Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
/* SPDX-License-Identifier: GPL-2.0-or-later */
/* internal.h: mm/ internal definitions
 *
 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 */
#ifndef __MM_INTERNAL_H
#define __MM_INTERNAL_H

#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/tracepoint-defs.h>

struct folio_batch;

/*
 * The set of flags that only affect watermark checking and reclaim
 * behaviour. This is used by the MM to obey the caller constraints
 * about IO, FS and watermark checking while ignoring placement
 * hints such as HIGHMEM usage.
 */
#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
			__GFP_NOLOCKDEP)

/* The GFP flags allowed during early boot */
#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))

/* Control allocation cpuset and node placement constraints */
#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)

/* Do not use these with a slab allocator */
#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)

/*
 * Different from WARN_ON_ONCE(), no warning will be issued
 * when we specify __GFP_NOWARN.
 */
#define WARN_ON_ONCE_GFP(cond, gfp)	({				\
	static bool __section(".data.once") __warned;			\
	int __ret_warn_once = !!(cond);					\
									\
	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
		__warned = true;					\
		WARN_ON(1);						\
	}								\
	unlikely(__ret_warn_once);					\
})

void page_writeback_init(void);

/*
 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit
 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
 */
#define COMPOUND_MAPPED		0x800000
#define FOLIO_PAGES_MAPPED	(COMPOUND_MAPPED - 1)

/*
 * Flags passed to __show_mem() and show_free_areas() to suppress output in
 * various contexts.
 */
#define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */

/*
 * How many individual pages have an elevated _mapcount.  Excludes
 * the folio's entire_mapcount.
 */
static inline int folio_nr_pages_mapped(struct folio *folio)
{
	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
}

static inline void *folio_raw_mapping(struct folio *folio)
{
	unsigned long mapping = (unsigned long)folio->mapping;

	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
}

void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
						int nr_throttled);
static inline void acct_reclaim_writeback(struct folio *folio)
{
	pg_data_t *pgdat = folio_pgdat(folio);
	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);

	if (nr_throttled)
		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
}

static inline void wake_throttle_isolated(pg_data_t *pgdat)
{
	wait_queue_head_t *wqh;

	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
	if (waitqueue_active(wqh))
		wake_up(wqh);
}

vm_fault_t do_swap_page(struct vm_fault *vmf);
void folio_rotate_reclaimable(struct folio *folio);
bool __folio_end_writeback(struct folio *folio);
void deactivate_file_folio(struct folio *folio);
void folio_activate(struct folio *folio);

void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
		   struct vm_area_struct *start_vma, unsigned long floor,
		   unsigned long ceiling, bool mm_wr_locked);
void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);

struct zap_details;
void unmap_page_range(struct mmu_gather *tlb,
			     struct vm_area_struct *vma,
			     unsigned long addr, unsigned long end,
			     struct zap_details *details);

void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
		unsigned int order);
void force_page_cache_ra(struct readahead_control *, unsigned long nr);
static inline void force_page_cache_readahead(struct address_space *mapping,
		struct file *file, pgoff_t index, unsigned long nr_to_read)
{
	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
	force_page_cache_ra(&ractl, nr_to_read);
}

unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
void filemap_free_folio(struct address_space *mapping, struct folio *folio);
int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
		loff_t end);
long invalidate_inode_page(struct page *page);
unsigned long mapping_try_invalidate(struct address_space *mapping,
		pgoff_t start, pgoff_t end, unsigned long *nr_failed);

/**
 * folio_evictable - Test whether a folio is evictable.
 * @folio: The folio to test.
 *
 * Test whether @folio is evictable -- i.e., should be placed on
 * active/inactive lists vs unevictable list.
 *
 * Reasons folio might not be evictable:
 * 1. folio's mapping marked unevictable
 * 2. One of the pages in the folio is part of an mlocked VMA
 */
static inline bool folio_evictable(struct folio *folio)
{
	bool ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(folio_mapping(folio)) &&
			!folio_test_mlocked(folio);
	rcu_read_unlock();
	return ret;
}

/*
 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
 * a count of one.
 */
static inline void set_page_refcounted(struct page *page)
{
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(page_ref_count(page), page);
	set_page_count(page, 1);
}

/*
 * Return true if a folio needs ->release_folio() calling upon it.
 */
static inline bool folio_needs_release(struct folio *folio)
{
	struct address_space *mapping = folio_mapping(folio);

	return folio_has_private(folio) ||
		(mapping && mapping_release_always(mapping));
}

extern unsigned long highest_memmap_pfn;

