Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2012 Michael Ellerman, IBM Corporation. */ #include <linux/kernel.h> #include <linux/kvm_host.h> #include <linux/kvm.h> #include <linux/err.h> #include <linux/uaccess.h> #include <asm/kvm_book3s.h> #include <asm/kvm_ppc.h> #include <asm/hvcall.h> #include <asm/rtas.h> #include <asm/xive.h> #ifdef CONFIG_KVM_XICS static void kvm_rtas_set_xive(struct kvm_vcpu *vcpu, struct rtas_args *args) { u32 irq, server, priority; int rc; if (be32_to_cpu(args->nargs) != 3 || be32_to_cpu(args->nret) != 1) { rc = -3; goto out; } irq = be32_to_cpu(args->args[0]); server = be32_to_cpu(args->args[1]); priority = be32_to_cpu(args->args[2]); if (xics_on_xive()) rc = kvmppc_xive_set_xive(vcpu->kvm, irq, server, priority); else rc = kvmppc_xics_set_xive(vcpu->kvm, irq, server, priority); if (rc) rc = -3; out: args->rets[0] = cpu_to_be32(rc); } static void kvm_rtas_get_xive(struct kvm_vcpu *vcpu, struct rtas_args *args) { u32 irq, server, priority; int rc; if (be32_to_cpu(args->nargs) != 1 || be32_to_cpu(args->nret) != 3) { rc = -3; goto out; } irq = be32_to_cpu(args->args[0]); server = priority = 0; if (xics_on_xive()) rc = kvmppc_xive_get_xive(vcpu->kvm, irq, &server, &priority); else rc = kvmppc_xics_get_xive(vcpu->kvm, irq, &server, &priority); if (rc) { rc = -3; goto out; } args->rets[1] = cpu_to_be32(server); args->rets[2] = cpu_to_be32(priority); out: args->rets[0] = cpu_to_be32(rc); } static void kvm_rtas_int_off(struct kvm_vcpu *vcpu, struct rtas_args *args) { u32 irq; int rc; if (be32_to_cpu(args->nargs) != 1 || be32_to_cpu(args->nret) != 1) { rc = -3; goto out; } irq = be32_to_cpu(args->args[0]); if (xics_on_xive()) rc = kvmppc_xive_int_off(vcpu->kvm, irq); else rc = kvmppc_xics_int_off(vcpu->kvm, irq); if (rc) rc = -3; out: args->rets[0] = cpu_to_be32(rc); } static void kvm_rtas_int_on(struct kvm_vcpu *vcpu, struct rtas_args *args) { u32 irq; int rc; if (be32_to_cpu(args->nargs) != 1 || be32_to_cpu(args->nret) != 1) { rc = -3; goto out; } irq = be32_to_cpu(args->args[0]); if (xics_on_xive()) rc = kvmppc_xive_int_on(vcpu->kvm, irq); else rc = kvmppc_xics_int_on(vcpu->kvm, irq); if (rc) rc = -3; out: args->rets[0] = cpu_to_be32(rc); } #endif /* CONFIG_KVM_XICS */ struct rtas_handler { void (*handler)(struct kvm_vcpu *vcpu, struct rtas_args *args); char *name; }; static struct rtas_handler rtas_handlers[] = { #ifdef CONFIG_KVM_XICS { .name = "ibm,set-xive", .handler = kvm_rtas_set_xive }, { .name = "ibm,get-xive", .handler = kvm_rtas_get_xive }, { .name = "ibm,int-off", .handler = kvm_rtas_int_off }, { .name = "ibm,int-on", .handler = kvm_rtas_int_on }, #endif }; struct rtas_token_definition { struct list_head list; struct rtas_handler *handler; u64 token; }; static int rtas_name_matches(char *s1, char *s2) { struct kvm_rtas_token_args args; return !strncmp(s1, s2, sizeof(args.name)); } static int rtas_token_undefine(struct kvm *kvm, char *name) { struct rtas_token_definition *d, *tmp; lockdep_assert_held(&kvm->arch.rtas_token_lock); list_for_each_entry_safe(d, tmp, &kvm->arch.rtas_tokens, list) { if (rtas_name_matches(d->handler->name, name)) { list_del(&d->list); kfree(d); return 0; } } /* It's not an error to undefine an undefined token */ return 0; } static int rtas_token_define(struct kvm *kvm, char *name, u64 token) { struct