Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2008-2015 Intel Corporation
 */

#include <linux/oom.h>
#include <linux/sched/mm.h>
#include <linux/shmem_fs.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/pci.h>
#include <linux/dma-buf.h>
#include <linux/vmalloc.h>

#include "gt/intel_gt_requests.h"

#include "i915_trace.h"

static bool swap_available(void)
{
	return get_nr_swap_pages() > 0;
}

static bool can_release_pages(struct drm_i915_gem_object *obj)
{
	/* Consider only shrinkable ojects. */
	if (!i915_gem_object_is_shrinkable(obj))
		return false;

	/*
	 * We can only return physical pages to the system if we can either
	 * discard the contents (because the user has marked them as being
	 * purgeable) or if we can move their contents out to swap.
	 */
	return swap_available() || obj->mm.madv == I915_MADV_DONTNEED;
}

static bool drop_pages(struct drm_i915_gem_object *obj,
		       unsigned long shrink, bool trylock_vm)
{
	unsigned long flags;

	flags = 0;
	if (shrink & I915_SHRINK_ACTIVE)
		flags |= I915_GEM_OBJECT_UNBIND_ACTIVE;
	if (!(shrink & I915_SHRINK_BOUND))
		flags |= I915_GEM_OBJECT_UNBIND_TEST;
	if (trylock_vm)
		flags |= I915_GEM_OBJECT_UNBIND_VM_TRYLOCK;

	if (i915_gem_object_unbind(obj, flags) == 0)
		return true;

	return false;
}

static int try_to_writeback(struct drm_i915_gem_object *obj, unsigned int flags)
{
	if (obj->ops->shrink) {
		unsigned int shrink_flags = 0;

		if (!(flags & I915_SHRINK_ACTIVE))
			shrink_flags |= I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT;

		if (flags & I915_SHRINK_WRITEBACK)
			shrink_flags |= I915_GEM_OBJECT_SHRINK_WRITEBACK;

		return obj->ops->shrink(obj, shrink_flags);
	}

	return 0;
}

/**
 * i915_gem_shrink - Shrink buffer object caches
 * @ww: i915 gem ww acquire ctx, or NULL
 * @i915: i915 device
 * @target: amount of memory to make available, in pages
 * @nr_scanned: optional output for number of pages scanned (incremental)
 * @shrink: control flags for selecting cache types
 *
 * This function is the main interface to the shrinker. It will try to release
 * up to @target pages of main memory backing storage from buffer objects.
 * Selection of the specific caches can be done with @flags. This is e.g. useful
 * when purgeable objects should be removed from caches preferentially.
 *
 * Note that it's not guaranteed that released amount is actually available as
 * free system memory - the pages might still be in-used to due to other reasons
 * (like cpu mmaps) or the mm core has reused them before we could grab them.
 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to
 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all().
 *
 * Also note that any kind of pinning (both per-vma address space pins and
 * backing storage pins at the buffer object level) result in the shrinker code
 * having to skip the object.
 *
 * Returns:
 * The number of pages of backing storage actually released.
 */
unsigned long
i915_gem_shrink(struct i915_gem_ww_ctx *ww,
		struct drm_i915_private *i915,
		unsigned long target,
		unsigned long *nr_scanned,
		unsigned int shrink)
{
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &i915->mm.purge_list, ~0u },
		{
			&i915->mm.shrink_list,
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND
		},
		{ NULL, 0 },
	}, *phase;
	intel_wakeref_t wakeref = 0;
	unsigned long count = 0;
	unsigned long scanned = 0;
	int err = 0;

	/* CHV + VTD workaround use stop_machine(); need to trylock vm->mutex */
	bool trylock_vm = !ww && intel_vm_no_concurrent_access_wa(i915);

	trace_i915_gem_shrink(i915, target, shrink);

	/*
	 * Unbinding of objects will require HW access; Let us not wake the
	 * device just to recover a little memory. If absolutely necessary,
	 * we will force the wake during oom-notifier.
	 */
	if (shrink & I915_SHRINK_BOUND) {
		wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm);
		if (!wakeref)
			shrink &= ~I915_SHRINK_BOUND;
	}