/*
 * Maximum number of reclaim retries without progress before the OOM
 * killer is consider the only way forward.
 */
#define MAX_RECLAIM_RETRIES 16

/*
 * in mm/vmscan.c:
 */
bool isolate_lru_page(struct page *page);
bool folio_isolate_lru(struct folio *folio);
void putback_lru_page(struct page *page);
void folio_putback_lru(struct folio *folio);
extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);

/*
 * in mm/rmap.c:
 */
pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);

/*
 * in mm/page_alloc.c
 */
#define K(x) ((x) << (PAGE_SHIFT-10))

extern char * const zone_names[MAX_NR_ZONES];

/* perform sanity checks on struct pages being allocated or freed */
DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);

extern int min_free_kbytes;

void setup_per_zone_wmarks(void);
void calculate_min_free_kbytes(void);
int __meminit init_per_zone_wmark_min(void);
void page_alloc_sysctl_init(void);

/*
 * Structure for holding the mostly immutable allocation parameters passed
 * between functions involved in allocations, including the alloc_pages*
 * family of functions.
 *
 * nodemask, migratetype and highest_zoneidx are initialized only once in
 * __alloc_pages() and then never change.
 *
 * zonelist, preferred_zone and highest_zoneidx are set first in
 * __alloc_pages() for the fast path, and might be later changed
 * in __alloc_pages_slowpath(). All other functions pass the whole structure
 * by a const pointer.
 */
struct alloc_context {
	struct zonelist *zonelist;
	nodemask_t *nodemask;
	struct zoneref *preferred_zoneref;
	int migratetype;

	/*
	 * highest_zoneidx represents highest usable zone index of
	 * the allocation request. Due to the nature of the zone,
	 * memory on lower zone than the highest_zoneidx will be
	 * protected by lowmem_reserve[highest_zoneidx].
	 *
	 * highest_zoneidx is also used by reclaim/compaction to limit
	 * the target zone since higher zone than this index cannot be
	 * usable for this allocation request.
	 */
	enum zone_type highest_zoneidx;
	bool spread_dirty_pages;
};

/*
 * This function returns the order of a free page in the buddy system. In
 * general, page_zone(page)->lock must be held by the caller to prevent the
 * page from being allocated in parallel and returning garbage as the order.
 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
 * page cannot be allocated or merged in parallel. Alternatively, it must
 * handle invalid values gracefully, and use buddy_order_unsafe() below.
 */
static inline unsigned int buddy_order(struct page *page)
{
	/* PageBuddy() must be checked by the caller */
	return page_private(page);
}

/*
 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
 * PageBuddy() should be checked first by the caller to minimize race window,
 * and invalid values must be handled gracefully.
 *
 * READ_ONCE is used so that if the caller assigns the result into a local
 * variable and e.g. tests it for valid range before using, the compiler cannot
 * decide to remove the variable and inline the page_private(page) multiple
 * times, potentially observing different values in the tests and the actual
 * use of the result.
 */
#define buddy_order_unsafe(page)	READ_ONCE(page_private(page))

/*
 * This function checks whether a page is free && is the buddy
 * we can coalesce a page and its buddy if
 * (a) the buddy is not in a hole (check before calling!) &&
 * (b) the buddy is in the buddy system &&
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
 *
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 *
 * For recording page's order, we use page_private(page).
 */
static inline bool page_is_buddy(struct page *page, struct page *buddy,
				 unsigned int order)
{
	if (!page_is_guard(buddy) && !PageBuddy(buddy))
		return false;

	if (buddy_order(buddy) != order)
		return false;

	/*
	 * zone check is done late to avoid uselessly calculating
	 * zone/node ids for pages that could never merge.
	 */
	if (page_zone_id(page) != page_zone_id(buddy))
		return false;

	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

	return true;
}

/*
 * Locate the struct page for both the matching buddy in our
 * pair (buddy1) and the combined O(n+1) page they form (page).
 *
 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 * the following equation:
 *     B2 = B1 ^ (1 << O)
 * For example, if the starting buddy (buddy2) is #8 its order
 * 1 buddy is #10:
 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 *
 * 2) Any buddy B will have an order O+1 parent P which
 * satisfies the following equation:
 *     P = B & ~(1 << O)
 *
 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 */
static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
{
	return page_pfn ^ (1 << order);
}

