE_RING_QUARTER(R) ((R)->count >> 2) #define ICE_TX_FLAGS_TSO BIT(0) #define ICE_TX_FLAGS_HW_VLAN BIT(1) #define ICE_TX_FLAGS_SW_VLAN BIT(2) /* Free, was ICE_TX_FLAGS_DUMMY_PKT */ #define ICE_TX_FLAGS_TSYN BIT(4) #define ICE_TX_FLAGS_IPV4 BIT(5) #define ICE_TX_FLAGS_IPV6 BIT(6) #define ICE_TX_FLAGS_TUNNEL BIT(7) #define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(8) #define ICE_XDP_PASS 0 #define ICE_XDP_CONSUMED BIT(0) #define ICE_XDP_TX BIT(1) #define ICE_XDP_REDIR BIT(2) #define ICE_XDP_EXIT BIT(3) #define ICE_SKB_CONSUMED ICE_XDP_CONSUMED #define ICE_RX_DMA_ATTR \ (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) #define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS) /** * enum ice_tx_buf_type - type of &ice_tx_buf to act on Tx completion * @ICE_TX_BUF_EMPTY: unused OR XSk frame, no action required * @ICE_TX_BUF_DUMMY: dummy Flow Director packet, unmap and kfree() * @ICE_TX_BUF_FRAG: mapped skb OR &xdp_buff frag, only unmap DMA * @ICE_TX_BUF_SKB: &sk_buff, unmap and consume_skb(), update stats * @ICE_TX_BUF_XDP_TX: &xdp_buff, unmap and page_frag_free(), stats * @ICE_TX_BUF_XDP_XMIT: &xdp_frame, unmap and xdp_return_frame(), stats * @ICE_TX_BUF_XSK_TX: &xdp_buff on XSk queue, xsk_buff_free(), stats */ enum ice_tx_buf_type { ICE_TX_BUF_EMPTY = 0U, ICE_TX_BUF_DUMMY, ICE_TX_BUF_FRAG, ICE_TX_BUF_SKB, ICE_TX_BUF_XDP_TX, ICE_TX_BUF_XDP_XMIT, ICE_TX_BUF_XSK_TX, }; struct ice_tx_buf { union { struct ice_tx_desc *next_to_watch; u32 rs_idx; }; union { void *raw_buf; /* used for XDP_TX and FDir rules */ struct sk_buff *skb; /* used for .ndo_start_xmit() */ struct xdp_frame *xdpf; /* used for .ndo_xdp_xmit() */ struct xdp_buff *xdp; /* used for XDP_TX ZC */ }; unsigned int bytecount; union { unsigned int gso_segs; unsigned int nr_frags; /* used for mbuf XDP */ }; u32 tx_flags:12; u32 type:4; /* &ice_tx_buf_type */ u32 vid:16; DEFINE_DMA_UNMAP_LEN(len); DEFINE_DMA_UNMAP_ADDR(dma); }; struct ice_tx_offload_params { u64 cd_qw1; struct ice_tx_ring *tx_ring; u32 td_cmd; u32 td_offset; u32 td_l2tag1; u32 cd_tunnel_params; u16 cd_l2tag2; u8 header_len; }; struct ice_rx_buf { dma_addr_t dma; struct page *page; unsigned int page_offset; unsigned int pgcnt; unsigned int act; unsigned int pagecnt_bias; }; struct ice_q_stats { u64 pkts; u64 bytes; }; struct ice_txq_stats { u64 restart_q; u64 tx_busy; u64 tx_linearize; int prev_pkt; /* negative if no pending Tx descriptors */ }; struct ice_rxq_stats { u64 non_eop_descs; u64 alloc_page_failed; u64 alloc_buf_failed; }; struct ice_ring_stats { struct rcu_head rcu; /* to avoid race on free */ struct ice_q_stats stats; struct u64_stats_sync syncp; union { struct ice_txq_stats tx_stats; struct ice_rxq_stats rx_stats; }; }; enum ice_ring_state_t { ICE_TX_XPS_INIT_DONE, ICE_TX_NBITS, }; /* this enum matches hardware bits and is meant to be used by DYN_CTLN * registers and QINT registers or more generally anywhere in the manual * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any * register but instead is a special value meaning "don't update" ITR0/1/2. */ enum ice_dyn_idx_t { ICE_IDX_ITR0 = 0, ICE_IDX_ITR1 = 1, ICE_IDX_ITR2 = 2, ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ }; /* Header split modes defined by DTYPE field of Rx RLAN context */ enum ice_rx_dtype { ICE_RX_DTYPE_NO_SPLIT = 0, ICE_RX_DTYPE_HEADER_SPLIT = 1, ICE_RX_DTYPE_SPLIT_ALWAYS = 2, }; /* indices into GLINT_ITR registers */ #define ICE_RX_ITR ICE_IDX_ITR0 #define ICE_TX_ITR ICE_IDX_ITR1 #define ICE_ITR_8K 124 #define ICE_ITR_20K 50 #define ICE_ITR_MAX 8160 /* 0x1FE0 */ #define ICE_DFLT_TX_ITR ICE_ITR_20K #define ICE_DFLT_RX_ITR ICE_ITR_20K enum ice_dynamic_itr { ITR_STATIC = 0, ITR_DYNAMIC = 1 }; #define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC) #define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */ #define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S) #define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */ #define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK) #define ICE_DFLT_INTRL 0 #define ICE_MAX_INTRL 236 #define ICE_IN_WB_ON_ITR_MODE 255 /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also, * set the write-back latency to the usecs passed in. */ #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \ ((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \ GLINT_DYN_CTL_INTERVAL_M) | \ (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \ GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \ GLINT_DYN_CTL_WB_ON_ITR_M) /* Legacy or Advanced Mode Queue */ #define ICE_TX_ADVANCED 0 #define ICE_TX_LEGACY 1 /* descriptor ring, associated with a VSI */ struct ice_rx_ring { /* CL1 - 1st cacheline starts here */ struct ice_rx_ring *next; /* pointer to next ring in q_vector */ void *desc; /* Descriptor ring memory */ struct device *dev; /* Used for DMA mapping */ struct net_device *netdev; /* netdev ring maps to */ struct ice_vsi *vsi; /* Backreference to associated VSI */ struct ice_q_vector *q_vector; /* Backreference to associated vector */ u8 __iomem *tail; u16 q_index; /* Queue number of ring */ u16 count; /* Number of descriptors */ u16 reg_idx; /* HW register index of the ring */ u16 next_to_alloc; /* CL2 - 2nd cacheline starts here */ union { struct ice_rx_buf *rx_buf; struct xdp_buff **xdp_buf; }; struct xdp_buff xdp; /* CL3 - 3rd cacheline starts here */ struct bpf_prog *xdp_prog; u16 rx_offset; /* used in interrupt processing */ u16 next_to_use; u16 next_to_clean; u16 first_desc; /* stats structs */ struct ice_ring_stats *ring_stats; struct rcu_head rcu; /* to avoid race on free */ /* CL4 - 4th cacheline starts here */ struct ice_channel *ch; struct ice_tx_ring *xdp_ring; struct xsk_buff_pool *xsk_pool; u32 nr_frags; dma_addr_t dma; /* physical address of ring */ u64 cached_phctime; u16 rx_buf_len; u8 dcb_tc; /* Traffic class of ring */ u8 ptp_rx; #define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1) #define ICE_RX_FLAGS_CRC_STRIP_DIS BIT(2) u8 flags; /* CL5 - 5th cacheline starts here */ struct xdp_rxq_info xdp_rxq; } ____cacheline_internodealigned_in_smp; struct ice_tx_ring { /* CL1 - 1st cacheline starts here */ struct ice_tx_ring *next; /* pointer to next ring in q_vector */ void *desc; /* Descriptor ring memory */ struct device *dev; /* Used for DMA mapping */ u8 __iomem *tail; struct ice_tx_buf *tx_buf; struct ice_q_vector *q_vector; /* Backreference to associated vector */ struct net_device *netdev; /* netdev ring maps to */ struct ice_vsi *vsi; /* Backreference to associated VSI */ /* CL2 - 2nd cacheline starts here */ dma_addr_t dma; /* physical address of ring */ struct xsk_buff_pool *xsk_pool; u16 next_to_use; u16 