Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c)  2018 Intel Corporation */

#include <linux/bitfield.h>
#include "igc_phy.h"

/**
 * igc_check_reset_block - Check if PHY reset is blocked
 * @hw: pointer to the HW structure
 *
 * Read the PHY management control register and check whether a PHY reset
 * is blocked.  If a reset is not blocked return 0, otherwise
 * return IGC_ERR_BLK_PHY_RESET (12).
 */
s32 igc_check_reset_block(struct igc_hw *hw)
{
	u32 manc;

	manc = rd32(IGC_MANC);

	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
		IGC_ERR_BLK_PHY_RESET : 0;
}

/**
 * igc_get_phy_id - Retrieve the PHY ID and revision
 * @hw: pointer to the HW structure
 *
 * Reads the PHY registers and stores the PHY ID and possibly the PHY
 * revision in the hardware structure.
 */
s32 igc_get_phy_id(struct igc_hw *hw)
{
	struct igc_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 phy_id;

	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
	if (ret_val)
		goto out;

	phy->id = (u32)(phy_id << 16);
	usleep_range(200, 500);
	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
	if (ret_val)
		goto out;

	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);

out:
	return ret_val;
}

/**
 * igc_phy_has_link - Polls PHY for link
 * @hw: pointer to the HW structure
 * @iterations: number of times to poll for link
 * @usec_interval: delay between polling attempts
 * @success: pointer to whether polling was successful or not
 *
 * Polls the PHY status register for link, 'iterations' number of times.
 */
s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
		     u32 usec_interval, bool *success)
{
	u16 i, phy_status;
	s32 ret_val = 0;

	for (i = 0; i < iterations; i++) {
		/* Some PHYs require the PHY_STATUS register to be read
		 * twice due to the link bit being sticky.  No harm doing
		 * it across the board.
		 */
		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
		if (ret_val && usec_interval > 0) {
			/* If the first read fails, another entity may have
			 * ownership of the resources, wait and try again to
			 * see if they have relinquished the resources yet.
			 */
			if (usec_interval >= 1000)
				mdelay(usec_interval / 1000);
			else
				udelay(usec_interval);
		}
		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_LINK_STATUS)
			break;
		if (usec_interval >= 1000)
			mdelay(usec_interval / 1000);
		else
			udelay(usec_interval);
	}

	*success = (i < iterations) ? true : false;

	return ret_val;
}

/**
 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, restore the link to previous settings.
 */
void igc_power_up_phy_copper(struct igc_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
	mii_reg &= ~MII_CR_POWER_DOWN;
	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
}

/**
 * igc_power_down_phy_copper - Power down copper PHY
 * @hw: pointer to the HW structure
 *
 * Power down PHY to save power when interface is down and wake on lan
 * is not enabled.
 */
void igc_power_down_phy_copper(struct igc_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
	mii_reg |= MII_CR_POWER_DOWN;

	/* Temporary workaround - should be removed when PHY will implement
	 * IEEE registers as properly
	 */
	/* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
	usleep_range(1000, 2000);
}

/**
 * igc_check_downshift - Checks whether a downshift in speed occurred
 * @hw: pointer to the HW structure
 *
 * A downshift is detected by querying the PHY link health.
 */
void igc_check_downshift(struct igc_hw *hw)
{
	struct igc_phy_info *phy = &hw->phy;

	/* speed downshift not supported */
	phy->speed_downgraded = false;
}

/**
 * igc_phy_hw_reset - PHY hardware reset
 * @hw: pointer to the HW structure
 *
 * Verify the reset block is not blocking us from resetting.  Acquire
 * semaphore (if necessary) and read/set/write the device control reset
 * bit in the PHY.  Wait the appropriate delay time for the device to
 * reset and release the semaphore (if necessary).
 */
s32 igc_phy_hw_reset(struct igc_hw *hw)
{
	struct igc_phy_info *phy = &hw->phy;
	u32 phpm = 0, timeout = 10000;
	s32  ret_val;
	u32 ctrl;

	ret_val = igc_check_reset_block(hw);
	if (ret_val) {
		ret_val = 0;
		goto out;
	}

	ret_val = phy->ops.acquire(hw);
	if (ret_val)
		goto out;

	phpm = rd32(IGC_I225_PHPM);

	ctrl = rd32(IGC_CTRL);
	wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
	wrfl();

	udelay(phy->reset_delay_us);

	wr32(IGC_CTRL, ctrl);
	wrfl();

