Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018 Intel Corporation */ #include <linux/bitfield.h> #include "igc_phy.h" /** * igc_check_reset_block - Check if PHY reset is blocked * @hw: pointer to the HW structure * * Read the PHY management control register and check whether a PHY reset * is blocked. If a reset is not blocked return 0, otherwise * return IGC_ERR_BLK_PHY_RESET (12). */ s32 igc_check_reset_block(struct igc_hw *hw) { u32 manc; manc = rd32(IGC_MANC); return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ? IGC_ERR_BLK_PHY_RESET : 0; } /** * igc_get_phy_id - Retrieve the PHY ID and revision * @hw: pointer to the HW structure * * Reads the PHY registers and stores the PHY ID and possibly the PHY * revision in the hardware structure. */ s32 igc_get_phy_id(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; s32 ret_val = 0; u16 phy_id; ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); if (ret_val) goto out; phy->id = (u32)(phy_id << 16); usleep_range(200, 500); ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); if (ret_val) goto out; phy->id |= (u32)(phy_id & PHY_REVISION_MASK); phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); out: return ret_val; } /** * igc_phy_has_link - Polls PHY for link * @hw: pointer to the HW structure * @iterations: number of times to poll for link * @usec_interval: delay between polling attempts * @success: pointer to whether polling was successful or not * * Polls the PHY status register for link, 'iterations' number of times. */ s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations, u32 usec_interval, bool *success) { u16 i, phy_status; s32 ret_val = 0; for (i = 0; i < iterations; i++) { /* Some PHYs require the PHY_STATUS register to be read * twice due to the link bit being sticky. No harm doing * it across the board. */ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val && usec_interval > 0) { /* If the first read fails, another entity may have * ownership of the resources, wait and try again to * see if they have relinquished the resources yet. */ if (usec_interval >= 1000) mdelay(usec_interval / 1000); else udelay(usec_interval); } ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; if (phy_status & MII_SR_LINK_STATUS) break; if (usec_interval >= 1000) mdelay(usec_interval / 1000); else udelay(usec_interval); } *success = (i < iterations) ? true : false; return ret_val; } /** * igc_power_up_phy_copper - Restore copper link in case of PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, restore the link to previous settings. */ void igc_power_up_phy_copper(struct igc_hw *hw) { u16 mii_reg = 0; /* The PHY will retain its settings across a power down/up cycle */ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); mii_reg &= ~MII_CR_POWER_DOWN; hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); } /** * igc_power_down_phy_copper - Power down copper PHY * @hw: pointer to the HW structure * * Power down PHY to save power when interface is down and wake on lan * is not enabled. */ void igc_power_down_phy_copper(struct igc_hw *hw) { u16 mii_reg = 0; /* The PHY will retain its settings across a power down/up cycle */ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); mii_reg |= MII_CR_POWER_DOWN; /* Temporary workaround - should be removed when PHY will implement * IEEE registers as properly */ /* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/ usleep_range(1000, 2000); } /** * igc_check_downshift - Checks whether a downshift in speed occurred * @hw: pointer to the HW structure * * A downshift is detected by querying the PHY link health. */ void igc_check_downshift(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; /* speed downshift not supported */ phy->speed_downgraded = false; } /** * igc_phy_hw_reset - PHY hardware reset * @hw: pointer to the HW structure * * Verify the reset block is not blocking us from resetting. Acquire * semaphore (if necessary) and read/set/write the device control reset * bit in the PHY. Wait the appropriate delay time for the device to * reset and release the semaphore (if necessary). */ s32 igc_phy_hw_reset(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; u32 phpm = 0, timeout = 10000; s32 ret_val; u32 ctrl; ret_val = igc_check_reset_block(hw); if (ret_val) { ret_val = 0; goto out; } ret_val = phy->ops.acquire(hw); if (ret_val) goto out; phpm = rd32(IGC_I225_PHPM); ctrl = rd32(IGC_CTRL); wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST); wrfl(); udelay(phy->reset_delay_us); wr32(IGC_CTRL, ctrl); wrfl(); /* SW should guarantee 100us for the completion of the PHY reset */ usleep_range(100, 150); do { phpm = rd32(IGC_I225_PHPM); timeout--; udelay(1); } while (!