Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 | # SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) %YAML 1.2 --- $id: http://devicetree.org/schemas/cpu/idle-states.yaml# $schema: http://devicetree.org/meta-schemas/core.yaml# title: Idle states maintainers: - Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> - Anup Patel <anup@brainfault.org> description: |+ ========================================== 1 - Introduction ========================================== ARM and RISC-V systems contain HW capable of managing power consumption dynamically, where cores can be put in different low-power states (ranging from simple wfi to power gating) according to OS PM policies. The CPU states representing the range of dynamic idle states that a processor can enter at run-time, can be specified through device tree bindings representing the parameters required to enter/exit specific idle states on a given processor. ========================================== 2 - ARM idle states ========================================== According to the Server Base System Architecture document (SBSA, [3]), the power states an ARM CPU can be put into are identified by the following list: - Running - Idle_standby - Idle_retention - Sleep - Off The power states described in the SBSA document define the basic CPU states on top of which ARM platforms implement power management schemes that allow an OS PM implementation to put the processor in different idle states (which include states listed above; "off" state is not an idle state since it does not have wake-up capabilities, hence it is not considered in this document). Idle state parameters (e.g. entry latency) are platform specific and need to be characterized with bindings that provide the required information to OS PM code so that it can build the required tables and use them at runtime. The device tree binding definition for ARM idle states is the subject of this document. ========================================== 3 - RISC-V idle states ========================================== On RISC-V systems, the HARTs (or CPUs) [6] can be put in platform specific suspend (or idle) states (ranging from simple WFI, power gating, etc). The RISC-V SBI v0.3 (or higher) [7] hart state management extension provides a standard mechanism for OS to request HART state transitions. The platform specific suspend (or idle) states of a hart can be either retentive or non-rententive in nature. A retentive suspend state will preserve HART registers and CSR values for all privilege modes whereas a non-retentive suspend state will not preserve HART registers and CSR values. =========================================== 4 - idle-states definitions =========================================== Idle states are characterized for a specific system through a set of timing and energy related properties, that underline the HW behaviour triggered upon idle states entry and exit. The following diagram depicts the CPU execution phases and related timing properties required to enter and exit an idle state: ..__[EXEC]__|__[PREP]__|__[ENTRY]__|__[IDLE]__|__[EXIT]__|__[EXEC]__.. | | | | | |<------ entry ------->| | latency | |<- exit ->| | latency | |<-------- min-residency -------->| |<------- wakeup-latency ------->| Diagram 1: CPU idle state execution phases EXEC: Normal CPU execution. PREP: Preparation phase before committing the hardware to idle mode like cache flushing. This is abortable on pending wake-up event conditions. The abort latency is assumed to be negligible (i.e. less than the ENTRY + EXIT duration). If aborted, CPU goes back to EXEC. This phase is optional. If not abortable, this should be included in the ENTRY phase instead. ENTRY: The hardware is committed to idle mode. This period must run to completion up to IDLE before anything else can happen. IDLE: This is the actual energy-saving idle period. This may last between 0 and infinite time, until a wake-up event occurs. EXIT: Period during which the CPU is brought back to operational mode (EXEC). entry-latency: Worst case latency required to enter the idle state. The exit-latency may be guaranteed only after entry-latency has passed. min-residency: Minimum period, including preparation and entry, for a given idle state to be worthwhile energywise. wakeup-latency: Maximum delay between the signaling of a wake-up event and the CPU being able to execute normal code again. If not specified, this is assumed to be entry-latency + exit-latency. These timing parameters can be used by an OS in different circumstances. An