	/* SW should guarantee 100us for the completion of the PHY reset */
	usleep_range(100, 150);
	do {
		phpm = rd32(IGC_I225_PHPM);
		timeout--;
		udelay(1);
	} while (!(phpm & IGC_PHY_RST_COMP) && timeout);

	if (!timeout)
		hw_dbg("Timeout is expired after a phy reset\n");

	usleep_range(100, 150);

	phy->ops.release(hw);

out:
	return ret_val;
}

/**
 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
 * @hw: pointer to the HW structure
 *
 * Reads the MII auto-neg advertisement register and/or the 1000T control
 * register and if the PHY is already setup for auto-negotiation, then
 * return successful.  Otherwise, setup advertisement and flow control to
 * the appropriate values for the wanted auto-negotiation.
 */
static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
{
	struct igc_phy_info *phy = &hw->phy;
	u16 aneg_multigbt_an_ctrl = 0;
	u16 mii_1000t_ctrl_reg = 0;
	u16 mii_autoneg_adv_reg;
	s32 ret_val;

	phy->autoneg_advertised &= phy->autoneg_mask;

	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
		/* Read the MII 1000Base-T Control Register (Address 9). */
		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
					    &mii_1000t_ctrl_reg);
		if (ret_val)
			return ret_val;
	}

	if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
		/* Read the MULTI GBT AN Control Register - reg 7.32 */
		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
					    MMD_DEVADDR_SHIFT) |
					    ANEG_MULTIGBT_AN_CTRL,
					    &aneg_multigbt_an_ctrl);

		if (ret_val)
			return ret_val;
	}

	/* Need to parse both autoneg_advertised and fc and set up
	 * the appropriate PHY registers.  First we will parse for
	 * autoneg_advertised software override.  Since we can advertise
	 * a plethora of combinations, we need to check each bit
	 * individually.
	 */

	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
	 * the  1000Base-T Control Register (Address 9).
	 */
	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
				 NWAY_AR_100TX_HD_CAPS |
				 NWAY_AR_10T_FD_CAPS   |
				 NWAY_AR_10T_HD_CAPS);
	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);

	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);

	/* Do we want to advertise 10 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
		hw_dbg("Advertise 10mb Half duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
	}

	/* Do we want to advertise 10 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
		hw_dbg("Advertise 10mb Full duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
	}

	/* Do we want to advertise 100 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
		hw_dbg("Advertise 100mb Half duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
	}

	/* Do we want to advertise 100 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
		hw_dbg("Advertise 100mb Full duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
	}

	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
		hw_dbg("Advertise 1000mb Half duplex request denied!\n");

	/* Do we want to advertise 1000 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
		hw_dbg("Advertise 1000mb Full duplex\n");
		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
	}

	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
		hw_dbg("Advertise 2500mb Half duplex request denied!\n");

	/* Do we want to advertise 2500 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
		hw_dbg("Advertise 2500mb Full duplex\n");
		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
	} else {
		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
	}

	/* Check for a software override of the flow control settings, and
	 * setup the PHY advertisement registers accordingly.  If
	 * auto-negotiation is enabled, then software will have to set the
	 * "PAUSE" bits to the correct value in the Auto-Negotiation
	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
	 * negotiation.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames
	 *          but not send pause frames).
	 *      2:  Tx flow control is enabled (we can send pause frames
	 *          but we do not support receiving pause frames).
	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
	 *  other:  No software override.  The flow control configuration
	 *          in the EEPROM is used.
	 */
	switch (hw->fc.current_mode) {
	case igc_fc_none:
		/* Flow control (Rx & Tx) is completely disabled by a
		 * software over-ride.
		 */
		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case igc_fc_rx_pause:
		/* Rx Flow control is enabled, and Tx Flow control is
		 * disabled, by a software over-ride.
		 *
		 * Since there really isn't a way to advertise that we are
		 * capable of Rx Pause ONLY, we will advertise that we
		 * support both symmetric and asymmetric Rx PAUSE.  Later
		 * (in igc_config_fc_after_link_up) we will disable the
		 * hw's ability to send PAUSE frames.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case igc_fc_tx_pause:
		/* Tx Flow control is enabled, and Rx Flow control is
		 * disabled, by a software over-ride.
		 */
		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
		break;
	case igc_fc_full:
		/* Flow control (both Rx and Tx) is enabled by a software
		 * over-ride.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	default:
		hw_dbg("Flow control param set incorrectly\n");
		return -IGC_ERR_CONFIG;
	}

	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);

	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
					     mii_1000t_ctrl_reg);

	if (phy->autoneg_mask & ADVERTISE_2500_FULL)
		ret_val = phy->ops.write_reg(hw,
					     (STANDARD_AN_REG_MASK <<
					     MMD_DEVADDR_SHIFT) |
					     ANEG_MULTIGBT_AN_CTRL,
					     aneg_multigbt_an_ctrl);

	return ret_val;
}

/**
 * igc_wait_autoneg - Wait for auto-neg completion
 * @hw: pointer to the HW structure
 *
 * Waits for auto-negotiation to complete or for the auto-negotiation time
 * limit to expire, which ever happens first.
 */
static s32 igc_wait_autoneg(struct igc_hw *hw)
{
	u16 i, phy_status;
	s32 ret_val = 0;