(phpm & IGC_PHY_RST_COMP) && timeout); if (!timeout) hw_dbg("Timeout is expired after a phy reset\n"); usleep_range(100, 150); phy->ops.release(hw); out: return ret_val; } /** * igc_phy_setup_autoneg - Configure PHY for auto-negotiation * @hw: pointer to the HW structure * * Reads the MII auto-neg advertisement register and/or the 1000T control * register and if the PHY is already setup for auto-negotiation, then * return successful. Otherwise, setup advertisement and flow control to * the appropriate values for the wanted auto-negotiation. */ static s32 igc_phy_setup_autoneg(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; u16 aneg_multigbt_an_ctrl = 0; u16 mii_1000t_ctrl_reg = 0; u16 mii_autoneg_adv_reg; s32 ret_val; phy->autoneg_advertised &= phy->autoneg_mask; /* Read the MII Auto-Neg Advertisement Register (Address 4). */ ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); if (ret_val) return ret_val; if (phy->autoneg_mask & ADVERTISE_1000_FULL) { /* Read the MII 1000Base-T Control Register (Address 9). */ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); if (ret_val) return ret_val; } if (phy->autoneg_mask & ADVERTISE_2500_FULL) { /* Read the MULTI GBT AN Control Register - reg 7.32 */ ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK << MMD_DEVADDR_SHIFT) | ANEG_MULTIGBT_AN_CTRL, &aneg_multigbt_an_ctrl); if (ret_val) return ret_val; } /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for * autoneg_advertised software override. Since we can advertise * a plethora of combinations, we need to check each bit * individually. */ /* First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T Control Register (Address 9). */ mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | NWAY_AR_100TX_HD_CAPS | NWAY_AR_10T_FD_CAPS | NWAY_AR_10T_HD_CAPS); mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_HALF) { hw_dbg("Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_FULL) { hw_dbg("Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_HALF) { hw_dbg("Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_FULL) { hw_dbg("Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ if (phy->autoneg_advertised & ADVERTISE_1000_HALF) hw_dbg("Advertise 1000mb Half duplex request denied!\n"); /* Do we want to advertise 1000 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { hw_dbg("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; } /* We do not allow the Phy to advertise 2500 Mb Half Duplex */ if (phy->autoneg_advertised & ADVERTISE_2500_HALF) hw_dbg("Advertise 2500mb Half duplex request denied!\n"); /* Do we want to advertise 2500 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_2500_FULL) { hw_dbg("Advertise 2500mb Full duplex\n"); aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS; } else { aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS; } /* Check for a software override of the flow control settings, and * setup the PHY advertisement registers accordingly. If * auto-negotiation is enabled, then software will have to set the * "PAUSE" bits to the correct value in the Auto-Negotiation * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- * negotiation. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * but we do not support receiving pause frames). * 3: Both Rx and Tx flow control (symmetric) are enabled. * other: No software override. The flow control configuration * in the EEPROM is used. */ switch (hw->fc.current_mode) { case igc_fc_none: /* Flow control (Rx & Tx) is completely disabled by a * software over-ride. */ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case igc_fc_rx_pause: /* Rx Flow control is enabled, and Tx Flow control is * disabled, by a software over-ride. * * Since there really isn't a way to advertise that we are * capable of Rx Pause ONLY, we will advertise that we * support both symmetric and asymmetric Rx PAUSE. Later * (in igc_config_fc_after_link_up) we will disable the * hw's ability to send PAUSE frames. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case igc_fc_tx_pause: /* Tx Flow control is enabled, and Rx Flow control is * disabled, by a software over-ride. */ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; break; case igc_fc_full: /* Flow control (both Rx and Tx) is enabled by a software * over-ride. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; default: hw_dbg("Flow control param set incorrectly\n"); return -IGC_ERR_CONFIG; } ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); if (ret_val) return ret_val; hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); if (phy->autoneg_mask & ADVERTISE_1000_FULL) ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); if (phy->autoneg_mask & ADVERTISE_2500_FULL) ret_val = phy->ops.write_reg(hw, (STANDARD_AN_REG_MASK << MMD_DEVADDR_SHIFT) | ANEG_MULTIGBT_AN_CTRL, aneg_multigbt_an_ctrl); return ret_val; } /** * igc_wait_autoneg - Wait for auto-neg completion * @hw: pointer to the HW structure * * Waits for auto-negotiation to complete or for the auto-negotiation time * limit to expire, which ever happens first. */ static s32 igc_wait_autoneg(struct igc_hw *hw) { u16 i, phy_status; s32 ret_val = 0; /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; if (phy_status & MII_SR_AUTONEG_COMPLETE) break; msleep(100); } /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation * has completed. */ return ret_val; } /** * igc_copper_link_autoneg - Setup/Enable autoneg for copper link * @hw: pointer to the HW structure * * Performs initial bounds checking on autoneg advertisement parameter, then * configure to advertise the full capability. Setup the PHY to autoneg * and restart the negotiation process between the link partner. If * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. */ static s32 igc_copper_link_autoneg(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; u16 phy_ctrl; s32 ret_val; /* Perform some bounds checking on the autoneg advertisement * parameter. */ phy->autoneg_advertised &= phy->autoneg_mask; /* If autoneg_advertised is zero, we assume it was not defaulted * by the calling code so we set to advertise full capability. */ if (phy->autoneg_advertised == 0) phy->autoneg_advertised = phy->autoneg_mask; hw_dbg("Reconfiguring auto-neg advertisement params\n"); ret_val = igc_phy_setup_autoneg(hw); if (ret_val) { hw_dbg("Error Setting up Auto-Negotiation\n"); goto out; } hw_dbg("Restarting Auto-Neg\n"); /* Restart auto-negotiation by setting the Auto Neg Enable bit and * the Auto Neg Restart bit in the PHY control register. */ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); if (ret_val) goto out; phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); if (ret_val) goto out; /* Does the user want to wait for Auto-Neg to complete here, or * check at a later time (for example, callback routine). */ if (phy->autoneg_wait_to_complete) { ret_val = igc_wait_autoneg(hw); if (ret_val) { hw_dbg("Error while waiting for autoneg to complete\n"); goto out; } } hw->mac.get_link_status = true; out: return ret_val; } /** * igc_setup_copper_link - Configure copper link settings * @hw: pointer to the HW structure * * Calls the appropriate function to configure the link for auto-neg or forced * speed and duplex. Then we check for link, once link is established calls * to configure collision distance and flow control are called. If link is * not established, we return -IGC_ERR_PHY (-2). */ s32 igc_setup_copper_link(struct igc_hw *hw) { s32 ret_val = 0; bool link; if (hw->mac.autoneg) { /* Setup autoneg and flow control advertisement and perform * autonegotiation. */ ret_val = igc_copper_link_autoneg(hw); if (ret_val) goto out; } else { /* PHY will be set to 10H, 10F, 100H or 100F * depending on user settings. */ hw_dbg("Forcing Speed and Duplex\n"); ret_val = hw->phy.ops.force_speed_duplex(hw); if (ret_val) { hw_dbg("Error Forcing Speed and Duplex\n"); goto out; } } /* Check link status. Wait up to 100 microseconds for link to become * valid. */ ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link); if (ret_val) goto out; if (link) { hw_dbg("Valid link established!!!\n"); igc_config_collision_dist(hw); ret_val = igc_config_fc_after_link_up(hw); } else { hw_dbg("Unable to establish link!!!\n"); } out: return ret_val; } /** * igc_read_phy_reg_mdic - Read MDI control register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the MDI control register in the PHY at offset and stores the * information read to data. */ static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data) { struct igc_phy_info *phy = &hw->phy; u32 i, mdic = 0; s32 ret_val = 0; if (offset > MAX_PHY_REG_ADDRESS) { hw_dbg("PHY Address %d is out of range\n", offset); ret_val = -IGC_ERR_PARAM; goto out; } /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ mdic = ((offset << IGC_MDIC_REG_SHIFT) | (phy->addr << IGC_MDIC_PHY_SHIFT) | (IGC_MDIC_OP_READ)); wr32(IGC_MDIC, mdic); /* Poll the ready bit to see if the MDI read completed * Increasing the time out as testing showed failures with * the lower time out */ for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) { udelay(50); mdic = rd32(IGC_MDIC); if (mdic & IGC_MDIC_READY) break; } if (!