/*
 * Find the buddy of @page and validate it.
 * @page: The input page
 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
 *       function is used in the performance-critical __free_one_page().
 * @order: The order of the page
 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
 *             page_to_pfn().
 *
 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
 * not the same as @page. The validation is necessary before use it.
 *
 * Return: the found buddy page or NULL if not found.
 */
static inline struct page *find_buddy_page_pfn(struct page *page,
			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
{
	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
	struct page *buddy;

	buddy = page + (__buddy_pfn - pfn);
	if (buddy_pfn)
		*buddy_pfn = __buddy_pfn;

	if (page_is_buddy(page, buddy, order))
		return buddy;
	return NULL;
}

extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone);

static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	if (zone->contiguous)
		return pfn_to_page(start_pfn);

	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
}

void set_zone_contiguous(struct zone *zone);

static inline void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

extern int __isolate_free_page(struct page *page, unsigned int order);
extern void __putback_isolated_page(struct page *page, unsigned int order,
				    int mt);
extern void memblock_free_pages(struct page *page, unsigned long pfn,
					unsigned int order);
extern void __free_pages_core(struct page *page, unsigned int order);

/*
 * This will have no effect, other than possibly generating a warning, if the
 * caller passes in a non-large folio.
 */
static inline void folio_set_order(struct folio *folio, unsigned int order)
{
	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
		return;

	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
#ifdef CONFIG_64BIT
	folio->_folio_nr_pages = 1U << order;
#endif
}

void folio_undo_large_rmappable(struct folio *folio);

static inline void prep_compound_head(struct page *page, unsigned int order)
{
	struct folio *folio = (struct folio *)page;

	folio_set_order(folio, order);
	atomic_set(&folio->_entire_mapcount, -1);
	atomic_set(&folio->_nr_pages_mapped, 0);
	atomic_set(&folio->_pincount, 0);
}

static inline void prep_compound_tail(struct page *head, int tail_idx)
{
	struct page *p = head + tail_idx;

	p->mapping = TAIL_MAPPING;
	set_compound_head(p, head);
	set_page_private(p, 0);
}

extern void prep_compound_page(struct page *page, unsigned int order);

extern void post_alloc_hook(struct page *page, unsigned int order,
					gfp_t gfp_flags);
extern int user_min_free_kbytes;

extern void free_unref_page(struct page *page, unsigned int order);
extern void free_unref_page_list(struct list_head *list);

extern void zone_pcp_reset(struct zone *zone);
extern void zone_pcp_disable(struct zone *zone);
extern void zone_pcp_enable(struct zone *zone);
extern void zone_pcp_init(struct zone *zone);

extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
			  phys_addr_t min_addr,
			  int nid, bool exact_nid);

void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
		unsigned long, enum meminit_context, struct vmem_altmap *, int);


int split_free_page(struct page *free_page,
			unsigned int order, unsigned long split_pfn_offset);

#if defined CONFIG_COMPACTION || defined CONFIG_CMA

/*
 * in mm/compaction.c
 */
/*
 * compact_control is used to track pages being migrated and the free pages
 * they are being migrated to during memory compaction. The free_pfn starts
 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 * are moved to the end of a zone during a compaction run and the run
 * completes when free_pfn <= migrate_pfn
 */
struct compact_control {
	struct list_head freepages;	/* List of free pages to migrate to */
	struct list_head migratepages;	/* List of pages being migrated */
	unsigned int nr_freepages;	/* Number of isolated free pages */
	unsigned int nr_migratepages;	/* Number of pages to migrate */
	unsigned long free_pfn;		/* isolate_freepages search base */
	/*
	 * Acts as an in/out parameter to page isolation for migration.
	 * isolate_migratepages uses it as a search base.
	 * isolate_migratepages_block will update the value to the next pfn
	 * after the last isolated one.
	 */
	unsigned long migrate_pfn;
	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
	struct zone *zone;
	unsigned long total_migrate_scanned;
	unsigned long total_free_scanned;
	unsigned short fast_search_fail;/* failures to use free list searches */
	short search_order;		/* order to start a fast search at */
	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
	int order;			/* order a direct compactor needs */
	int migratetype;		/* migratetype of direct compactor */
	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
	const int highest_zoneidx;	/* zone index of a direct compactor */
	enum migrate_mode mode;		/* Async or sync migration mode */
	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
	bool direct_compaction;		/* False from kcompactd or /proc/... */
	bool proactive_compaction;	/* kcompactd proactive compaction */
	bool whole_zone;		/* Whole zone should/has been scanned */
	bool contended;			/* Signal lock contention */
	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
					 * when there are potentially transient
					 * isolation or migration failures to
					 * ensure forward progress.
					 */
	bool alloc_contig;		/* alloc_contig_range allocation */
};