	/*
	 * When shrinking the active list, we should also consider active
	 * contexts. Active contexts are pinned until they are retired, and
	 * so can not be simply unbound to retire and unpin their pages. To
	 * shrink the contexts, we must wait until the gpu is idle and
	 * completed its switch to the kernel context. In short, we do
	 * not have a good mechanism for idling a specific context, but
	 * what we can do is give them a kick so that we do not keep idle
	 * contexts around longer than is necessary.
	 */
	if (shrink & I915_SHRINK_ACTIVE)
		/* Retire requests to unpin all idle contexts */
		intel_gt_retire_requests(to_gt(i915));

	/*
	 * As we may completely rewrite the (un)bound list whilst unbinding
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
	 */
	for (phase = phases; phase->list; phase++) {
		struct list_head still_in_list;
		struct drm_i915_gem_object *obj;
		unsigned long flags;

		if ((shrink & phase->bit) == 0)
			continue;

		INIT_LIST_HEAD(&still_in_list);

		/*
		 * We serialize our access to unreferenced objects through
		 * the use of the struct_mutex. While the objects are not
		 * yet freed (due to RCU then a workqueue) we still want
		 * to be able to shrink their pages, so they remain on
		 * the unbound/bound list until actually freed.
		 */
		spin_lock_irqsave(&i915->mm.obj_lock, flags);
		while (count < target &&
		       (obj = list_first_entry_or_null(phase->list,
						       typeof(*obj),
						       mm.link))) {
			list_move_tail(&obj->mm.link, &still_in_list);

			if (shrink & I915_SHRINK_VMAPS &&
			    !is_vmalloc_addr(obj->mm.mapping))
				continue;

			if (!(shrink & I915_SHRINK_ACTIVE) &&
			    i915_gem_object_is_framebuffer(obj))
				continue;

			if (!can_release_pages(obj))
				continue;

			if (!kref_get_unless_zero(&obj->base.refcount))
				continue;

			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);

			/* May arrive from get_pages on another bo */
			if (!ww) {
				if (!i915_gem_object_trylock(obj, NULL))
					goto skip;
			} else {
				err = i915_gem_object_lock(obj, ww);
				if (err)
					goto skip;
			}

			if (drop_pages(obj, shrink, trylock_vm) &&
			    !__i915_gem_object_put_pages(obj) &&
			    !try_to_writeback(obj, shrink))
				count += obj->base.size >> PAGE_SHIFT;

			if (!ww)
				i915_gem_object_unlock(obj);

			scanned += obj->base.size >> PAGE_SHIFT;
skip:
			i915_gem_object_put(obj);

			spin_lock_irqsave(&i915->mm.obj_lock, flags);
			if (err)
				break;
		}
		list_splice_tail(&still_in_list, phase->list);
		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
		if (err)
			break;
	}

	if (shrink & I915_SHRINK_BOUND)
		intel_runtime_pm_put(&i915->runtime_pm, wakeref);

	if (err)
		return err;

	if (nr_scanned)
		*nr_scanned += scanned;
	return count;
}

/**
 * i915_gem_shrink_all - Shrink buffer object caches completely
 * @i915: i915 device
 *
 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all
 * caches completely. It also first waits for and retires all outstanding
 * requests to also be able to release backing storage for active objects.
 *
 * This should only be used in code to intentionally quiescent the gpu or as a
 * last-ditch effort when memory seems to have run out.
 *
 * Returns:
 * The number of pages of backing storage actually released.
 */
unsigned long i915_gem_shrink_all(struct drm_i915_private *i915)
{
	intel_wakeref_t wakeref;
	unsigned long freed = 0;

	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
		freed = i915_gem_shrink(NULL, i915, -1UL, NULL,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND);
	}

	return freed;
}

static unsigned long
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
{
	struct drm_i915_private *i915 =
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
	unsigned long num_objects;
	unsigned long count;

	count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT;
	num_objects = READ_ONCE(i915->mm.shrink_count);

