Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
// SPDX-License-Identifier: GPL-2.0-or-later
/*
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
	<http://rt2x00.serialmonkey.com>

 */

/*
	Module: rt2500pci
	Abstract: rt2500pci device specific routines.
	Supported chipsets: RT2560.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>
#include <linux/slab.h>

#include "rt2x00.h"
#include "rt2x00mmio.h"
#include "rt2x00pci.h"
#include "rt2500pci.h"

/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2x00mmio_register_read and rt2x00mmio_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))

static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
				const unsigned int word, const u8 value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);

		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
			     const unsigned int word)
{
	u32 reg;
	u8 value;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
	 */
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);

		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);

		WAIT_FOR_BBP(rt2x00dev, &reg);
	}

	value = rt2x00_get_field32(reg, BBPCSR_VALUE);

	mutex_unlock(&rt2x00dev->csr_mutex);

	return value;
}

static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
			       const unsigned int word, const u32 value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);

		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
}

static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt2500pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
		.read		= rt2x00mmio_register_read,
		.write		= rt2x00mmio_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
		.word_base	= EEPROM_BASE,
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2500pci_bbp_read,
		.write		= rt2500pci_bbp_write,
		.word_base	= BBP_BASE,
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2500pci_rf_write,
		.word_base	= RF_BASE,
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
}

#ifdef CONFIG_RT2X00_LIB_LEDS
static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	u32 reg;

	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);

	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
	else if (led->type == LED_TYPE_ACTIVITY)
		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);

	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
}

static int rt2500pci_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);

	return 0;
}

static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00_led *led,
			       enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2500pci_brightness_set;
	led->led_dev.blink_set = rt2500pci_blink_set;
	led->flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2X00_LIB_LEDS */

/*
 * Configuration handlers.
 */
static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
			   !rt2x00dev->intf_ap_count);
	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
}

static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
{
	struct data_queue *queue = rt2x00dev->bcn;
	unsigned int bcn_preload;
	u32 reg;

	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable beacon config
		 */
		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
		reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);

		/*
		 * Enable synchronisation.
		 */
		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
	}

	if (flags & CONFIG_UPDATE_MAC)
		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
					      conf->mac, sizeof(conf->mac));

	if (flags & CONFIG_UPDATE_BSSID)
		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
					      conf->bssid, sizeof(conf->bssid));
}

static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
				 struct rt2x00lib_erp *erp,
				 u32 changed)
{
	int preamble_mask;
	u32 reg;

	/*
	 * When short preamble is enabled, we should set bit 0x08
	 */
	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
		preamble_mask = erp->short_preamble << 3;

		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);

		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 10));
		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);

		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 20));
		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);

		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 55));
		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);

		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 110));
		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
	}

	if (changed & BSS_CHANGED_BASIC_RATES)
		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);

	if (changed & BSS_CHANGED_ERP_SLOT) {
		reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);

		reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);

		reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
	}

	if (changed & BSS_CHANGED_BEACON_INT) {
		reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
				   erp->beacon_int * 16);
		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
				   erp->beacon_int * 16);
		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
	}

}

static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
				 struct antenna_setup *ant)
{
	u32 reg;
	u8 r14;
	u8 r2;

	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

	reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
	r14 = rt2500pci_bbp_read(rt2x00dev, 14);
	r2 = rt2500pci_bbp_read(rt2x00dev, 2);

	/*
	 * Configure the TX antenna.
	 */
	switch (ant->tx) {
	case ANTENNA_A:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_A:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
		break;
	}

	/*
	 * RT2525E and RT5222 need to flip TX I/Q
	 */
	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);

		/*
		 * RT2525E does not need RX I/Q Flip.
		 */
		if (rt2x00_rf(rt2x00dev, RF2525E))
			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
	} else {
		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
	}

	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
	rt2500pci_bbp_write(rt2x00dev, 14, r14);
	rt2500pci_bbp_write(rt2x00dev, 2, r2);
}

static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
				     struct rf_channel *rf, const int txpower)
{
	u8 r70;

	/*
	 * Set TXpower.
	 */
	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));

	/*
	 * Switch on tuning bits.
	 * For RT2523 devices we do not need to update the R1 register.
	 */
	if (!rt2x00_rf(rt2x00dev, RF2523))
		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);

	/*
	 * For RT2525 we should first set the channel to half band higher.
	 */
	if (rt2x00_rf(rt2x00dev, RF2525)) {
		static const u32 vals[] = {
			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
			0x00080d2e, 0x00080d3a
		};