(mdic & IGC_MDIC_READY)) { hw_dbg("MDI Read did not complete\n"); ret_val = -IGC_ERR_PHY; goto out; } if (mdic & IGC_MDIC_ERROR) { hw_dbg("MDI Error\n"); ret_val = -IGC_ERR_PHY; goto out; } *data = (u16)mdic; out: return ret_val; } /** * igc_write_phy_reg_mdic - Write MDI control register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write to register at offset * * Writes data to MDI control register in the PHY at offset. */ static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data) { struct igc_phy_info *phy = &hw->phy; u32 i, mdic = 0; s32 ret_val = 0; if (offset > MAX_PHY_REG_ADDRESS) { hw_dbg("PHY Address %d is out of range\n", offset); ret_val = -IGC_ERR_PARAM; goto out; } /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to write the desired data. */ mdic = (((u32)data) | (offset << IGC_MDIC_REG_SHIFT) | (phy->addr << IGC_MDIC_PHY_SHIFT) | (IGC_MDIC_OP_WRITE)); wr32(IGC_MDIC, mdic); /* Poll the ready bit to see if the MDI read completed * Increasing the time out as testing showed failures with * the lower time out */ for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) { udelay(50); mdic = rd32(IGC_MDIC); if (mdic & IGC_MDIC_READY) break; } if (!(mdic & IGC_MDIC_READY)) { hw_dbg("MDI Write did not complete\n"); ret_val = -IGC_ERR_PHY; goto out; } if (mdic & IGC_MDIC_ERROR) { hw_dbg("MDI Error\n"); ret_val = -IGC_ERR_PHY; goto out; } out: return ret_val; } /** * __igc_access_xmdio_reg - Read/write XMDIO register * @hw: pointer to the HW structure * @address: XMDIO address to program * @dev_addr: device address to program * @data: pointer to value to read/write from/to the XMDIO address * @read: boolean flag to indicate read or write */ static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address, u8 dev_addr, u16 *data, bool read) { s32 ret_val; ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr); if (ret_val) return ret_val; ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address); if (ret_val) return ret_val; ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA | dev_addr); if (ret_val) return ret_val; if (read) ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data); else ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data); if (ret_val) return ret_val; /* Recalibrate the device back to 0 */ ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0); if (ret_val) return ret_val; return ret_val; } /** * igc_read_xmdio_reg - Read XMDIO register * @hw: pointer to the HW structure * @addr: XMDIO address to program * @dev_addr: device address to program * @data: value to be read from the EMI address */ static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 *data) { return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true); } /** * igc_write_xmdio_reg - Write XMDIO register * @hw: pointer to the HW structure * @addr: XMDIO address to program * @dev_addr: device address to program * @data: value to be written to the XMDIO address */ static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 data) { return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false); } /** * igc_write_phy_reg_gpy - Write GPY PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. */ s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data) { u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT; s32 ret_val; offset = offset & GPY_REG_MASK; if (!dev_addr) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = igc_write_phy_reg_mdic(hw, offset, data); hw->phy.ops.release(hw); } else { ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr, data); } return ret_val; } /** * igc_read_phy_reg_gpy - Read GPY PHY register * @hw: pointer to the HW structure * @offset: lower half is register offset to read to * upper half is MMD to use. * @data: data to read at register offset * * Acquires semaphore, if necessary, then reads the data in the PHY register * at the offset. Release any acquired semaphores before exiting. */ s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data) { u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT; s32 ret_val; offset = offset & GPY_REG_MASK; if (!dev_addr) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = igc_read_phy_reg_mdic(hw, offset, data); hw->phy.ops.release(hw); } else { ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr, data); } return ret_val; } /** * igc_read_phy_fw_version - Read gPHY firmware version * @hw: pointer to the HW structure */ u16 igc_read_phy_fw_version(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; u16 gphy_version = 0; u16 ret_val; /* NVM image version is reported as firmware version for i225 device */ ret_val = phy->ops.read_reg(hw, IGC_GPHY_VERSION, &gphy_version); if (ret_val) hw_dbg("igc_phy: read wrong gphy version\n"); return gphy_version; } |