	/*
	 * Update our preferred vmscan batch size for the next pass.
	 * Our rough guess for an effective batch size is roughly 2
	 * available GEM objects worth of pages. That is we don't want
	 * the shrinker to fire, until it is worth the cost of freeing an
	 * entire GEM object.
	 */
	if (num_objects) {
		unsigned long avg = 2 * count / num_objects;

		i915->mm.shrinker.batch =
			max((i915->mm.shrinker.batch + avg) >> 1,
			    128ul /* default SHRINK_BATCH */);
	}

	return count;
}

static unsigned long
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
{
	struct drm_i915_private *i915 =
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
	unsigned long freed;

	sc->nr_scanned = 0;

	freed = i915_gem_shrink(NULL, i915,
				sc->nr_to_scan,
				&sc->nr_scanned,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND);
	if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) {
		intel_wakeref_t wakeref;

		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
			freed += i915_gem_shrink(NULL, i915,
						 sc->nr_to_scan - sc->nr_scanned,
						 &sc->nr_scanned,
						 I915_SHRINK_ACTIVE |
						 I915_SHRINK_BOUND |
						 I915_SHRINK_UNBOUND |
						 I915_SHRINK_WRITEBACK);
		}
	}

	return sc->nr_scanned ? freed : SHRINK_STOP;
}

static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *i915 =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_i915_gem_object *obj;
	unsigned long unevictable, available, freed_pages;
	intel_wakeref_t wakeref;
	unsigned long flags;

	freed_pages = 0;
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
		freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL,
					       I915_SHRINK_BOUND |
					       I915_SHRINK_UNBOUND |
					       I915_SHRINK_WRITEBACK);

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	available = unevictable = 0;
	spin_lock_irqsave(&i915->mm.obj_lock, flags);
	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
		if (!can_release_pages(obj))
			unevictable += obj->base.size >> PAGE_SHIFT;
		else
			available += obj->base.size >> PAGE_SHIFT;
	}
	spin_unlock_irqrestore(&i915->mm.obj_lock, flags);

	if (freed_pages || available)
		pr_info("Purging GPU memory, %lu pages freed, "
			"%lu pages still pinned, %lu pages left available.\n",
			freed_pages, unevictable, available);

	*(unsigned long *)ptr += freed_pages;
	return NOTIFY_DONE;
}

static int
i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *i915 =
		container_of(nb, struct drm_i915_private, mm.vmap_notifier);
	struct i915_vma *vma, *next;
	unsigned long freed_pages = 0;
	intel_wakeref_t wakeref;

	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
		freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL,
					       I915_SHRINK_BOUND |
					       I915_SHRINK_UNBOUND |
					       I915_SHRINK_VMAPS);

	/* We also want to clear any cached iomaps as they wrap vmap */
	mutex_lock(&to_gt(i915)->ggtt->vm.mutex);
	list_for_each_entry_safe(vma, next,
				 &to_gt(i915)->ggtt->vm.bound_list, vm_link) {
		unsigned long count = i915_vma_size(vma) >> PAGE_SHIFT;
		struct drm_i915_gem_object *obj = vma->obj;

		if (!vma->iomap || i915_vma_is_active(vma))
			continue;

		if (!i915_gem_object_trylock(obj, NULL))
			continue;

		if (__i915_vma_unbind(vma) == 0)
			freed_pages += count;

		i915_gem_object_unlock(obj);
	}
	mutex_unlock(&to_gt(i915)->ggtt->vm.mutex);

	*(unsigned long *)ptr += freed_pages;
	return NOTIFY_DONE;
}

void i915_gem_driver_register__shrinker(struct drm_i915_private *i915)
{
	i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	i915->mm.shrinker.count_objects = i915_gem_shrinker_count;
	i915->mm.shrinker.seeks = DEFAULT_SEEKS;
	i915->mm.shrinker.batch = 4096;
	drm_WARN_ON(&i915->drm, register_shrinker(&i915->mm.shrinker,
						  "drm-i915_gem"));

	i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier));

	i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap;
	drm_WARN_ON(&i915->drm,
		    register_vmap_purge_notifier(&i915->mm.vmap_notifier));
}