		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
		if (rf->rf4)
			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
	}

	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
	if (rf->rf4)
		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);

	/*
	 * Channel 14 requires the Japan filter bit to be set.
	 */
	r70 = 0x46;
	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
	rt2500pci_bbp_write(rt2x00dev, 70, r70);

	msleep(1);

	/*
	 * Switch off tuning bits.
	 * For RT2523 devices we do not need to update the R1 register.
	 */
	if (!rt2x00_rf(rt2x00dev, RF2523)) {
		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
	}

	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);

	/*
	 * Clear false CRC during channel switch.
	 */
	rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
}

static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
				     const int txpower)
{
	u32 rf3;

	rf3 = rt2x00_rf_read(rt2x00dev, 3);
	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2500pci_rf_write(rt2x00dev, 3, rf3);
}

static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00lib_conf *libconf)
{
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
}

static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
				   (rt2x00dev->beacon_int - 20) * 16);
		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);

		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
	} else {
		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
	}

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
}

static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
{
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
					 libconf->conf->power_level);
	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
		rt2500pci_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt2500pci_config_retry_limit(rt2x00dev, libconf);
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2500pci_config_ps(rt2x00dev, libconf);
}

/*
 * Link tuning
 */
static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);

	/*
	 * Update False CCA count from register.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
}

static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				     struct link_qual *qual, u8 vgc_level)
{
	if (qual->vgc_level_reg != vgc_level) {
		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
		qual->vgc_level = vgc_level;
		qual->vgc_level_reg = vgc_level;
	}
}

static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				  struct link_qual *qual)
{
	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
}

static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual, const u32 count)
{
	/*
	 * To prevent collisions with MAC ASIC on chipsets
	 * up to version C the link tuning should halt after 20
	 * seconds while being associated.
	 */
	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
	    rt2x00dev->intf_associated && count > 20)
		return;

	/*
	 * Chipset versions C and lower should directly continue
	 * to the dynamic CCA tuning. Chipset version D and higher
	 * should go straight to dynamic CCA tuning when they
	 * are not associated.
	 */
	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
	    !rt2x00dev->intf_associated)
		goto dynamic_cca_tune;

	/*
	 * A too low RSSI will cause too much false CCA which will
	 * then corrupt the R17 tuning. To remidy this the tuning should
	 * be stopped (While making sure the R17 value will not exceed limits)
	 */
	if (qual->rssi < -80 && count > 20) {
		if (qual->vgc_level_reg >= 0x41)
			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
		return;
	}

	/*
	 * Special big-R17 for short distance
	 */
	if (qual->rssi >= -58) {
		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
		return;
	}

	/*
	 * Special mid-R17 for middle distance
	 */
	if (qual->rssi >= -74) {
		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
		return;
	}

	/*
	 * Leave short or middle distance condition, restore r17
	 * to the dynamic tuning range.
	 */
	if (qual->vgc_level_reg >= 0x41) {
		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
		return;
	}

dynamic_cca_tune:

	/*
	 * R17 is inside the dynamic tuning range,
	 * start tuning the link based on the false cca counter.
	 */
	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
}

/*
 * Queue handlers.
 */
static void rt2500pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
		break;
	case QID_BEACON:
		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
		break;
	default:
		break;
	}
}

static void rt2500pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_AC_VO:
		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
		break;
	case QID_AC_VI:
		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
		break;
	case QID_ATIM:
		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
		break;
	default:
		break;
	}
}

static void rt2500pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_AC_VO:
	case QID_AC_VI:
	case QID_ATIM:
		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
		break;
	case QID_RX:
		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
		break;
	case QID_BEACON:
		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);

		/*
		 * Wait for possibly running tbtt tasklets.
		 */
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		break;
	default:
		break;
	}
}

/*
 * Initialization functions.
 */
static bool rt2500pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		word = rt2x00_desc_read(entry_priv->desc, 0);

		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		word = rt2x00_desc_read(entry_priv->desc, 0);

		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
}

static void rt2500pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	u32 word;

	if (entry->queue->qid == QID_RX) {
		word = rt2x00_desc_read(entry_priv->desc, 1);
		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 1, word);

		word = rt2x00_desc_read(entry_priv->desc, 0);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		word = rt2x00_desc_read(entry_priv->desc, 0);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
}

static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_mmio *entry_priv;
	u32 reg;

	/*
	 * Initialize registers.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
			   entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);

	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
			   entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);

	entry_priv = rt2x00dev->atim->entries[0].priv_data;
	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
			   entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);