rtas_token_definition *d; struct rtas_handler *h = NULL; bool found; int i; lockdep_assert_held(&kvm->arch.rtas_token_lock); list_for_each_entry(d, &kvm->arch.rtas_tokens, list) { if (d->token == token) return -EEXIST; } found = false; for (i = 0; i < ARRAY_SIZE(rtas_handlers); i++) { h = &rtas_handlers[i]; if (rtas_name_matches(h->name, name)) { found = true; break; } } if (!found) return -ENOENT; d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; d->handler = h; d->token = token; list_add_tail(&d->list, &kvm->arch.rtas_tokens); return 0; } int kvm_vm_ioctl_rtas_define_token(struct kvm *kvm, void __user *argp) { struct kvm_rtas_token_args args; int rc; if (copy_from_user(&args, argp, sizeof(args))) return -EFAULT; mutex_lock(&kvm->arch.rtas_token_lock); if (args.token) rc = rtas_token_define(kvm, args.name, args.token); else rc = rtas_token_undefine(kvm, args.name); mutex_unlock(&kvm->arch.rtas_token_lock); return rc; } int kvmppc_rtas_hcall(struct kvm_vcpu *vcpu) { struct rtas_token_definition *d; struct rtas_args args; rtas_arg_t *orig_rets; gpa_t args_phys; int rc; /* * r4 contains the guest physical address of the RTAS args * Mask off the top 4 bits since this is a guest real address */ args_phys = kvmppc_get_gpr(vcpu, 4) & KVM_PAM; kvm_vcpu_srcu_read_lock(vcpu); rc = kvm_read_guest(vcpu->kvm, args_phys, &args, sizeof(args)); kvm_vcpu_srcu_read_unlock(vcpu); if (rc) goto fail; /* * args->rets is a pointer into args->args. Now that we've * copied args we need to fix it up to point into our copy, * not the guest args. We also need to save the original * value so we can restore it on the way out. */ orig_rets = args.rets; if (be32_to_cpu(args.nargs) >= ARRAY_SIZE(args.args)) { /* * Don't overflow our args array: ensure there is room for * at least rets[0] (even if the call specifies 0 nret). * * Each handler must then check for the correct nargs and nret * values, but they may always return failure in rets[0]. */ rc = -EINVAL; goto fail; } args.rets = &args.args[be32_to_cpu(args.nargs)]; mutex_lock(&vcpu->kvm->arch.rtas_token_lock); rc = -ENOENT; list_for_each_entry(d, &vcpu->kvm->arch.rtas_tokens, list) { if (d->token == be32_to_cpu(args.token)) { d->handler->handler(vcpu, &args); rc = 0; break; } } mutex_unlock(&vcpu->kvm->arch.rtas_token_lock); if (rc == 0) { args.rets = orig_rets; rc = kvm_write_guest(vcpu->kvm, args_phys, &args, sizeof(args)); if (rc) goto fail; } return rc; fail: /* * We only get here if the guest has called RTAS with a bogus * args pointer or nargs/nret values that would overflow the * array. That means we can't get to the args, and so we can't * fail the RTAS call. So fail right out to userspace, which * should kill the guest. * * SLOF should actually pass the hcall return value from the * rtas handler call in r3, so enter_rtas could be modified to * return a failure indication in r3 and we could return such * errors to the guest rather than failing to host userspace. * However old guests that don't test for failure could then * continue silently after errors, so for now we won't do this. */ return rc; } EXPORT_SYMBOL_GPL(kvmppc_rtas_hcall); void kvmppc_rtas_tokens_free(struct kvm *kvm) { struct rtas_token_definition *d, *tmp; list_for_each_entry_safe(d, tmp, &kvm->arch.rtas_tokens, list) { list_del(&d->list); kfree(d); } } |