Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 | ######################################################################## # Copyright (c) 2013, Intel Corporation # # This software is available to you under a choice of one of two # licenses. You may choose to be licensed under the terms of the GNU # General Public License (GPL) Version 2, available from the file # COPYING in the main directory of this source tree, or the # OpenIB.org BSD license below: # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the # distribution. # # * Neither the name of the Intel Corporation nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # # THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES# LOSS OF USE, DATA, OR # PROFITS# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ######################################################################## ## ## Authors: ## Erdinc Ozturk <erdinc.ozturk@intel.com> ## Vinodh Gopal <vinodh.gopal@intel.com> ## James Guilford <james.guilford@intel.com> ## Tim Chen <tim.c.chen@linux.intel.com> ## ## References: ## This code was derived and highly optimized from the code described in paper: ## Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation ## on Intel Architecture Processors. August, 2010 ## The details of the implementation is explained in: ## Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode ## on Intel Architecture Processors. October, 2012. ## ## Assumptions: ## ## ## ## iv: ## 0 1 2 3 ## 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | Salt (From the SA) | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | Initialization Vector | ## | (This is the sequence number from IPSec header) | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | 0x1 | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## ## ## ## AAD: ## AAD padded to 128 bits with 0 ## for example, assume AAD is a u32 vector ## ## if AAD is 8 bytes: ## AAD[3] = {A0, A1}# ## padded AAD in xmm register = {A1 A0 0 0} ## ## 0 1 2 3 ## 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | SPI (A1) | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | 32-bit Sequence Number (A0) | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | 0x0 | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## ## AAD Format with 32-bit Sequence Number ## ## if AAD is 12 bytes: ## AAD[3] = {A0, A1, A2}# ## padded AAD in xmm register = {A2 A1 A0 0} ## ## 0 1 2 3 ## 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | SPI (A2) | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | 64-bit Extended Sequence Number {A1,A0} | ## | | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## | 0x0 | ## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ## ## AAD Format with 64-bit Extended Sequence Number ## ## ## aadLen: ## from the definition of the spec, aadLen can only be 8 or 12 bytes. ## The code additionally supports aadLen of length 16 bytes. ## ## TLen: ## from the definition of the spec, TLen can only be 8, 12 or 16 bytes. ## ## poly = x^128 + x^127 + x^126 + x^121 + 1 ## throughout the code, one tab and two tab indentations are used. one tab is ## for