Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright 2020, Gustavo Luiz Duarte, IBM Corp. * * This test starts a transaction and triggers a signal, forcing a pagefault to * happen when the kernel signal handling code touches the user signal stack. * * In order to avoid pre-faulting the signal stack memory and to force the * pagefault to happen precisely in the kernel signal handling code, the * pagefault handling is done in userspace using the userfaultfd facility. * * Further pagefaults are triggered by crafting the signal handler's ucontext * to point to additional memory regions managed by the userfaultfd, so using * the same mechanism used to avoid pre-faulting the signal stack memory. * * On failure (bug is present) kernel crashes or never returns control back to * userspace. If bug is not present, tests completes almost immediately. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <linux/userfaultfd.h> #include <poll.h> #include <unistd.h> #include <sys/ioctl.h> #include <sys/syscall.h> #include <fcntl.h> #include <sys/mman.h> #include <pthread.h> #include <signal.h> #include <errno.h> #include "tm.h" #define UF_MEM_SIZE 655360 /* 10 x 64k pages */ /* Memory handled by userfaultfd */ static char *uf_mem; static size_t uf_mem_offset = 0; /* * Data that will be copied into the faulting pages (instead of zero-filled * pages). This is used to make the test more reliable and avoid segfaulting * when we return from the signal handler. Since we are making the signal * handler's ucontext point to newly allocated memory, when that memory is * paged-in it will contain the expected content. */ static char backing_mem[UF_MEM_SIZE]; static size_t pagesize; /* * Return a chunk of at least 'size' bytes of memory that will be handled by * userfaultfd. If 'backing_data' is not NULL, its content will be save to * 'backing_mem' and then copied into the faulting pages when the page fault * is handled. */ void *get_uf_mem(size_t size, void *backing_data) { void *ret; if (uf_mem_offset + size > UF_MEM_SIZE) { fprintf(stderr, "Requesting more uf_mem than expected!\n"); exit(EXIT_FAILURE); } ret = &uf_mem[uf_mem_offset]; /* Save the data that will be copied into the faulting page */ if (backing_data != NULL) memcpy(&backing_mem[uf_mem_offset], backing_data, size); /* Reserve the requested amount of uf_mem */ uf_mem_offset += size; /* Keep uf_mem_offset aligned to the page size (round up) */ uf_mem_offset = (uf_mem_offset + pagesize - 1) & ~(pagesize - 1); return ret; } void *fault_handler_thread(void *arg) { struct uffd_msg msg; /* Data read from userfaultfd */ long uffd; /* userfaultfd file descriptor */ struct uffdio_copy uffdio_copy; struct pollfd pollfd; ssize_t nread, offset; uffd = (long) arg; for (;;) { pollfd.fd = uffd; pollfd.events = POLLIN; if (poll(&pollfd, 1, -1) == -1) { perror("poll() failed"); exit(EXIT_FAILURE); } nread = read(uffd, &msg, sizeof(msg)); if (nread == 0) { fprintf(stderr, "read(): EOF on userfaultfd\n"); exit(EXIT_FAILURE); } if (nread == -1) { perror("read() failed"); exit(EXIT_FAILURE); } /* We expect only one kind of event */ if (msg.event != UFFD_EVENT_PAGEFAULT) { fprintf(stderr, "Unexpected event on userfaultfd\n"); exit(EXIT_FAILURE); } /* * We need to handle page faults in units of pages(!). * So, round faulting address down to page boundary. */ uffdio_copy.dst = msg.arg.pagefault.address & ~(pagesize-1); offset = (char *) uffdio_copy.dst - uf_mem; uffdio_copy.src = (unsigned long) &backing_mem[offset]; uffdio_copy.len = pagesize; uffdio_copy.mode = 0; uffdio_copy.copy = 0; if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1) { perror("ioctl-UFFDIO_COPY