Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | // SPDX-License-Identifier: GPL-2.0-only /* * Software WEP encryption implementation * Copyright 2002, Jouni Malinen <jkmaline@cc.hut.fi> * Copyright 2003, Instant802 Networks, Inc. */ #include <linux/netdevice.h> #include <linux/types.h> #include <linux/random.h> #include <linux/compiler.h> #include <linux/crc32.h> #include <linux/crypto.h> #include <linux/err.h> #include <linux/mm.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <asm/unaligned.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "wep.h" void ieee80211_wep_init(struct ieee80211_local *local) { /* start WEP IV from a random value */ get_random_bytes(&local->wep_iv, IEEE80211_WEP_IV_LEN); } static inline bool ieee80211_wep_weak_iv(u32 iv, int keylen) { /* * Fluhrer, Mantin, and Shamir have reported weaknesses in the * key scheduling algorithm of RC4. At least IVs (KeyByte + 3, * 0xff, N) can be used to speedup attacks, so avoid using them. */ if ((iv & 0xff00) == 0xff00) { u8 B = (iv >> 16) & 0xff; if (B >= 3 && B < 3 + keylen) return true; } return false; } static void ieee80211_wep_get_iv(struct ieee80211_local *local, int keylen, int keyidx, u8 *iv) { local->wep_iv++; if (ieee80211_wep_weak_iv(local->wep_iv, keylen)) local->wep_iv += 0x0100; if (!iv) return; *iv++ = (local->wep_iv >> 16) & 0xff; *iv++ = (local->wep_iv >> 8) & 0xff; *iv++ = local->wep_iv & 0xff; *iv++ = keyidx << 6; } static u8 *ieee80211_wep_add_iv(struct ieee80211_local *local, struct sk_buff *skb, int keylen, int keyidx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); unsigned int hdrlen; u8 *newhdr; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); if (WARN_ON(skb_headroom(skb) < IEEE80211_WEP_IV_LEN)) return NULL; hdrlen = ieee80211_hdrlen(hdr->frame_control); newhdr = skb_push(skb, IEEE80211_WEP_IV_LEN); memmove(newhdr, newhdr + IEEE80211_WEP_IV_LEN, hdrlen); /* the HW only needs room for the IV, but not the actual IV */ if (info->control.hw_key && (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) return newhdr + hdrlen; ieee80211_wep_get_iv(local, keylen, keyidx, newhdr + hdrlen); return newhdr + hdrlen; } static void ieee80211_wep_remove_iv(struct ieee80211_local *local, struct sk_buff *skb, struct ieee80211_key *key) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; unsigned int hdrlen; hdrlen = ieee80211_hdrlen(hdr->frame_control); memmove(skb->data + IEEE80211_WEP_IV_LEN, skb->data, hdrlen); skb_pull(skb, IEEE80211_WEP_IV_LEN); } /* Perform WEP encryption using given key. data buffer must have tailroom * for 4-byte ICV. data_len must not include this ICV. Note: this function * does _not_ add IV. data = RC4(data | CRC32(data)) */ int ieee80211_wep_encrypt_data(struct arc4_ctx *ctx, u8 *rc4key, size_t klen, u8 *data, size_t data_len) { __le32 icv; icv = cpu_to_le32(~crc32_le(~0, data, data_len)); put_unaligned(icv, (__le32 *)(data + data_len)); arc4_setkey(ctx, rc4key, klen); arc4_crypt(ctx, data, data, data_len + IEEE80211_WEP_ICV_LEN); memzero_explicit(ctx, sizeof(*ctx)); return 0; } /* Perform WEP encryption on given skb. 4 bytes of extra space (IV) in the * beginning of the buffer 4 bytes of extra space (ICV) in the end of the * buffer will be added. Both IV and ICV will be transmitted, so the * payload length increases with 8 bytes. * * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data)) */ int ieee80211_wep_encrypt(struct ieee80211_local *local, struct sk_buff *skb, const u8 *key, int keylen, int keyidx) { u8 *iv; size_t len; u8 rc4key[3 + WLAN_KEY_LEN_WEP104]; if (WARN_ON(skb_tailroom(skb) < IEEE80211_WEP_ICV_LEN)) return -1; iv = ieee80211_wep_add_iv(local, skb, keylen, keyidx); if (!iv) return -1; len = skb->len - (iv + IEEE80211_WEP_IV_LEN - skb->data); /* Prepend 24-bit IV to RC4 key */ memcpy(rc4key, iv, 3); /* Copy rest of the WEP key (the secret part) */ memcpy(rc4key + 3, key, keylen); /* Add