/*
 * Used in direct compaction when a page should be taken from the freelists
 * immediately when one is created during the free path.
 */
struct capture_control {
	struct compact_control *cc;
	struct page *page;
};

unsigned long
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn);
int
isolate_migratepages_range(struct compact_control *cc,
			   unsigned long low_pfn, unsigned long end_pfn);

int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end);

/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
void init_cma_reserved_pageblock(struct page *page);

#endif /* CONFIG_COMPACTION || CONFIG_CMA */

int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal);

static inline bool free_area_empty(struct free_area *area, int migratetype)
{
	return list_empty(&area->free_list[migratetype]);
}

/*
 * These three helpers classifies VMAs for virtual memory accounting.
 */

/*
 * Executable code area - executable, not writable, not stack
 */
static inline bool is_exec_mapping(vm_flags_t flags)
{
	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
}

/*
 * Stack area (including shadow stacks)
 *
 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
 * do_mmap() forbids all other combinations.
 */
static inline bool is_stack_mapping(vm_flags_t flags)
{
	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
}

/*
 * Data area - private, writable, not stack
 */
static inline bool is_data_mapping(vm_flags_t flags)
{
	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
}

/* mm/util.c */
struct anon_vma *folio_anon_vma(struct folio *folio);

#ifdef CONFIG_MMU
void unmap_mapping_folio(struct folio *folio);
extern long populate_vma_page_range(struct vm_area_struct *vma,
		unsigned long start, unsigned long end, int *locked);
extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
		unsigned long end, bool write, int *locked);
extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
			       unsigned long bytes);
/*
 * mlock_vma_folio() and munlock_vma_folio():
 * should be called with vma's mmap_lock held for read or write,
 * under page table lock for the pte/pmd being added or removed.
 *
 * mlock is usually called at the end of page_add_*_rmap(), munlock at
 * the end of page_remove_rmap(); but new anon folios are managed by
 * folio_add_lru_vma() calling mlock_new_folio().
 *
 * @compound is used to include pmd mappings of THPs, but filter out
 * pte mappings of THPs, which cannot be consistently counted: a pte
 * mapping of the THP head cannot be distinguished by the page alone.
 */
void mlock_folio(struct folio *folio);
static inline void mlock_vma_folio(struct folio *folio,
			struct vm_area_struct *vma, bool compound)
{
	/*
	 * The VM_SPECIAL check here serves two purposes.
	 * 1) VM_IO check prevents migration from double-counting during mlock.
	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
	 *    is never left set on a VM_SPECIAL vma, there is an interval while
	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
	 */
	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
	    (compound || !folio_test_large(folio)))
		mlock_folio(folio);
}

void munlock_folio(struct folio *folio);
static inline void munlock_vma_folio(struct folio *folio,
			struct vm_area_struct *vma, bool compound)
{
	if (unlikely(vma->vm_flags & VM_LOCKED) &&
	    (compound || !folio_test_large(folio)))
		munlock_folio(folio);
}

void mlock_new_folio(struct folio *folio);
bool need_mlock_drain(int cpu);
void mlock_drain_local(void);
void mlock_drain_remote(int cpu);

extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);

/*
 * Return the start of user virtual address at the specific offset within
 * a vma.
 */
static inline unsigned long
vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
		  struct vm_area_struct *vma)
{
	unsigned long address;

	if (pgoff >= vma->vm_pgoff) {
		address = vma->vm_start +
			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
		/* Check for address beyond vma (or wrapped through 0?) */
		if (address < vma->vm_start || address >= vma->vm_end)
			address = -EFAULT;
	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
		/* Test above avoids possibility of wrap to 0 on 32-bit */
		address = vma->vm_start;
	} else {
		address = -EFAULT;
	}
	return address;
}

/*
 * Return the start of user virtual address of a page within a vma.
 * Returns -EFAULT if all of the page is outside the range of vma.
 * If page is a compound head, the entire compound page is considered.
 */
static inline unsigned long
vma_address(struct page *page, struct vm_area_struct *vma)
{
	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
	return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
}