failed"); exit(EXIT_FAILURE); } } } void setup_uf_mem(void) { long uffd; /* userfaultfd file descriptor */ pthread_t thr; struct uffdio_api uffdio_api; struct uffdio_register uffdio_register; int ret; pagesize = sysconf(_SC_PAGE_SIZE); /* Create and enable userfaultfd object */ uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); if (uffd == -1) { perror("userfaultfd() failed"); exit(EXIT_FAILURE); } uffdio_api.api = UFFD_API; uffdio_api.features = 0; if (ioctl(uffd, UFFDIO_API, &uffdio_api) == -1) { perror("ioctl-UFFDIO_API failed"); exit(EXIT_FAILURE); } /* * Create a private anonymous mapping. The memory will be demand-zero * paged, that is, not yet allocated. When we actually touch the memory * the related page will be allocated via the userfaultfd mechanism. */ uf_mem = mmap(NULL, UF_MEM_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (uf_mem == MAP_FAILED) { perror("mmap() failed"); exit(EXIT_FAILURE); } /* * Register the memory range of the mapping we've just mapped to be * handled by the userfaultfd object. In 'mode' we request to track * missing pages (i.e. pages that have not yet been faulted-in). */ uffdio_register.range.start = (unsigned long) uf_mem; uffdio_register.range.len = UF_MEM_SIZE; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) == -1) { perror("ioctl-UFFDIO_REGISTER"); exit(EXIT_FAILURE); } /* Create a thread that will process the userfaultfd events */ ret = pthread_create(&thr, NULL, fault_handler_thread, (void *) uffd); if (ret != 0) { fprintf(stderr, "pthread_create(): Error. Returned %d\n", ret); exit(EXIT_FAILURE); } } /* * Assumption: the signal was delivered while userspace was in transactional or * suspended state, i.e. uc->uc_link != NULL. */ void signal_handler(int signo, siginfo_t *si, void *uc) { ucontext_t *ucp = uc; /* Skip 'trap' after returning, otherwise we get a SIGTRAP again */ ucp->uc_link->uc_mcontext.regs->nip += 4; ucp->uc_mcontext.v_regs = get_uf_mem(sizeof(elf_vrreg_t), ucp->uc_mcontext.v_regs); ucp->uc_link->uc_mcontext.v_regs = get_uf_mem(sizeof(elf_vrreg_t), ucp->uc_link->uc_mcontext.v_regs); ucp->uc_link = get_uf_mem(sizeof(ucontext_t), ucp->uc_link); } bool have_userfaultfd(void) { long rc; errno = 0; rc = syscall(__NR_userfaultfd, -1); return rc == 0 || errno != ENOSYS; } int tm_signal_pagefault(void) { struct sigaction sa; stack_t ss; SKIP_IF(!have_htm()); SKIP_IF(htm_is_synthetic()); SKIP_IF(!have_userfaultfd()); setup_uf_mem(); /* * Set an alternative stack that will generate a page fault when the * signal is raised. The page fault will be treated via userfaultfd, * i.e. via fault_handler_thread. */ ss.ss_sp = get_uf_mem(SIGSTKSZ, NULL); ss.ss_size = SIGSTKSZ; ss.ss_flags = 0; if (sigaltstack(&ss, NULL) == -1) { perror("sigaltstack() failed"); exit(EXIT_FAILURE); } sa.sa_flags = SA_SIGINFO | SA_ONSTACK; sa.sa_sigaction = signal_handler; if (sigaction(SIGTRAP, &sa, NULL) == -1) { perror("sigaction() failed"); exit(EXIT_FAILURE); } /* Trigger a SIGTRAP in transactional state */ asm __volatile__( "tbegin.;" "beq 1f;" "trap;" "1: ;" : : : "memory"); /* Trigger a SIGTRAP in suspended state */ asm __volatile__( "tbegin.;" "beq 1f;" "tsuspend.;" "trap;" "tresume.;" "1: ;" : : : "memory"); return EXIT_SUCCESS; } int main(int argc, char **argv) { /* * Depending on kernel config, the TM Bad Thing might not result in a * crash, instead the kernel never returns control back to userspace, so * set a tight timeout. If the test passes it completes almost * immediately. */ test_harness_set_timeout(2); return test_harness(tm_signal_pagefault, "tm_signal_pagefault"); } |