GHASH part, two tabs is for AES part. ## #include <linux/linkage.h> # constants in mergeable sections, linker can reorder and merge .section .rodata.cst16.POLY, "aM", @progbits, 16 .align 16 POLY: .octa 0xC2000000000000000000000000000001 .section .rodata.cst16.POLY2, "aM", @progbits, 16 .align 16 POLY2: .octa 0xC20000000000000000000001C2000000 .section .rodata.cst16.TWOONE, "aM", @progbits, 16 .align 16 TWOONE: .octa 0x00000001000000000000000000000001 .section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16 .align 16 SHUF_MASK: .octa 0x000102030405060708090A0B0C0D0E0F .section .rodata.cst16.ONE, "aM", @progbits, 16 .align 16 ONE: .octa 0x00000000000000000000000000000001 .section .rodata.cst16.ONEf, "aM", @progbits, 16 .align 16 ONEf: .octa 0x01000000000000000000000000000000 # order of these constants should not change. # more specifically, ALL_F should follow SHIFT_MASK, and zero should follow ALL_F .section .rodata, "a", @progbits .align 16 SHIFT_MASK: .octa 0x0f0e0d0c0b0a09080706050403020100 ALL_F: .octa 0xffffffffffffffffffffffffffffffff .octa 0x00000000000000000000000000000000 .text #define AadHash 16*0 #define AadLen 16*1 #define InLen (16*1)+8 #define PBlockEncKey 16*2 #define OrigIV 16*3 #define CurCount 16*4 #define PBlockLen 16*5 HashKey = 16*6 # store HashKey <<1 mod poly here HashKey_2 = 16*7 # store HashKey^2 <<1 mod poly here HashKey_3 = 16*8 # store HashKey^3 <<1 mod poly here HashKey_4 = 16*9 # store HashKey^4 <<1 mod poly here HashKey_5 = 16*10 # store HashKey^5 <<1 mod poly here HashKey_6 = 16*11 # store HashKey^6 <<1 mod poly here HashKey_7 = 16*12 # store HashKey^7 <<1 mod poly here HashKey_8 = 16*13 # store HashKey^8 <<1 mod poly here HashKey_k = 16*14 # store XOR of HashKey <<1 mod poly here (for Karatsuba purposes) HashKey_2_k = 16*15 # store XOR of HashKey^2 <<1 mod poly here (for Karatsuba purposes) HashKey_3_k = 16*16 # store XOR of HashKey^3 <<1 mod poly here (for Karatsuba purposes) HashKey_4_k = 16*17 # store XOR of HashKey^4 <<1 mod poly here (for Karatsuba purposes) HashKey_5_k = 16*18 # store XOR of HashKey^5 <<1 mod poly here (for Karatsuba purposes) HashKey_6_k = 16*19 # store XOR of HashKey^6 <<1 mod poly here (for Karatsuba purposes) HashKey_7_k = 16*20 # store XOR of HashKey^7 <<1 mod poly here (for Karatsuba purposes) HashKey_8_k = 16*21 # store XOR of HashKey^8 <<1 mod poly here (for Karatsuba purposes) #define arg1 %rdi #define arg2 %rsi #define arg3 %rdx #define arg4 %rcx #define arg5 %r8 #define arg6 %r9 #define keysize 2*15*16(arg1) i = 0 j = 0 out_order = 0 in_order = 1 DEC = 0 ENC = 1 .macro define_reg r n reg_\r = %xmm\n .endm .macro setreg .altmacro define_reg i %i define_reg j %j .noaltmacro .endm TMP1 = 16*0 # Temporary storage for AAD TMP2 = 16*1 # Temporary storage for AES State 2 (State 1 is stored in an XMM register) TMP3 = 16*2 # Temporary storage for AES State 3 TMP4 = 16*3 # Temporary storage for AES State 4 TMP5 = 16*4 # Temporary storage for AES State 5 TMP6 = 16*5 # Temporary storage for AES State 6 TMP7 = 16*6 # Temporary storage for AES State 7 TMP8 = 16*7 # Temporary storage for AES State 8 