	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
			   entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
			   entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);

	return 0;
}

static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);

	reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
			   rt2x00dev->rx->data_size / 128);
	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);

	/*
	 * Always use CWmin and CWmax set in descriptor.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);

	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);

	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);

	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);

	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);

	reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);

	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);

	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);

	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);

	/*
	 * We must clear the FCS and FIFO error count.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
	reg = rt2x00mmio_register_read(rt2x00dev, CNT4);

	return 0;
}

static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		value = rt2500pci_bbp_read(rt2x00dev, 0);
		if ((value != 0xff) && (value != 0x00))
			return 0;
		udelay(REGISTER_BUSY_DELAY);
	}

	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
	return -EACCES;
}

static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;

	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_OFF);
	u32 reg;
	unsigned long flags;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);

	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);

	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
		 * Ensure that all tasklets are finished.
		 */
		tasklet_kill(&rt2x00dev->txstatus_tasklet);
		tasklet_kill(&rt2x00dev->rxdone_tasklet);
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
	}
}

static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
		     rt2500pci_init_registers(rt2x00dev) ||
		     rt2500pci_init_bbp(rt2x00dev)))
		return -EIO;

	return 0;
}

static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Disable power
	 */
	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
}

static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	u32 reg, reg2;
	unsigned int i;
	bool put_to_sleep;
	u8 bbp_state;
	u8 rf_state;

	put_to_sleep = (state != STATE_AWAKE);

	reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
		if (bbp_state == state && rf_state == state)
			return 0;
		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
		msleep(10);
	}

	return -EBUSY;
}

static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2500pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2500pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2500pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2500pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
			   state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt2500pci_write_tx_desc(struct queue_entry *entry,
				    struct txentry_desc *txdesc)
{
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	__le32 *txd = entry_priv->desc;
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
	word = rt2x00_desc_read(txd, 1);
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 1, word);

	word = rt2x00_desc_read(txd, 2);
	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
	rt2x00_desc_write(txd, 2, word);

	word = rt2x00_desc_read(txd, 3);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
			   txdesc->u.plcp.length_low);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
			   txdesc->u.plcp.length_high);
	rt2x00_desc_write(txd, 3, word);

	word = rt2x00_desc_read(txd, 10);
	rt2x00_set_field32(&word, TXD_W10_RTS,
			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
	rt2x00_desc_write(txd, 10, word);

	/*
	 * Writing TXD word 0 must the last to prevent a race condition with
	 * the device, whereby the device may take hold of the TXD before we
	 * finished updating it.
	 */
	word = rt2x00_desc_read(txd, 0);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_ACK,
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_OFDM,
			   (txdesc->rate_mode == RATE_MODE_OFDM));
	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
	rt2x00_desc_write(txd, 0, word);

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
}

/*
 * TX data initialization
 */
static void rt2500pci_write_beacon(struct queue_entry *entry,
				   struct txentry_desc *txdesc)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);

	if (rt2x00queue_map_txskb(entry)) {
		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
		goto out;
	}

	/*
	 * Write the TX descriptor for the beacon.
	 */
	rt2500pci_write_tx_desc(entry, txdesc);

	/*
	 * Dump beacon to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
out:
	/*
	 * Enable beaconing again.
	 */
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
}

/*
 * RX control handlers
 */
static void rt2500pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	u32 word0;
	u32 word2;

	word0 = rt2x00_desc_read(entry_priv->desc, 0);
	word2 = rt2x00_desc_read(entry_priv->desc, 2);

	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;

	/*
	 * Obtain the status about this packet.
	 * When frame was received with an OFDM bitrate,
	 * the signal is the PLCP value. If it was received with
	 * a CCK bitrate the signal is the rate in 100kbit/s.
	 */
	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
	    entry->queue->rt2x00dev->rssi_offset;
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);

	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
	else
		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
}

/*
 * Interrupt functions.
 */
static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
			     const enum data_queue_qid queue_idx)
{
	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
	struct queue_entry_priv_mmio *entry_priv;
	struct queue_entry *entry;
	struct txdone_entry_desc txdesc;
	u32 word;

	while (!rt2x00queue_empty(queue)) {
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
		entry_priv = entry->priv_data;
		word = rt2x00_desc_read(entry_priv->desc, 0);

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			break;

		/*
		 * Obtain the status about this packet.
		 */
		txdesc.flags = 0;
		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
		case 0: /* Success */
		case 1: /* Success with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 2: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			fallthrough;	/* this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);

		rt2x00lib_txdone(entry, &txdesc);
	}
}

static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					      struct rt2x00_field32 irq_field)
{
	u32 reg;