	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_AUTONEG_COMPLETE)
			break;
		msleep(100);
	}

	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
	 * has completed.
	 */
	return ret_val;
}

/**
 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
 * @hw: pointer to the HW structure
 *
 * Performs initial bounds checking on autoneg advertisement parameter, then
 * configure to advertise the full capability.  Setup the PHY to autoneg
 * and restart the negotiation process between the link partner.  If
 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
 */
static s32 igc_copper_link_autoneg(struct igc_hw *hw)
{
	struct igc_phy_info *phy = &hw->phy;
	u16 phy_ctrl;
	s32 ret_val;

	/* Perform some bounds checking on the autoneg advertisement
	 * parameter.
	 */
	phy->autoneg_advertised &= phy->autoneg_mask;

	/* If autoneg_advertised is zero, we assume it was not defaulted
	 * by the calling code so we set to advertise full capability.
	 */
	if (phy->autoneg_advertised == 0)
		phy->autoneg_advertised = phy->autoneg_mask;

	hw_dbg("Reconfiguring auto-neg advertisement params\n");
	ret_val = igc_phy_setup_autoneg(hw);
	if (ret_val) {
		hw_dbg("Error Setting up Auto-Negotiation\n");
		goto out;
	}
	hw_dbg("Restarting Auto-Neg\n");

	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
	 * the Auto Neg Restart bit in the PHY control register.
	 */
	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		goto out;

	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		goto out;

	/* Does the user want to wait for Auto-Neg to complete here, or
	 * check at a later time (for example, callback routine).
	 */
	if (phy->autoneg_wait_to_complete) {
		ret_val = igc_wait_autoneg(hw);
		if (ret_val) {
			hw_dbg("Error while waiting for autoneg to complete\n");
			goto out;
		}
	}

	hw->mac.get_link_status = true;

out:
	return ret_val;
}

/**
 * igc_setup_copper_link - Configure copper link settings
 * @hw: pointer to the HW structure
 *
 * Calls the appropriate function to configure the link for auto-neg or forced
 * speed and duplex.  Then we check for link, once link is established calls
 * to configure collision distance and flow control are called.  If link is
 * not established, we return -IGC_ERR_PHY (-2).
 */
s32 igc_setup_copper_link(struct igc_hw *hw)
{
	s32 ret_val = 0;
	bool link;

	if (hw->mac.autoneg) {
		/* Setup autoneg and flow control advertisement and perform
		 * autonegotiation.
		 */
		ret_val = igc_copper_link_autoneg(hw);
		if (ret_val)
			goto out;
	} else {
		/* PHY will be set to 10H, 10F, 100H or 100F
		 * depending on user settings.
		 */
		hw_dbg("Forcing Speed and Duplex\n");
		ret_val = hw->phy.ops.force_speed_duplex(hw);
		if (ret_val) {
			hw_dbg("Error Forcing Speed and Duplex\n");
			goto out;
		}
	}

	/* Check link status. Wait up to 100 microseconds for link to become
	 * valid.
	 */
	ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
	if (ret_val)
		goto out;

	if (link) {
		hw_dbg("Valid link established!!!\n");
		igc_config_collision_dist(hw);
		ret_val = igc_config_fc_after_link_up(hw);
	} else {
		hw_dbg("Unable to establish link!!!\n");
	}

out:
	return ret_val;
}

/**
 * igc_read_phy_reg_mdic - Read MDI control register
 * @hw: pointer to the HW structure
 * @offset: register offset to be read
 * @data: pointer to the read data
 *
 * Reads the MDI control register in the PHY at offset and stores the
 * information read to data.
 */
static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
{
	struct igc_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;
	s32 ret_val = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
		hw_dbg("PHY Address %d is out of range\n", offset);
		ret_val = -IGC_ERR_PARAM;
		goto out;
	}

	/* Set up Op-code, Phy Address, and register offset in the MDI
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
		(phy->addr << IGC_MDIC_PHY_SHIFT) |
		(IGC_MDIC_OP_READ));

	wr32(IGC_MDIC, mdic);