room for ICV */ skb_put(skb, IEEE80211_WEP_ICV_LEN); return ieee80211_wep_encrypt_data(&local->wep_tx_ctx, rc4key, keylen + 3, iv + IEEE80211_WEP_IV_LEN, len); } /* Perform WEP decryption using given key. data buffer includes encrypted * payload, including 4-byte ICV, but _not_ IV. data_len must not include ICV. * Return 0 on success and -1 on ICV mismatch. */ int ieee80211_wep_decrypt_data(struct arc4_ctx *ctx, u8 *rc4key, size_t klen, u8 *data, size_t data_len) { __le32 crc; arc4_setkey(ctx, rc4key, klen); arc4_crypt(ctx, data, data, data_len + IEEE80211_WEP_ICV_LEN); memzero_explicit(ctx, sizeof(*ctx)); crc = cpu_to_le32(~crc32_le(~0, data, data_len)); if (memcmp(&crc, data + data_len, IEEE80211_WEP_ICV_LEN) != 0) /* ICV mismatch */ return -1; return 0; } /* Perform WEP decryption on given skb. Buffer includes whole WEP part of * the frame: IV (4 bytes), encrypted payload (including SNAP header), * ICV (4 bytes). skb->len includes both IV and ICV. * * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on * failure. If frame is OK, IV and ICV will be removed, i.e., decrypted payload * is moved to the beginning of the skb and skb length will be reduced. */ static int ieee80211_wep_decrypt(struct ieee80211_local *local, struct sk_buff *skb, struct ieee80211_key *key) { u32 klen; u8 rc4key[3 + WLAN_KEY_LEN_WEP104]; u8 keyidx; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; unsigned int hdrlen; size_t len; int ret = 0; if (!ieee80211_has_protected(hdr->frame_control)) return -1; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (skb->len < hdrlen + IEEE80211_WEP_IV_LEN + IEEE80211_WEP_ICV_LEN) return -1; len = skb->len - hdrlen - IEEE80211_WEP_IV_LEN - IEEE80211_WEP_ICV_LEN; keyidx = skb->data[hdrlen + 3] >> 6; if (!key || keyidx != key->conf.keyidx) return -1; klen = 3 + key->conf.keylen; /* Prepend 24-bit IV to RC4 key */ memcpy(rc4key, skb->data + hdrlen, 3); /* Copy rest of the WEP key (the secret part) */ memcpy(rc4key + 3, key->conf.key, key->conf.keylen); if (ieee80211_wep_decrypt_data(&local->wep_rx_ctx, rc4key, klen, skb->data + hdrlen + IEEE80211_WEP_IV_LEN, len)) ret = -1; /* Trim ICV */ skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN); /* Remove IV */ memmove(skb->data + IEEE80211_WEP_IV_LEN, skb->data, hdrlen); skb_pull(skb, IEEE80211_WEP_IV_LEN); return ret; } ieee80211_rx_result ieee80211_crypto_wep_decrypt(struct ieee80211_rx_data *rx) { struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; __le16 fc = hdr->frame_control; if (!ieee80211_is_data(fc) && !ieee80211_is_auth(fc)) return RX_CONTINUE; if (!(status->flag & RX_FLAG_DECRYPTED)) { if (skb_linearize(rx->skb)) return RX_DROP_UNUSABLE; if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) return RX_DROP_UNUSABLE; } else if (!(status->flag & RX_FLAG_IV_STRIPPED)) { if (!pskb_may_pull(rx->skb, ieee80211_hdrlen(fc) + IEEE80211_WEP_IV_LEN)) return RX_DROP_UNUSABLE; ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key); /* remove ICV */ if (!(status->flag & RX_FLAG_ICV_STRIPPED) && pskb_trim(rx->skb, rx->skb->len - IEEE80211_WEP_ICV_LEN)) return RX_DROP_UNUSABLE; } return RX_CONTINUE; } static int wep_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_key_conf *hw_key = info->control.hw_key; if (!hw_key) { if (ieee80211_wep_encrypt(tx->local, skb, tx->key->conf.key, tx->key->conf.keylen, tx->key->conf.keyidx)) return -1; } else if ((hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) || (hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { if (!ieee80211_wep_add_iv(tx->local, skb, tx->key->conf.keylen, tx->key->conf.keyidx)) return -1; } return 0; } ieee80211_tx_result ieee80211_crypto_wep_encrypt(struct ieee80211_tx_data *tx) { struct sk_buff *skb; ieee80211_tx_set_protected(tx); skb_queue_walk(&tx->skbs, skb) { if (wep_encrypt_skb(tx, skb) < 0) { I802_DEBUG_INC(tx->local->tx_handlers_drop_wep); return TX_DROP; } } return TX_CONTINUE; } |