	/*
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
	 */
	spin_lock_irq(&rt2x00dev->irqmask_lock);

	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
	rt2x00_set_field32(&reg, irq_field, 0);
	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);

	spin_unlock_irq(&rt2x00dev->irqmask_lock);
}

static void rt2500pci_txstatus_tasklet(struct tasklet_struct *t)
{
	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
						    txstatus_tasklet);
	u32 reg;

	/*
	 * Handle all tx queues.
	 */
	rt2500pci_txdone(rt2x00dev, QID_ATIM);
	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
	rt2500pci_txdone(rt2x00dev, QID_AC_VI);

	/*
	 * Enable all TXDONE interrupts again.
	 */
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
		spin_lock_irq(&rt2x00dev->irqmask_lock);

		reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);

		spin_unlock_irq(&rt2x00dev->irqmask_lock);
	}
}

static void rt2500pci_tbtt_tasklet(struct tasklet_struct *t)
{
	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
	rt2x00lib_beacondone(rt2x00dev);
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
}

static void rt2500pci_rxdone_tasklet(struct tasklet_struct *t)
{
	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
						    rxdone_tasklet);
	if (rt2x00mmio_rxdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
}

static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg, mask;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	mask = reg;

	/*
	 * Schedule tasklets for interrupt handling.
	 */
	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);

	if (rt2x00_get_field32(reg, CSR7_RXDONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);

	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
		/*
		 * Mask out all txdone interrupts.
		 */
		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
	}

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
	spin_lock(&rt2x00dev->irqmask_lock);

	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
	reg |= mask;
	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);

	spin_unlock(&rt2x00dev->irqmask_lock);

	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;

	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2500pci_eepromregister_read;
	eeprom.register_write = rt2500pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	rt2x00lib_set_mac_address(rt2x00dev, mac);

	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
				   LED_MODE_DEFAULT);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
	}

	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
				   DEFAULT_RSSI_OFFSET);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
				  word);
	}

	return 0;
}

static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
	rt2x00_set_chip(rt2x00dev, RT2560, value,
			rt2x00_get_field32(reg, CSR0_REVISION));

	if (!rt2x00_rf(rt2x00dev, RF2522) &&
	    !rt2x00_rf(rt2x00dev, RF2523) &&
	    !rt2x00_rf(rt2x00dev, RF2524) &&
	    !rt2x00_rf(rt2x00dev, RF2525) &&
	    !rt2x00_rf(rt2x00dev, RF2525E) &&
	    !rt2x00_rf(rt2x00dev, RF5222)) {
		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
	rt2x00dev->default_ant.tx =
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
	rt2x00dev->default_ant.rx =
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

	/*
	 * Store led mode, for correct led behaviour.
	 */
#ifdef CONFIG_RT2X00_LIB_LEDS
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
	if (value == LED_MODE_TXRX_ACTIVITY ||
	    value == LED_MODE_DEFAULT ||
	    value == LED_MODE_ASUS)
		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				   LED_TYPE_ACTIVITY);
#endif /* CONFIG_RT2X00_LIB_LEDS */

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
		/*
		 * On this device RFKILL initialized during probe does not work.
		 */
		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
	}

	/*
	 * Check if the BBP tuning should be enabled.
	 */
	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);

	/*
	 * Read the RSSI <-> dBm offset information.
	 */
	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
	rt2x00dev->rssi_offset =
	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);

	return 0;
}

/*
 * RF value list for RF2522
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2522[] = {
	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
};

/*
 * RF value list for RF2523
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2523[] = {
	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
};

/*
 * RF value list for RF2524
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2524[] = {
	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
};

/*
 * RF value list for RF2525
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525[] = {
	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
};

/*
 * RF value list for RF2525e
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525e[] = {
	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
};

/*
 * RF value list for RF5222
 * Supports: 2.4 GHz & 5.2 GHz
 */
static const struct rf_channel rf_vals_5222[] = {
	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },

	/* 802.11 UNII */
	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
};

static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
	struct channel_info *info;
	u8 *tx_power;
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);

	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Disable powersaving as default.
	 */
	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;

	/*
	 * Initialize hw_mode information.
	 */
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;

	if (rt2x00_rf(rt2x00dev, RF2522)) {
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
		spec->channels = rf_vals_bg_2522;
	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
		spec->channels = rf_vals_bg_2523;
	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
		spec->channels = rf_vals_bg_2524;
	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
		spec->channels = rf_vals_bg_2525;
	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
		spec->channels = rf_vals_bg_2525e;
	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
		spec->channels = rf_vals_5222;
	}