/*
 * Then at what user virtual address will none of the range be found in vma?
 * Assumes that vma_address() already returned a good starting address.
 */
static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
{
	struct vm_area_struct *vma = pvmw->vma;
	pgoff_t pgoff;
	unsigned long address;

	/* Common case, plus ->pgoff is invalid for KSM */
	if (pvmw->nr_pages == 1)
		return pvmw->address + PAGE_SIZE;

	pgoff = pvmw->pgoff + pvmw->nr_pages;
	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
	/* Check for address beyond vma (or wrapped through 0?) */
	if (address < vma->vm_start || address > vma->vm_end)
		address = vma->vm_end;
	return address;
}

static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
						    struct file *fpin)
{
	int flags = vmf->flags;

	if (fpin)
		return fpin;

	/*
	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
	 * anything, so we only pin the file and drop the mmap_lock if only
	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
	 */
	if (fault_flag_allow_retry_first(flags) &&
	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
		fpin = get_file(vmf->vma->vm_file);
		release_fault_lock(vmf);
	}
	return fpin;
}
#else /* !CONFIG_MMU */
static inline void unmap_mapping_folio(struct folio *folio) { }
static inline void mlock_new_folio(struct folio *folio) { }
static inline bool need_mlock_drain(int cpu) { return false; }
static inline void mlock_drain_local(void) { }
static inline void mlock_drain_remote(int cpu) { }
static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
{
}
#endif /* !CONFIG_MMU */

/* Memory initialisation debug and verification */
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
DECLARE_STATIC_KEY_TRUE(deferred_pages);

bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

enum mminit_level {
	MMINIT_WARNING,
	MMINIT_VERIFY,
	MMINIT_TRACE
};

#ifdef CONFIG_DEBUG_MEMORY_INIT

extern int mminit_loglevel;

#define mminit_dprintk(level, prefix, fmt, arg...) \
do { \
	if (level < mminit_loglevel) { \
		if (level <= MMINIT_WARNING) \
			pr_warn("mminit::" prefix " " fmt, ##arg);	\
		else \
			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
	} \
} while (0)

extern void mminit_verify_pageflags_layout(void);
extern void mminit_verify_zonelist(void);
#else

static inline void mminit_dprintk(enum mminit_level level,
				const char *prefix, const char *fmt, ...)
{
}

static inline void mminit_verify_pageflags_layout(void)
{
}

static inline void mminit_verify_zonelist(void)
{
}
#endif /* CONFIG_DEBUG_MEMORY_INIT */

#define NODE_RECLAIM_NOSCAN	-2
#define NODE_RECLAIM_FULL	-1
#define NODE_RECLAIM_SOME	0
#define NODE_RECLAIM_SUCCESS	1

#ifdef CONFIG_NUMA
extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
extern int find_next_best_node(int node, nodemask_t *used_node_mask);
#else
static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
				unsigned int order)
{
	return NODE_RECLAIM_NOSCAN;
}
static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
{
	return NUMA_NO_NODE;
}
#endif

/*
 * mm/memory-failure.c
 */
extern int hwpoison_filter(struct page *p);

extern u32 hwpoison_filter_dev_major;
extern u32 hwpoison_filter_dev_minor;
extern u64 hwpoison_filter_flags_mask;
extern u64 hwpoison_filter_flags_value;
extern u64 hwpoison_filter_memcg;
extern u32 hwpoison_filter_enable;

extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
        unsigned long, unsigned long,
        unsigned long, unsigned long);

extern void set_pageblock_order(void);
unsigned long reclaim_pages(struct list_head *folio_list);
unsigned int reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *folio_list);
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
#define ALLOC_WMARK_MIN		WMARK_MIN
#define ALLOC_WMARK_LOW		WMARK_LOW
#define ALLOC_WMARK_HIGH	WMARK_HIGH
#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */

/* Mask to get the watermark bits */
#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)

/*
 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
 * cannot assume a reduced access to memory reserves is sufficient for
 * !MMU
 */
#ifdef CONFIG_MMU
#define ALLOC_OOM		0x08
#else
#define ALLOC_OOM		ALLOC_NO_WATERMARKS
#endif