void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915)
{
	drm_WARN_ON(&i915->drm,
		    unregister_vmap_purge_notifier(&i915->mm.vmap_notifier));
	drm_WARN_ON(&i915->drm,
		    unregister_oom_notifier(&i915->mm.oom_notifier));
	unregister_shrinker(&i915->mm.shrinker);
}

void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
				    struct mutex *mutex)
{
	if (!IS_ENABLED(CONFIG_LOCKDEP))
		return;

	fs_reclaim_acquire(GFP_KERNEL);

	mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_);
	mutex_release(&mutex->dep_map, _RET_IP_);

	fs_reclaim_release(GFP_KERNEL);
}

/**
 * i915_gem_object_make_unshrinkable - Hide the object from the shrinker. By
 * default all object types that support shrinking(see IS_SHRINKABLE), will also
 * make the object visible to the shrinker after allocating the system memory
 * pages.
 * @obj: The GEM object.
 *
 * This is typically used for special kernel internal objects that can't be
 * easily processed by the shrinker, like if they are perma-pinned.
 */
void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915 = obj_to_i915(obj);
	unsigned long flags;

	/*
	 * We can only be called while the pages are pinned or when
	 * the pages are released. If pinned, we should only be called
	 * from a single caller under controlled conditions; and on release
	 * only one caller may release us. Neither the two may cross.
	 */
	if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0))
		return;

	spin_lock_irqsave(&i915->mm.obj_lock, flags);
	if (!atomic_fetch_inc(&obj->mm.shrink_pin) &&
	    !list_empty(&obj->mm.link)) {
		list_del_init(&obj->mm.link);
		i915->mm.shrink_count--;
		i915->mm.shrink_memory -= obj->base.size;
	}
	spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
}

static void ___i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj,
					       struct list_head *head)
{
	struct drm_i915_private *i915 = obj_to_i915(obj);
	unsigned long flags;

	if (!i915_gem_object_is_shrinkable(obj))
		return;

	if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1))
		return;

	spin_lock_irqsave(&i915->mm.obj_lock, flags);
	GEM_BUG_ON(!kref_read(&obj->base.refcount));
	if (atomic_dec_and_test(&obj->mm.shrink_pin)) {
		GEM_BUG_ON(!list_empty(&obj->mm.link));

		list_add_tail(&obj->mm.link, head);
		i915->mm.shrink_count++;
		i915->mm.shrink_memory += obj->base.size;

	}
	spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
}

/**
 * __i915_gem_object_make_shrinkable - Move the object to the tail of the
 * shrinkable list. Objects on this list might be swapped out. Used with
 * WILLNEED objects.
 * @obj: The GEM object.
 *
 * DO NOT USE. This is intended to be called on very special objects that don't
 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages
 * underneath.
 */
void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj)
{
	___i915_gem_object_make_shrinkable(obj,
					   &obj_to_i915(obj)->mm.shrink_list);
}

/**
 * __i915_gem_object_make_purgeable - Move the object to the tail of the
 * purgeable list. Objects on this list might be swapped out. Used with
 * DONTNEED objects.
 * @obj: The GEM object.
 *
 * DO NOT USE. This is intended to be called on very special objects that don't
 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages
 * underneath.
 */
void __i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj)
{
	___i915_gem_object_make_shrinkable(obj,
					   &obj_to_i915(obj)->mm.purge_list);
}

/**
 * i915_gem_object_make_shrinkable - Move the object to the tail of the
 * shrinkable list. Objects on this list might be swapped out. Used with
 * WILLNEED objects.
 * @obj: The GEM object.
 *
 * MUST only be called on objects which have backing pages.
 *
 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable().
 */
void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj)
{
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
	__i915_gem_object_make_shrinkable(obj);
}

/**
 * i915_gem_object_make_purgeable - Move the object to the tail of the purgeable
 * list. Used with DONTNEED objects. Unlike with shrinkable objects, the
 * shrinker will attempt to discard the backing pages, instead of trying to swap
 * them out.
 * @obj: The GEM object.
 *
 * MUST only be called on objects which have backing pages.
 *
 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable().
 */
void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj)
{
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
	__i915_gem_object_make_purgeable(obj);
}