idle CPU requires the expected min-residency time to select the most appropriate idle state based on the expected expiry time of the next IRQ (i.e. wake-up) that causes the CPU to return to the EXEC phase. An operating system scheduler may need to compute the shortest wake-up delay for CPUs in the system by detecting how long will it take to get a CPU out of an idle state, e.g.: wakeup-delay = exit-latency + max(entry-latency - (now - entry-timestamp), 0) In other words, the scheduler can make its scheduling decision by selecting (e.g. waking-up) the CPU with the shortest wake-up delay. The wake-up delay must take into account the entry latency if that period has not expired. The abortable nature of the PREP period can be ignored if it cannot be relied upon (e.g. the PREP deadline may occur much sooner than the worst case since it depends on the CPU operating conditions, i.e. caches state). An OS has to reliably probe the wakeup-latency since some devices can enforce latency constraint guarantees to work properly, so the OS has to detect the worst case wake-up latency it can incur if a CPU is allowed to enter an idle state, and possibly to prevent that to guarantee reliable device functioning. The min-residency time parameter deserves further explanation since it is expressed in time units but must factor in energy consumption coefficients. The energy consumption of a cpu when it enters a power state can be roughly characterised by the following graph: | | | e | n | /--- e | /------ r | /------ g | /----- y | /------ | ---- | /| | / | | / | | / | | / | | / | |/ | -----|-------+---------------------------------- 0| 1 time(ms) Graph 1: Energy vs time example The graph is split in two parts delimited by time 1ms on the X-axis. The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope and denotes the energy costs incurred while entering and leaving the idle state. The graph curve in the area delimited by X-axis values = {x | x > 1ms } has shallower slope and essentially represents the energy consumption of the idle state. min-residency is defined for a given idle state as the minimum expected residency time for a state (inclusive of preparation and entry) after which choosing that state become the most energy efficient option. A good way to visualise this, is by taking the same graph above and comparing some states energy consumptions plots. For sake of simplicity, let's consider a system with two idle states IDLE1, and IDLE2: | | | | /-- IDLE1 e | /--- n | /---- e | /--- r | /-----/--------- IDLE2 g | /-------/--------- y | ------------ /---| | / /---- | | / /--- | | / /---- | | / /--- | | --- | | / | | / | |/ | time ---/----------------------------+------------------------ |IDLE1-energy < IDLE2-energy | IDLE2-energy < IDLE1-energy | IDLE2-min-residency Graph 2: idle states min-residency example In graph 2 above, that takes into account idle states entry/exit energy costs, it is clear that if the idle state residency time (i.e. time till next wake-up IRQ) is less than IDLE2-min-residency, IDLE1 is the better idle state choice energywise. This is mainly down to the fact that IDLE1 entry/exit energy costs are lower than IDLE2. However, the lower power consumption (i.e. shallower energy curve slope) of idle state IDLE2 implies that after a suitable time, IDLE2 becomes more energy efficient. The time at which IDLE2 becomes more energy efficient than IDLE1 (and other shallower states in a system with multiple idle states) is defined IDLE2-min-residency and corresponds to the time when energy consumption of IDLE1 and IDLE2 states breaks even. The definitions provided in this section underpin the idle states properties specification that is the subject of the following sections. =========================================== 5 - idle-states node =========================================== The processor idle states are defined within the idle-states node, which is a direct child of the cpus node [1] and provides a container where the processor idle states, defined as device tree nodes, are listed. On ARM systems, it is a container of processor idle states nodes. If the system does not provide CPU power management capabilities, or the processor just supports idle_standby, an idle-states node is not required. =========================================== 6 - References =========================================== [1] ARM Linux Kernel documentation - CPUs bindings Documentation/devicetree/bindings/arm/cpus.yaml [2] ARM Linux Kernel documentation - PSCI bindings Documentation/devicetree/bindings/arm/psci.yaml [3] ARM Server Base System Architecture (SBSA) http://infocenter.arm.com/help/index.jsp [4] ARM Architecture Reference Manuals http://infocenter.arm.com/help/index.jsp [5] ARM Linux Kernel documentation - Booting AArch64 Linux Documentation/arch/arm64/booting.rst [6] RISC-V Linux Kernel documentation - CPUs bindings Documentation/devicetree/bindings/riscv/cpus.yaml [7] RISC-V Supervisor Binary Interface (SBI) http://github.com/riscv/riscv-sbi-doc/riscv-sbi.adoc properties: $nodename: const: idle-states entry-method: description: | Usage and definition depend on ARM architecture version. On ARM v8 64-bit this property is required. On ARM 32-bit systems this property is optional This assumes that the "enable-method" property is set to "psci" in the cpu node[5] that is responsible for setting up CPU idle management in the OS implementation. const: psci patternProperties: "^(cpu|cluster)-": type: object description: | Each state node represents an idle state description and must be defined as follows. The idle state entered by executing the wfi instruction (idle_standby SBSA,[3][4]) is considered standard on all ARM and RISC-V platforms and therefore must not be listed. In addition to the properties listed above, a state node may require additional properties specific to the entry-method defined in the idle-states node. Please refer to the entry-method bindings documentation for properties definitions. properties: compatible: enum: - arm,idle-state - riscv,idle-state arm,psci-suspend-param: $ref: /schemas/types.yaml#/definitions/uint32 description: | power_state parameter to pass to the ARM PSCI suspend call. Device tree nodes that require usage of PSCI CPU_SUSPEND function (i.e. idle states node with entry-method property is set to "psci") must specify this property. riscv,sbi-suspend-param: $ref: /schemas/types.yaml#/definitions/uint32 description: | suspend_type parameter to pass to the RISC-V SBI HSM suspend call. This property is required in idle state nodes of device tree meant for RISC-V systems. For more details on the suspend_type parameter refer the SBI specifiation v0.3 (or higher) [7]. local-timer-stop: description: If present the CPU local timer control logic is lost on state entry, otherwise it is retained. type: boolean entry-latency-us: description: Worst case latency in microseconds required to enter the idle state. exit-latency-us: description: Worst case latency in microseconds required to exit the idle state. The exit-latency-us duration may be guaranteed only after entry-latency-us has passed. min-residency-us: description: Minimum residency duration in microseconds, inclusive of preparation and entry, for this idle state to be considered worthwhile energy wise (refer to section 2 of this document for a complete description). wakeup-latency-us: description: | Maximum delay between the signaling of a wake-up event and the CPU being able to execute normal code again. If omitted, this is assumed to be equal to: entry-latency-us + exit-latency-us It is important to supply this value on systems where the duration of PREP phase (see diagram 1, section 2) is non-neglibigle. In such systems entry-latency-us + exit-latency-us will exceed wakeup-latency-us by this duration. idle-state-name: $ref: /schemas/types.yaml#/definitions/string description: A string used as a descriptive name for the idle state. additionalProperties: false required: - compatible - entry-latency-us - exit-latency-us - min-residency-us additionalProperties: false examples: - | cpus { #size-cells = <0>; #address-cells = <2>; cpu@0 { device_type = "cpu"; compatible = "arm,cortex-a57"; reg = <0x0 0x0>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>, <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>; }; cpu@1 { device_type = "cpu"; compatible = "arm,cortex-a57"; reg = <0x0 0x1>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>, <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>; }; cpu@100 { device_type = "cpu"; compatible = "arm,cortex-a57"; reg = <0x0 0x100>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>, <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>; }; cpu@101 { device_type = "cpu"; compatible = "arm,cortex-a57"; reg = <0x0 0x101>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>, <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>; }; cpu@10000 { device_type = "cpu"; compatible = "arm,cortex-a57"; reg = <0x0 0x10000>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>, <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>; }; cpu@10001 { device_type = "cpu"; compatible = "arm,cortex-a57"; reg = <0x0 0x10001>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>, <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>; }; cpu@10100 { device_type = "cpu"; compatible = "arm,cortex-a57"; reg = <0x0 0x10100>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>, <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>; }; cpu@10101 { device_type = "cpu"; compatible = "arm,cortex-a57"; reg = <0x0 0x10101>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>, <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>; }; cpu@100000000 { device_type = "cpu"; compatible = "arm,cortex-a53"; reg = <0x1 0x0>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>, <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>; }; cpu@100000001 { device_type = "cpu"; compatible = "arm,cortex-a53"; reg = <0x1 0x1>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>, <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>; }; cpu@100000100 { device_type = "cpu"; compatible = "arm,cortex-a53"; reg = <0x1 0x100>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>, <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>; }; cpu@100000101 { device_type = "cpu"; compatible = "arm,cortex-a53"; reg = <0x1 0x101>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>, <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>; }; cpu@100010000 { device_type = "cpu"; compatible = "arm,cortex-a53"; reg = <0x1 0x10000>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>, <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>; }; cpu@100010001 { device_type = "cpu"; compatible = "arm,cortex-a53"; reg = <0x1 0x10001>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>, <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>; }; cpu@100010100 { device_type = "cpu"; compatible = "arm,cortex-a53"; reg = <0x1 0x10100>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>, <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>; }; cpu@100010101 { device_type = "cpu"; compatible = "arm,cortex-a53"; reg = <0x1 0x10101>; enable-method = "psci"; cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>, <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>; }; idle-states { entry-method = "psci"; CPU_RETENTION_0_0: cpu-retention-0-0 { compatible = "arm,idle-state"; arm,psci-suspend-param = <0x0010000>; entry-latency-us = <20>; exit-latency-us = <40>; min-residency-us = <80>; }; CLUSTER_RETENTION_0: cluster-retention-0 { compatible = "arm,idle-state"; local-timer-stop; arm,psci-suspend-param = <0x1010000>; entry-latency-us = <50>; exit-latency-us = <100>; min-residency-us = <250>; wakeup-latency-us = <130>; }; CPU_SLEEP_0_0: cpu-sleep-0-0 { compatible = "arm,idle-state"; local-timer-stop; arm,psci-suspend-param = <0x0010000>; entry-latency-us = <250>; exit-latency-us = <500>; min-residency-us = <950>; }; CLUSTER_SLEEP_0: cluster-sleep-0 { compatible = "arm,idle-state"; local-timer-stop; arm,psci-suspend-param = <0x1010000>; entry-latency-us = <600>; exit-latency-us = <1100>; min-residency-us = <2700>; wakeup-latency-us = <1500>; }; CPU_RETENTION_1_0: cpu-retention-1-0 { compatible = "arm,idle-state"; arm,psci-suspend-param = <0x0010000>; entry-latency-us = <20>; exit-latency-us = <40>; min-residency-us = <90>; }; CLUSTER_RETENTION_1: cluster-retention-1 { compatible = "arm,idle-state"; local-timer-stop; arm,psci-suspend-param = <0x1010000>; entry-latency-us = <50>; exit-latency-us = <100>; min-residency-us = <270>; wakeup-latency-us = <100>; }; CPU_SLEEP_1_0: cpu-sleep-1-0 { compatible = "arm,idle-state"; local-timer-stop; arm,psci-suspend-param = <0x0010000>; entry-latency-us = <70>; exit-latency-us = <100>; min-residency-us = <300>; wakeup-latency-us = <150>; }; CLUSTER_SLEEP_1: cluster-sleep-1 { compatible = "arm,idle-state"; local-timer-stop; arm,psci-suspend-param = <0x1010000>; entry-latency-us = <500>; exit-latency-us = <1200>; min-residency-us = <3500>; wakeup-latency-us = <1300>; }; }; }; - | // Example 2 (ARM 32-bit, 8-cpu system, two clusters): cpus { #size-cells = <0>; #address-cells = <1>; cpu@0 { device_type = "cpu"; compatible = "arm,cortex-a15"; reg = <0x0>; cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>; }; cpu@1 { device_type = "cpu"; compatible = "arm,cortex-a15"; reg = <0x1>; cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>; }; cpu@2 { device_type = "cpu"; compatible = "arm,cortex-a15"; reg = <0x2>; cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>; }; cpu@3 { device_type = "cpu"; compatible = "arm,cortex-a15"; reg = <0x3>; cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>; }; cpu@100 { device_type = "cpu"; compatible = "arm,cortex-a7"; reg = <0x100>; cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>; }; cpu@101 { device_type = "cpu"; compatible = "arm,cortex-a7"; reg = <0x101>; cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>; }; cpu@102 { device_type = "cpu"; compatible = "arm,cortex-a7"; reg = <0x102>; cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>; }; cpu@103 { device_type = "cpu"; compatible = "arm,cortex-a7"; reg = <0x103>; cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>; }; idle-states { cpu_sleep_0_0: cpu-sleep-0-0 { compatible = "arm,idle-state"; local-timer-stop; entry-latency-us = <200>; exit-latency-us = <100>; min-residency-us = <400>; wakeup-latency-us = <250>; }; cluster_sleep_0: cluster-sleep-0 { compatible = "arm,idle-state"; local-timer-stop; entry-latency-us = <500>; exit-latency-us = <1500>; min-residency-us = <2500>; wakeup-latency-us = <1700>; }; cpu_sleep_1_0: cpu-sleep-1-0 { compatible = "arm,idle-state"; local-timer-stop; entry-latency-us = <300>; exit-latency-us = <500>; min-residency-us = <900>; wakeup-latency-us = <600>; }; cluster_sleep_1: cluster-sleep-1 { compatible = "arm,idle-state"; local-timer-stop; entry-latency-us = <800>; exit-latency-us = <2000>; min-residency-us = <6500>; wakeup-latency-us = <2300>; }; }; }; - | // Example 3 (RISC-V 64-bit, 4-cpu systems, two clusters): cpus { #size-cells = <0>; #address-cells = <1>; cpu@0 { device_type = "cpu"; compatible = "riscv"; reg = <0x0>; riscv,isa = "rv64imafdc"; mmu-type = "riscv,sv48"; cpu-idle-states = <&CPU_RET_0_0>, <&CPU_NONRET_0_0>, <&CLUSTER_RET_0>, <&CLUSTER_NONRET_0>; cpu_intc0: interrupt-controller { #interrupt-cells = <1>; compatible = "riscv,cpu-intc"; interrupt-controller; }; }; cpu@1 { device_type = "cpu"; compatible = "riscv"; reg = <0x1>; riscv,isa = "rv64imafdc"; mmu-type = "riscv,sv48"; cpu-idle-states = <&CPU_RET_0_0>, <&CPU_NONRET_0_0>, <&CLUSTER_RET_0>, <&CLUSTER_NONRET_0>; cpu_intc1: interrupt-controller { #interrupt-cells = <1>; compatible = "riscv,cpu-intc"; interrupt-controller; }; }; cpu@10 { device_type = "cpu"; compatible = "riscv"; reg = <0x10>; riscv,isa = "rv64imafdc"; mmu-type = "riscv,sv48"; cpu-idle-states = <&CPU_RET_1_0>, <&CPU_NONRET_1_0>, <&CLUSTER_RET_1>, <&CLUSTER_NONRET_1>; cpu_intc10: interrupt-controller { #interrupt-cells = <1>; compatible = "riscv,cpu-intc"; interrupt-controller; }; }; cpu@11 { device_type = "cpu"; compatible = "riscv"; reg = <0x11>; riscv,isa = "rv64imafdc"; mmu-type = "riscv,sv48"; cpu-idle-states = <&CPU_RET_1_0>, <&CPU_NONRET_1_0>, <&CLUSTER_RET_1>, <&CLUSTER_NONRET_1>; cpu_intc11: interrupt-controller { #interrupt-cells = <1>; compatible = "riscv,cpu-intc"; interrupt-controller; }; }; idle-states { CPU_RET_0_0: cpu-retentive-0-0 { compatible = "riscv,idle-state"; riscv,sbi-suspend-param = <0x10000000>; entry-latency-us = <20>; exit-latency-us = <40>; min-residency-us = <80>; }; CPU_NONRET_0_0: cpu-nonretentive-0-0 { compatible = "riscv,idle-state"; riscv,sbi-suspend-param = <0x90000000>; entry-latency-us = <250>; exit-latency-us = <500>; min-residency-us = <950>; }; CLUSTER_RET_0: cluster-retentive-0 { compatible = "riscv,idle-state"; riscv,sbi-suspend-param = <0x11000000>; local-timer-stop; entry-latency-us = <50>; exit-latency-us = <100>; min-residency-us = <250>; wakeup-latency-us = <130>; }; CLUSTER_NONRET_0: cluster-nonretentive-0 { compatible = "riscv,idle-state"; riscv,sbi-suspend-param = <0x91000000>; local-timer-stop; entry-latency-us = <600>; exit-latency-us = <1100>; min-residency-us = <2700>; wakeup-latency-us = <1500>; }; CPU_RET_1_0: cpu-retentive-1-0 { compatible = "riscv,idle-state"; riscv,sbi-suspend-param = <0x10000010>; entry-latency-us = <20>; exit-latency-us = <40>; min-residency-us = <80>; }; CPU_NONRET_1_0: cpu-nonretentive-1-0 { compatible = "riscv,idle-state"; riscv,sbi-suspend-param = <0x90000010>; entry-latency-us = <250>; exit-latency-us = <500>; min-residency-us = <950>; }; CLUSTER_RET_1: cluster-retentive-1 { compatible = "riscv,idle-state"; riscv,sbi-suspend-param = <0x11000010>; local-timer-stop; entry-latency-us = <50>; exit-latency-us = <100>; min-residency-us = <250>; wakeup-latency-us = <130>; }; CLUSTER_NONRET_1: cluster-nonretentive-1 { compatible = "riscv,idle-state"; riscv,sbi-suspend-param = <0x91000010>; local-timer-stop; entry-latency-us = <600>; exit-latency-us = <1100>; min-residency-us = <2700>; wakeup-latency-us = <1500>; }; }; }; ... |