	/* Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
		udelay(50);
		mdic = rd32(IGC_MDIC);
		if (mdic & IGC_MDIC_READY)
			break;
	}
	if (!(mdic & IGC_MDIC_READY)) {
		hw_dbg("MDI Read did not complete\n");
		ret_val = -IGC_ERR_PHY;
		goto out;
	}
	if (mdic & IGC_MDIC_ERROR) {
		hw_dbg("MDI Error\n");
		ret_val = -IGC_ERR_PHY;
		goto out;
	}
	*data = (u16)mdic;

out:
	return ret_val;
}

/**
 * igc_write_phy_reg_mdic - Write MDI control register
 * @hw: pointer to the HW structure
 * @offset: register offset to write to
 * @data: data to write to register at offset
 *
 * Writes data to MDI control register in the PHY at offset.
 */
static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
{
	struct igc_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;
	s32 ret_val = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
		hw_dbg("PHY Address %d is out of range\n", offset);
		ret_val = -IGC_ERR_PARAM;
		goto out;
	}

	/* Set up Op-code, Phy Address, and register offset in the MDI
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to write the desired data.
	 */
	mdic = (((u32)data) |
		(offset << IGC_MDIC_REG_SHIFT) |
		(phy->addr << IGC_MDIC_PHY_SHIFT) |
		(IGC_MDIC_OP_WRITE));

	wr32(IGC_MDIC, mdic);

	/* Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
		udelay(50);
		mdic = rd32(IGC_MDIC);
		if (mdic & IGC_MDIC_READY)
			break;
	}
	if (!(mdic & IGC_MDIC_READY)) {
		hw_dbg("MDI Write did not complete\n");
		ret_val = -IGC_ERR_PHY;
		goto out;
	}
	if (mdic & IGC_MDIC_ERROR) {
		hw_dbg("MDI Error\n");
		ret_val = -IGC_ERR_PHY;
		goto out;
	}

out:
	return ret_val;
}

/**
 * __igc_access_xmdio_reg - Read/write XMDIO register
 * @hw: pointer to the HW structure
 * @address: XMDIO address to program
 * @dev_addr: device address to program
 * @data: pointer to value to read/write from/to the XMDIO address
 * @read: boolean flag to indicate read or write
 */
static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
				  u8 dev_addr, u16 *data, bool read)
{
	s32 ret_val;

	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
	if (ret_val)
		return ret_val;

	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
	if (ret_val)
		return ret_val;

	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
					dev_addr);
	if (ret_val)
		return ret_val;

	if (read)
		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
	else
		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
	if (ret_val)
		return ret_val;

	/* Recalibrate the device back to 0 */
	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
	if (ret_val)
		return ret_val;

	return ret_val;
}

/**
 * igc_read_xmdio_reg - Read XMDIO register
 * @hw: pointer to the HW structure
 * @addr: XMDIO address to program
 * @dev_addr: device address to program
 * @data: value to be read from the EMI address
 */
static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
			      u8 dev_addr, u16 *data)
{
	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
}

/**
 * igc_write_xmdio_reg - Write XMDIO register
 * @hw: pointer to the HW structure
 * @addr: XMDIO address to program
 * @dev_addr: device address to program
 * @data: value to be written to the XMDIO address
 */
static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
			       u8 dev_addr, u16 data)
{
	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
}

/**
 * igc_write_phy_reg_gpy - Write GPY PHY register
 * @hw: pointer to the HW structure
 * @offset: register offset to write to
 * @data: data to write at register offset
 *
 * Acquires semaphore, if necessary, then writes the data to PHY register
 * at the offset. Release any acquired semaphores before exiting.
 */
s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
{
	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
	s32 ret_val;

	offset = offset & GPY_REG_MASK;

	if (!dev_addr) {
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;
		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
		hw->phy.ops.release(hw);
	} else {
		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
					      data);
	}

	return ret_val;
}

/**
 * igc_read_phy_reg_gpy - Read GPY PHY register
 * @hw: pointer to the HW structure
 * @offset: lower half is register offset to read to
 * upper half is MMD to use.
 * @data: data to read at register offset
 *
 * Acquires semaphore, if necessary, then reads the data in the PHY register
 * at the offset. Release any acquired semaphores before exiting.
 */
s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
{
	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
	s32 ret_val;

	offset = offset & GPY_REG_MASK;

	if (!dev_addr) {
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;
		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
		hw->phy.ops.release(hw);
	} else {
		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
					     data);
	}

	return ret_val;
}

/**
 * igc_read_phy_fw_version - Read gPHY firmware version
 * @hw: pointer to the HW structure
 */
u16 igc_read_phy_fw_version(struct igc_hw *hw)
{
	struct igc_phy_info *phy = &hw->phy;
	u16 gphy_version = 0;
	u16 ret_val;

	/* NVM image version is reported as firmware version for i225 device */
	ret_val = phy->ops.read_reg(hw, IGC_GPHY_VERSION, &gphy_version);
	if (ret_val)
		hw_dbg("igc_phy: read wrong gphy version\n");

	return gphy_version;
}