next_to_clean; u16 q_handle; /* Queue handle per TC */ u16 reg_idx; /* HW register index of the ring */ u16 count; /* Number of descriptors */ u16 q_index; /* Queue number of ring */ u16 xdp_tx_active; /* stats structs */ struct ice_ring_stats *ring_stats; /* CL3 - 3rd cacheline starts here */ struct rcu_head rcu; /* to avoid race on free */ DECLARE_BITMAP(xps_state, ICE_TX_NBITS); /* XPS Config State */ struct ice_channel *ch; struct ice_ptp_tx *tx_tstamps; spinlock_t tx_lock; u32 txq_teid; /* Added Tx queue TEID */ /* CL4 - 4th cacheline starts here */ #define ICE_TX_FLAGS_RING_XDP BIT(0) #define ICE_TX_FLAGS_RING_VLAN_L2TAG1 BIT(1) #define ICE_TX_FLAGS_RING_VLAN_L2TAG2 BIT(2) u8 flags; u8 dcb_tc; /* Traffic class of ring */ u8 ptp_tx; } ____cacheline_internodealigned_in_smp; static inline bool ice_ring_uses_build_skb(struct ice_rx_ring *ring) { return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB); } static inline void ice_set_ring_build_skb_ena(struct ice_rx_ring *ring) { ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB; } static inline void ice_clear_ring_build_skb_ena(struct ice_rx_ring *ring) { ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB; } static inline bool ice_ring_ch_enabled(struct ice_tx_ring *ring) { return !!ring->ch; } static inline bool ice_ring_is_xdp(struct ice_tx_ring *ring) { return !!(ring->flags & ICE_TX_FLAGS_RING_XDP); } enum ice_container_type { ICE_RX_CONTAINER, ICE_TX_CONTAINER, }; struct ice_ring_container { /* head of linked-list of rings */ union { struct ice_rx_ring *rx_ring; struct ice_tx_ring *tx_ring; }; struct dim dim; /* data for net_dim algorithm */ u16 itr_idx; /* index in the interrupt vector */ /* this matches the maximum number of ITR bits, but in usec * values, so it is shifted left one bit (bit zero is ignored) */ union { struct { u16 itr_setting:13; u16 itr_reserved:2; u16 itr_mode:1; }; u16 itr_settings; }; enum ice_container_type type; }; struct ice_coalesce_stored { u16 itr_tx; u16 itr_rx; u8 intrl; u8 tx_valid; u8 rx_valid; }; /* iterator for handling rings in ring container */ #define ice_for_each_rx_ring(pos, head) \ for (pos = (head).rx_ring; pos; pos = pos->next) #define ice_for_each_tx_ring(pos, head) \ for (pos = (head).tx_ring; pos; pos = pos->next) static inline unsigned int ice_rx_pg_order(struct ice_rx_ring *ring) { #if (PAGE_SIZE < 8192) if (ring->rx_buf_len > (PAGE_SIZE / 2)) return 1; #endif return 0; } #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring)) union ice_32b_rx_flex_desc; bool ice_alloc_rx_bufs(struct ice_rx_ring *rxr, unsigned int cleaned_count); netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev); u16 ice_select_queue(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); void ice_clean_tx_ring(struct ice_tx_ring *tx_ring); void ice_clean_rx_ring(struct ice_rx_ring *rx_ring); int ice_setup_tx_ring(struct ice_tx_ring *tx_ring); int ice_setup_rx_ring(struct ice_rx_ring *rx_ring); void ice_free_tx_ring(struct ice_tx_ring *tx_ring); void ice_free_rx_ring(struct ice_rx_ring *rx_ring); int ice_napi_poll(struct napi_struct *napi, int budget); int ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, u8 *raw_packet); int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget); void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring); #endif /* _ICE_TXRX_H_ */ |