#define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
				       * to 25% of the min watermark or
				       * 62.5% if __GFP_HIGH is set.
				       */
#define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
				       * of the min watermark.
				       */
#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
#ifdef CONFIG_ZONE_DMA32
#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
#else
#define ALLOC_NOFRAGMENT	  0x0
#endif
#define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
#define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */

/* Flags that allow allocations below the min watermark. */
#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)

enum ttu_flags;
struct tlbflush_unmap_batch;


/*
 * only for MM internal work items which do not depend on
 * any allocations or locks which might depend on allocations
 */
extern struct workqueue_struct *mm_percpu_wq;

#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
void try_to_unmap_flush(void);
void try_to_unmap_flush_dirty(void);
void flush_tlb_batched_pending(struct mm_struct *mm);
#else
static inline void try_to_unmap_flush(void)
{
}
static inline void try_to_unmap_flush_dirty(void)
{
}
static inline void flush_tlb_batched_pending(struct mm_struct *mm)
{
}
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */

extern const struct trace_print_flags pageflag_names[];
extern const struct trace_print_flags pagetype_names[];
extern const struct trace_print_flags vmaflag_names[];
extern const struct trace_print_flags gfpflag_names[];

static inline bool is_migrate_highatomic(enum migratetype migratetype)
{
	return migratetype == MIGRATE_HIGHATOMIC;
}

static inline bool is_migrate_highatomic_page(struct page *page)
{
	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
}

void setup_zone_pageset(struct zone *zone);

struct migration_target_control {
	int nid;		/* preferred node id */
	nodemask_t *nmask;
	gfp_t gfp_mask;
};

/*
 * mm/filemap.c
 */
size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
			      struct folio *folio, loff_t fpos, size_t size);

/*
 * mm/vmalloc.c
 */
#ifdef CONFIG_MMU
void __init vmalloc_init(void);
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
                pgprot_t prot, struct page **pages, unsigned int page_shift);
#else
static inline void vmalloc_init(void)
{
}

static inline
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
                pgprot_t prot, struct page **pages, unsigned int page_shift)
{
	return -EINVAL;
}
#endif

int __must_check __vmap_pages_range_noflush(unsigned long addr,
			       unsigned long end, pgprot_t prot,
			       struct page **pages, unsigned int page_shift);

void vunmap_range_noflush(unsigned long start, unsigned long end);

void __vunmap_range_noflush(unsigned long start, unsigned long end);

int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
		      unsigned long addr, int page_nid, int *flags);

void free_zone_device_page(struct page *page);
int migrate_device_coherent_page(struct page *page);

/*
 * mm/gup.c
 */
struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
int __must_check try_grab_page(struct page *page, unsigned int flags);

/*
 * mm/huge_memory.c
 */
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
				   unsigned long addr, pmd_t *pmd,
				   unsigned int flags);

enum {
	/* mark page accessed */
	FOLL_TOUCH = 1 << 16,
	/* a retry, previous pass started an IO */
	FOLL_TRIED = 1 << 17,
	/* we are working on non-current tsk/mm */
	FOLL_REMOTE = 1 << 18,
	/* pages must be released via unpin_user_page */
	FOLL_PIN = 1 << 19,
	/* gup_fast: prevent fall-back to slow gup */
	FOLL_FAST_ONLY = 1 << 20,
	/* allow unlocking the mmap lock */
	FOLL_UNLOCKABLE = 1 << 21,
	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
	FOLL_MADV_POPULATE = 1 << 22,
};

#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
			    FOLL_MADV_POPULATE)

/*
 * Indicates for which pages that are write-protected in the page table,
 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
 * GUP pin will remain consistent with the pages mapped into the page tables
 * of the MM.
 *
 * Temporary unmapping of PageAnonExclusive() pages or clearing of
 * PageAnonExclusive() has to protect against concurrent GUP:
 * * Ordinary GUP: Using the PT lock
 * * GUP-fast and fork(): mm->write_protect_seq
 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
 *    page_try_share_anon_rmap()
 *
 * Must be called with the (sub)page that's actually referenced via the
 * page table entry, which might not necessarily be the head page for a
 * PTE-mapped THP.
 *
 * If the vma is NULL, we're coming from the GUP-fast path and might have
 * to fallback to the slow path just to lookup the vma.
 */
static inline bool gup_must_unshare(struct vm_area_struct *vma,
				    unsigned int flags, struct page *page)
{
	/*
	 * FOLL_WRITE is implicitly handled correctly as the page table entry
	 * has to be writable -- and if it references (part of) an anonymous
	 * folio, that part is required to be marked exclusive.
	 */
	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
		return false;
	/*
	 * Note: PageAnon(page) is stable until the page is actually getting
	 * freed.
	 */
	if (!PageAnon(page)) {
		/*
		 * We only care about R/O long-term pining: R/O short-term
		 * pinning does not have the semantics to observe successive
		 * changes through the process page tables.
		 */
		if (!(flags & FOLL_LONGTERM))
			return false;