VARIABLE_OFFSET = 16*8 ################################ # Utility Macros ################################ .macro FUNC_SAVE push %r12 push %r13 push %r15 push %rbp mov %rsp, %rbp sub $VARIABLE_OFFSET, %rsp and $~63, %rsp # align rsp to 64 bytes .endm .macro FUNC_RESTORE mov %rbp, %rsp pop %rbp pop %r15 pop %r13 pop %r12 .endm # Encryption of a single block .macro ENCRYPT_SINGLE_BLOCK REP XMM0 vpxor (arg1), \XMM0, \XMM0 i = 1 setreg .rep \REP vaesenc 16*i(arg1), \XMM0, \XMM0 i = (i+1) setreg .endr vaesenclast 16*i(arg1), \XMM0, \XMM0 .endm # combined for GCM encrypt and decrypt functions # clobbering all xmm registers # clobbering r10, r11, r12, r13, r15, rax .macro GCM_ENC_DEC INITIAL_BLOCKS GHASH_8_ENCRYPT_8_PARALLEL GHASH_LAST_8 GHASH_MUL ENC_DEC REP vmovdqu AadHash(arg2), %xmm8 vmovdqu HashKey(arg2), %xmm13 # xmm13 = HashKey add arg5, InLen(arg2) # initialize the data pointer offset as zero xor %r11d, %r11d PARTIAL_BLOCK \GHASH_MUL, arg3, arg4, arg5, %r11, %xmm8, \ENC_DEC sub %r11, arg5 mov arg5, %r13 # save the number of bytes of plaintext/ciphertext and $-16, %r13 # r13 = r13 - (r13 mod 16) mov %r13, %r12 shr $4, %r12 and $7, %r12 jz .L_initial_num_blocks_is_0\@ cmp $7, %r12 je .L_initial_num_blocks_is_7\@ cmp $6, %r12 je .L_initial_num_blocks_is_6\@ cmp $5, %r12 je .L_initial_num_blocks_is_5\@ cmp $4, %r12 je .L_initial_num_blocks_is_4\@ cmp $3, %r12 je .L_initial_num_blocks_is_3\@ cmp $2, %r12 je .L_initial_num_blocks_is_2\@ jmp .L_initial_num_blocks_is_1\@ .L_initial_num_blocks_is_7\@: \INITIAL_BLOCKS \REP, 7, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*7, %r13 jmp .L_initial_blocks_encrypted\@ .L_initial_num_blocks_is_6\@: \INITIAL_BLOCKS \REP, 6, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*6, %r13 jmp .L_initial_blocks_encrypted\@ .L_initial_num_blocks_is_5\@: \INITIAL_BLOCKS \REP, 5, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*5, %r13 jmp .L_initial_blocks_encrypted\@ .L_initial_num_blocks_is_4\@: \INITIAL_BLOCKS \REP, 4, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*4, %r13 jmp .L_initial_blocks_encrypted\@ .L_initial_num_blocks_is_3\@: \INITIAL_BLOCKS \REP, 3, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*3, %r13 jmp .L_initial_blocks_encrypted\@ .L_initial_num_blocks_is_2\@: \INITIAL_BLOCKS \REP, 2, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*2, %r13 jmp .L_initial_blocks_encrypted\@ .L_initial_num_blocks_is_1\@: \INITIAL_BLOCKS \REP, 1, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC sub $16*1, %r13 jmp .L_initial_blocks_encrypted\@ .L_initial_num_blocks_is_0\@: \INITIAL_BLOCKS \REP, 0, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC .L_initial_blocks_encrypted\@: test %r13, %r13 je .L_zero_cipher_left\@ sub $128, %r13 je .L_eight_cipher_left\@ vmovd %xmm9, %r15d and $255, %r15d vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 .L_encrypt_by_8_new\@: cmp $(255-8), %r15d jg .L_encrypt_by_8\@ add $8, %r15b \GHASH_8_ENCRYPT_8_PARALLEL \REP, %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, out_order, \ENC_DEC add $128, %r11 sub $128, %r13 jne .L_encrypt_by_8_new\@ vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 jmp .L_eight_cipher_left\@ .L_encrypt_by_8\@: vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 add $8, %r15b \GHASH_8_ENCRYPT_8_PARALLEL \REP, %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, in_order, \ENC_DEC vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 add $128, %r11 sub $128, %r13 jne .L_encrypt_by_8_new\@ vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 .L_eight_cipher_left\@: \GHASH_LAST_8 %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8 .L_zero_cipher_left\@: vmovdqu %xmm14, AadHash(arg2) vmovdqu %xmm9, CurCount(arg2) # check for 0 length mov arg5, %r13 and $15, %r13 # r13 = (arg5 mod 16) je .L_multiple_of_16_bytes\@ # handle the last <16 Byte block separately mov %r13, PBlockLen(arg2) vpaddd ONE(%rip), %xmm9, %xmm9 # INCR CNT to get Yn vmovdqu %xmm9, CurCount(arg2) vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 ENCRYPT_SINGLE_BLOCK \REP, %xmm9 # E(K, Yn) vmovdqu %xmm9, PBlockEncKey(arg2) cmp $16, arg5 jge .L_large_enough_update\@ lea (arg4,%r11,1), %r10 mov %r13, %r12 READ_PARTIAL_BLOCK %r10 %r12 %xmm1 lea SHIFT_MASK+16(%rip), %r12 sub %r13, %r12 # adjust the shuffle mask pointer to be # able to shift 16-r13 bytes (r13 is the # number of bytes in plaintext mod 16) jmp .L_final_ghash_mul\@ .L_large_enough_update\@: sub $16, %r11 add %r13, %r11 # receive the last <16 Byte block vmovdqu (arg4, %r11, 1), %xmm1 sub %r13, %r11 add $16, %r11 lea SHIFT_MASK+16(%rip), %r12 # adjust the shuffle mask pointer to be able to shift 16-r13 bytes # (r13 is the number of bytes in plaintext mod 16) sub %r13, %r12 # get the appropriate shuffle mask vmovdqu (%r12), %xmm2 # shift right 16-r13 bytes vpshufb %xmm2, %xmm1, %xmm1 .L_final_ghash_mul\@: .if \ENC_DEC == DEC vmovdqa %xmm1, %xmm2 vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to # mask out top 16-r13 bytes of xmm9 vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 vpand %xmm1, %xmm2, %xmm2 vpshufb SHUF_MASK(%rip), %xmm2, %xmm2 vpxor %xmm2, %xmm14, %xmm14 vmovdqu %xmm14, AadHash(arg2) .else vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to # mask out top 16-r13 bytes of xmm9 vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 vpxor %xmm9, %xmm14, %xmm14 vmovdqu %xmm14, AadHash(arg2) vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 # shuffle xmm9 back to output as ciphertext .endif ############################# # output r13 Bytes vmovq %xmm9, %rax cmp $8, %r13 jle .L_less_than_8_bytes_left\@ mov %rax, (arg3 , %r11) add $8, %r11 vpsrldq $8, %xmm9, %xmm9 vmovq %xmm9, %rax sub $8, %r13 .L_less_than_8_bytes_left\@: movb %al, (arg3 , %r11) add $1, %r11 shr $8, %rax sub $1, %r13 jne .L_less_than_8_bytes_left\@ ############################# .L_multiple_of_16_bytes\@: .endm # GCM_COMPLETE Finishes update of tag of last partial block # Output: Authorization Tag (AUTH_TAG) # Clobbers rax, r10-r12, and xmm0, xmm1, xmm5-xmm15 .macro GCM_COMPLETE GHASH_MUL REP AUTH_TAG AUTH_TAG_LEN vmovdqu AadHash(arg2), %xmm14 vmovdqu HashKey(arg2), %xmm13 mov PBlockLen(arg2), %r12 test %r12, %r12 je .L_partial_done\@ #GHASH computation for the