	/*
	 * Create channel information array
	 */
	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
	for (i = 0; i < 14; i++) {
		info[i].max_power = MAX_TXPOWER;
		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
	}

	if (spec->num_channels > 14) {
		for (i = 14; i < spec->num_channels; i++) {
			info[i].max_power = MAX_TXPOWER;
			info[i].default_power1 = DEFAULT_TXPOWER;
		}
	}

	return 0;
}

static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;
	u32 reg;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2500pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2500pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Enable rfkill polling by setting GPIO direction of the
	 * rfkill switch GPIO pin correctly.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);

	/*
	 * Initialize hw specifications.
	 */
	retval = rt2500pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * This device requires the atim queue and DMA-mapped skbs.
	 */
	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
			     struct ieee80211_vif *vif)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
	reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);

	return tsf;
}

static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
}

static const struct ieee80211_ops rt2500pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.wake_tx_queue		= ieee80211_handle_wake_tx_queue,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2x00mac_conf_tx,
	.get_tsf		= rt2500pci_get_tsf,
	.tx_last_beacon		= rt2500pci_tx_last_beacon,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.flush			= rt2x00mac_flush,
	.set_antenna		= rt2x00mac_set_antenna,
	.get_antenna		= rt2x00mac_get_antenna,
	.get_ringparam		= rt2x00mac_get_ringparam,
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
};

static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
	.irq_handler		= rt2500pci_interrupt,
	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
	.probe_hw		= rt2500pci_probe_hw,
	.initialize		= rt2x00mmio_initialize,
	.uninitialize		= rt2x00mmio_uninitialize,
	.get_entry_state	= rt2500pci_get_entry_state,
	.clear_entry		= rt2500pci_clear_entry,
	.set_device_state	= rt2500pci_set_device_state,
	.rfkill_poll		= rt2500pci_rfkill_poll,
	.link_stats		= rt2500pci_link_stats,
	.reset_tuner		= rt2500pci_reset_tuner,
	.link_tuner		= rt2500pci_link_tuner,
	.start_queue		= rt2500pci_start_queue,
	.kick_queue		= rt2500pci_kick_queue,
	.stop_queue		= rt2500pci_stop_queue,
	.flush_queue		= rt2x00mmio_flush_queue,
	.write_tx_desc		= rt2500pci_write_tx_desc,
	.write_beacon		= rt2500pci_write_beacon,
	.fill_rxdone		= rt2500pci_fill_rxdone,
	.config_filter		= rt2500pci_config_filter,
	.config_intf		= rt2500pci_config_intf,
	.config_erp		= rt2500pci_config_erp,
	.config_ant		= rt2500pci_config_ant,
	.config			= rt2500pci_config,
};

static void rt2500pci_queue_init(struct data_queue *queue)
{
	switch (queue->qid) {
	case QID_RX:
		queue->limit = 32;
		queue->data_size = DATA_FRAME_SIZE;
		queue->desc_size = RXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;

	case QID_AC_VO:
	case QID_AC_VI:
	case QID_AC_BE:
	case QID_AC_BK:
		queue->limit = 32;
		queue->data_size = DATA_FRAME_SIZE;
		queue->desc_size = TXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;

	case QID_BEACON:
		queue->limit = 1;
		queue->data_size = MGMT_FRAME_SIZE;
		queue->desc_size = TXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;

	case QID_ATIM:
		queue->limit = 8;
		queue->data_size = DATA_FRAME_SIZE;
		queue->desc_size = TXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;

	default:
		BUG();
		break;
	}
}

static const struct rt2x00_ops rt2500pci_ops = {
	.name			= KBUILD_MODNAME,
	.max_ap_intf		= 1,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
	.queue_init		= rt2500pci_queue_init,
	.lib			= &rt2500pci_rt2x00_ops,
	.hw			= &rt2500pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
	.debugfs		= &rt2500pci_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2500pci module information.
 */
static const struct pci_device_id rt2500pci_device_table[] = {
	{ PCI_DEVICE(0x1814, 0x0201) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
MODULE_LICENSE("GPL");

static int rt2500pci_probe(struct pci_dev *pci_dev,
			   const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
}

static struct pci_driver rt2500pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2500pci_device_table,
	.probe		= rt2500pci_probe,
	.remove		= rt2x00pci_remove,
	.driver.pm	= &rt2x00pci_pm_ops,
};

module_pci_driver(rt2500pci_driver);