		/* We really need the vma ... */
		if (!vma)
			return true;

		/*
		 * ... because we only care about writable private ("COW")
		 * mappings where we have to break COW early.
		 */
		return is_cow_mapping(vma->vm_flags);
	}

	/* Paired with a memory barrier in page_try_share_anon_rmap(). */
	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
		smp_rmb();

	/*
	 * During GUP-fast we might not get called on the head page for a
	 * hugetlb page that is mapped using cont-PTE, because GUP-fast does
	 * not work with the abstracted hugetlb PTEs that always point at the
	 * head page. For hugetlb, PageAnonExclusive only applies on the head
	 * page (as it cannot be partially COW-shared), so lookup the head page.
	 */
	if (unlikely(!PageHead(page) && PageHuge(page)))
		page = compound_head(page);

	/*
	 * Note that PageKsm() pages cannot be exclusive, and consequently,
	 * cannot get pinned.
	 */
	return !PageAnonExclusive(page);
}

extern bool mirrored_kernelcore;
extern bool memblock_has_mirror(void);

static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
{
	/*
	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
	 * enablements, because when without soft-dirty being compiled in,
	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
	 * will be constantly true.
	 */
	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
		return false;

	/*
	 * Soft-dirty is kind of special: its tracking is enabled when the
	 * vma flags not set.
	 */
	return !(vma->vm_flags & VM_SOFTDIRTY);
}

static inline void vma_iter_config(struct vma_iterator *vmi,
		unsigned long index, unsigned long last)
{
	MAS_BUG_ON(&vmi->mas, vmi->mas.node != MAS_START &&
		   (vmi->mas.index > index || vmi->mas.last < index));
	__mas_set_range(&vmi->mas, index, last - 1);
}

/*
 * VMA Iterator functions shared between nommu and mmap
 */
static inline int vma_iter_prealloc(struct vma_iterator *vmi,
		struct vm_area_struct *vma)
{
	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
}

static inline void vma_iter_clear(struct vma_iterator *vmi)
{
	mas_store_prealloc(&vmi->mas, NULL);
}

static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
			unsigned long start, unsigned long end, gfp_t gfp)
{
	__mas_set_range(&vmi->mas, start, end - 1);
	mas_store_gfp(&vmi->mas, NULL, gfp);
	if (unlikely(mas_is_err(&vmi->mas)))
		return -ENOMEM;

	return 0;
}

static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
{
	return mas_walk(&vmi->mas);
}

/* Store a VMA with preallocated memory */
static inline void vma_iter_store(struct vma_iterator *vmi,
				  struct vm_area_struct *vma)
{

#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
	if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
			vmi->mas.index > vma->vm_start)) {
		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
			vmi->mas.index, vma->vm_start, vma->vm_start,
			vma->vm_end, vmi->mas.index, vmi->mas.last);
	}
	if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
			vmi->mas.last <  vma->vm_start)) {
		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
		       vmi->mas.index, vmi->mas.last);
	}
#endif

	if (vmi->mas.node != MAS_START &&
	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
		vma_iter_invalidate(vmi);

	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
	mas_store_prealloc(&vmi->mas, vma);
}

static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
			struct vm_area_struct *vma, gfp_t gfp)
{
	if (vmi->mas.node != MAS_START &&
	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
		vma_iter_invalidate(vmi);

	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
	mas_store_gfp(&vmi->mas, vma, gfp);
	if (unlikely(mas_is_err(&vmi->mas)))
		return -ENOMEM;

	return 0;
}

/*
 * VMA lock generalization
 */
struct vma_prepare {
	struct vm_area_struct *vma;
	struct vm_area_struct *adj_next;
	struct file *file;
	struct address_space *mapping;
	struct anon_vma *anon_vma;
	struct vm_area_struct *insert;
	struct vm_area_struct *remove;
	struct vm_area_struct *remove2;
};
#endif	/* __MM_INTERNAL_H */