last <16 Byte block \GHASH_MUL %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 .L_partial_done\@: mov AadLen(arg2), %r12 # r12 = aadLen (number of bytes) shl $3, %r12 # convert into number of bits vmovd %r12d, %xmm15 # len(A) in xmm15 mov InLen(arg2), %r12 shl $3, %r12 # len(C) in bits (*128) vmovq %r12, %xmm1 vpslldq $8, %xmm15, %xmm15 # xmm15 = len(A)|| 0x0000000000000000 vpxor %xmm1, %xmm15, %xmm15 # xmm15 = len(A)||len(C) vpxor %xmm15, %xmm14, %xmm14 \GHASH_MUL %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 # final GHASH computation vpshufb SHUF_MASK(%rip), %xmm14, %xmm14 # perform a 16Byte swap vmovdqu OrigIV(arg2), %xmm9 ENCRYPT_SINGLE_BLOCK \REP, %xmm9 # E(K, Y0) vpxor %xmm14, %xmm9, %xmm9 .L_return_T\@: mov \AUTH_TAG, %r10 # r10 = authTag mov \AUTH_TAG_LEN, %r11 # r11 = auth_tag_len cmp $16, %r11 je .L_T_16\@ cmp $8, %r11 jl .L_T_4\@ .L_T_8\@: vmovq %xmm9, %rax mov %rax, (%r10) add $8, %r10 sub $8, %r11 vpsrldq $8, %xmm9, %xmm9 test %r11, %r11 je .L_return_T_done\@ .L_T_4\@: vmovd %xmm9, %eax mov %eax, (%r10) add $4, %r10 sub $4, %r11 vpsrldq $4, %xmm9, %xmm9 test %r11, %r11 je .L_return_T_done\@ .L_T_123\@: vmovd %xmm9, %eax cmp $2, %r11 jl .L_T_1\@ mov %ax, (%r10) cmp $2, %r11 je .L_return_T_done\@ add $2, %r10 sar $16, %eax .L_T_1\@: mov %al, (%r10) jmp .L_return_T_done\@ .L_T_16\@: vmovdqu %xmm9, (%r10) .L_return_T_done\@: .endm .macro CALC_AAD_HASH GHASH_MUL AAD AADLEN T1 T2 T3 T4 T5 T6 T7 T8 mov \AAD, %r10 # r10 = AAD mov \AADLEN, %r12 # r12 = aadLen mov %r12, %r11 vpxor \T8, \T8, \T8 vpxor \T7, \T7, \T7 cmp $16, %r11 jl .L_get_AAD_rest8\@ .L_get_AAD_blocks\@: vmovdqu (%r10), \T7 vpshufb SHUF_MASK(%rip), \T7, \T7 vpxor \T7, \T8, \T8 \GHASH_MUL \T8, \T2, \T1, \T3, \T4, \T5, \T6 add $16, %r10 sub $16, %r12 sub $16, %r11 cmp $16, %r11 jge .L_get_AAD_blocks\@ vmovdqu \T8, \T7 test %r11, %r11 je .L_get_AAD_done\@ vpxor \T7, \T7, \T7 /* read the last <16B of AAD. since we have at least 4B of data right after the AAD (the ICV, and maybe some CT), we can read 4B/8B blocks safely, and then get rid of the extra stuff */ .L_get_AAD_rest8\@: cmp $4, %r11 jle .L_get_AAD_rest4\@ movq (%r10), \T1 add $8, %r10 sub $8, %r11 vpslldq $8, \T1, \T1 vpsrldq $8, \T7, \T7 vpxor \T1, \T7, \T7 jmp .L_get_AAD_rest8\@ .L_get_AAD_rest4\@: test %r11, %r11 jle .L_get_AAD_rest0\@ mov (%r10), %eax movq %rax, \T1 add $4, %r10 sub $4, %r11 vpslldq $12, \T1, \T1 vpsrldq $4, \T7, \T7 vpxor \T1, \T7, \T7 .L_get_AAD_rest0\@: /* finalize: shift out the extra bytes we read, and align left. since pslldq can only shift by an immediate, we use vpshufb and a pair of shuffle masks */ leaq ALL_F(%rip), %r11 subq %r12, %r11 vmovdqu 16(%r11), \T1 andq $~3, %r11 vpshufb (%r11), \T7, \T7 vpand \T1, \T7, \T7 .L_get_AAD_rest_final\@: vpshufb SHUF_MASK(%rip), \T7, \T7 vpxor \T8, \T7, \T7 \GHASH_MUL \T7, \T2, \T1, \T3, \T4, \T5, \T6 .L_get_AAD_done\@: vmovdqu \T7, AadHash(arg2) .endm .macro INIT GHASH_MUL PRECOMPUTE mov arg6, %r11 mov %r11, AadLen(arg2) # ctx_data.aad_length = aad_length xor %r11d, %r11d mov %r11, InLen(arg2) # ctx_data.in_length = 0 mov %r11, PBlockLen(arg2) # ctx_data.partial_block_length = 0 mov %r11, PBlockEncKey(arg2) # ctx_data.partial_block_enc_key = 0 mov arg3, %rax movdqu (%rax), %xmm0 movdqu %xmm0, OrigIV(arg2) # ctx_data.orig_IV = iv vpshufb SHUF_MASK(%rip), %xmm0, %xmm0 movdqu %xmm0, CurCount(arg2) # ctx_data.current_counter = iv vmovdqu (arg4), %xmm6 # xmm6 = HashKey vpshufb SHUF_MASK(%rip), %xmm6, %xmm6 ############### PRECOMPUTATION of HashKey<<1 mod poly from the HashKey vmovdqa %xmm6, %xmm2 vpsllq $1, %xmm6, %xmm6 vpsrlq $63, %xmm2, %xmm2 vmovdqa %xmm2, %xmm1 vpslldq $8, %xmm2, %xmm2 vpsrldq $8, %xmm1, %xmm1 vpor %xmm2, %xmm6, %xmm6 #reduction vpshufd $0b00100100, %xmm1, %xmm2 vpcmpeqd TWOONE(%rip), %xmm2, %xmm2 vpand POLY(%rip), %xmm2, %xmm2 vpxor %xmm2, %xmm6, %xmm6 # xmm6 holds the HashKey<<1 mod poly ####################################################################### vmovdqu %xmm6, HashKey(arg2) # store HashKey<<1 mod poly CALC_AAD_HASH \GHASH_MUL, arg5, arg6, %xmm2, %xmm6, %xmm3, %xmm4, %xmm5, %xmm7, %xmm1, %xmm0 \PRECOMPUTE %xmm6, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5 .endm # Reads DLEN bytes starting at DPTR and stores in XMMDst # where 0 < DLEN < 16 # Clobbers %rax, DLEN .macro READ_PARTIAL_BLOCK DPTR DLEN XMMDst vpxor \XMMDst, \XMMDst, \XMMDst cmp $8, \DLEN jl .L_read_lt8_\@ mov (\DPTR), %rax vpinsrq $0, %rax, \XMMDst, \XMMDst sub $8, \DLEN jz .L_done_read_partial_block_\@ xor %eax, %eax .L_read_next_byte_\@: shl $8, %rax mov 7(\DPTR, \DLEN, 1), %al dec \DLEN jnz .L_read_next_byte_\@ vpinsrq $1, %rax, \XMMDst, \XMMDst jmp .L_done_read_partial_block_\@ .L_read_lt8_\@: xor %eax, %eax .L_read_next_byte_lt8_\@: shl $8, %rax mov -1(\DPTR, \DLEN, 1), %al dec \DLEN jnz .L_read_next_byte_lt8_\@ vpinsrq $0, %rax, \XMMDst, \XMMDst .L_done_read_partial_block_\@: .endm # PARTIAL_BLOCK: Handles encryption/decryption and the tag partial blocks # between update calls. # Requires the input data be at least 1 byte long due to READ_PARTIAL_BLOCK # Outputs encrypted bytes, and updates hash and partial info in gcm_data_context # Clobbers rax, r10, r12, r13, xmm0-6, xmm9-13 .macro PARTIAL_BLOCK GHASH_MUL CYPH_PLAIN_OUT PLAIN_CYPH_IN PLAIN_CYPH_LEN DATA_OFFSET \ AAD_HASH ENC_DEC mov PBlockLen(arg2), %r13 test %r13, %r13 je .L_partial_block_done_\@ # Leave Macro if no partial blocks # Read in input data without over reading cmp $16, \PLAIN_CYPH_LEN jl .L_fewer_than_16_bytes_\@ vmovdqu (\PLAIN_CYPH_IN), %xmm1 # If more than 16 bytes, just fill xmm jmp .L_data_read_\@ .L_fewer_than_16_bytes_\@: lea (\PLAIN_CYPH_IN, \DATA_OFFSET, 1), %r10 mov \PLAIN_CYPH_LEN, %r12 READ_PARTIAL_BLOCK %r10 %r12 %xmm1 mov PBlockLen(arg2), %r13 .L_data_read_\@: # Finished reading in data vmovdqu PBlockEncKey(arg2), %xmm9 vmovdqu HashKey(arg2), %xmm13 lea SHIFT_MASK(%rip), %r12 # adjust the shuffle mask pointer to be able to shift r13 bytes # r16-r13 is the number of bytes in plaintext mod 16) add %r13, %r12 vmovdqu (%r12), %xmm2 # get the appropriate shuffle mask vpshufb %xmm2, %xmm9, %xmm9 # shift right r13 bytes .if \ENC_DEC == DEC vmovdqa %xmm1, %xmm3 pxor %xmm1, %xmm9 # Cyphertext XOR E(K, Yn) mov \PLAIN_CYPH_LEN, %r10 add %r13, %r10 # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling sub $16, %r10 # Determine if if partial block is not being filled and # shift mask accordingly jge .L_no_extra_mask_1_\@ sub %r10, %r12 .L_no_extra_mask_1_\@: vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to mask out bottom r13 bytes of xmm9 vpand %xmm1, %xmm9, %xmm9 # mask out bottom r13 bytes of xmm9 vpand %xmm1, %xmm3, %xmm3 vmovdqa SHUF_MASK(%rip), %xmm10 vpshufb %xmm10, %xmm3, %xmm3 vpshufb %xmm2, %xmm3, %xmm3 vpxor %xmm3, \AAD_HASH, \AAD_HASH test %r10, %r10 jl .L_partial_incomplete_1_\@ # GHASH computation for the last <16 Byte block \GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 xor %eax,%eax mov %rax, PBlockLen(arg2) jmp .L_dec_done_\@ .L_partial_incomplete_1_\@: add \PLAIN_CYPH_LEN, PBlockLen(arg2) .L_dec_done_\@: vmovdqu \AAD_HASH, AadHash(arg2) .else vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) mov \PLAIN_CYPH_LEN, %r10 add %r13, %r10 # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling sub $16, %r10 # Determine if if partial block is not being filled and # shift mask accordingly jge .L_no_extra_mask_2_\@ sub %r10, %r12 .L_no_extra_mask_2_\@: vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to mask out bottom r13 bytes of xmm9 vpand %xmm1, %xmm9, %xmm9 vmovdqa SHUF_MASK(%rip), %xmm1 vpshufb %xmm1, %xmm9, %xmm9 vpshufb %xmm2, %xmm9, %xmm9 vpxor %xmm9, \AAD_HASH, \AAD_HASH test %r10, %r10 jl .L_partial_incomplete_2_\@ # GHASH computation for the last <16 Byte block \GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 xor %eax,%eax mov %rax, PBlockLen(arg2) jmp .L_encode_done_\@ .L_partial_incomplete_2_\@: add \PLAIN_CYPH_LEN, PBlockLen(arg2) .L_encode_done_\@: vmovdqu \AAD_HASH, AadHash(arg2) vmovdqa SHUF_MASK(%rip), %xmm10 # shuffle xmm9 back to output as ciphertext vpshufb %xmm10, %xmm9, %xmm9 vpshufb %xmm2, %xmm9, %xmm9 .endif # output encrypted Bytes test %r10, %r10 jl .L_partial_fill_\@ mov %r13, %r12 mov $16, %r13 # Set r13 to be the number of bytes to write out sub %r12, %r13 jmp .L_count_set_\@ .L_partial_fill_\@: mov \PLAIN_CYPH_LEN, %r13 .L_count_set_\@: vmovdqa %xmm9, %xmm0 vmovq %xmm0, %rax cmp $8, %r13 jle .L_less_than_8_bytes_left_\@ mov %rax, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1) add $8, \DATA_OFFSET psrldq $8, %xmm0 vmovq %xmm0, %rax sub $8, %r13 .L_less_than_8_bytes_left_\@: movb %al, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1) add $1, \DATA_OFFSET shr $8, %rax sub $1, %r13 jne .L_less_than_8_bytes_left_\@ .L_partial_block_done_\@: .endm # PARTIAL_BLOCK ############################################################################### # GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0) # Input: A and B (128-bits each, bit-reflected) # Output: C = A*B*x mod poly, (i.e. >>1 ) # To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input # GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly. ############################################################################### .macro GHASH_MUL_AVX GH HK T1 T2 T3 T4 T5 vpshufd $0b01001110, \GH, \T2 vpshufd $0b01001110, \HK, \T3 vpxor \GH , \T2, \T2 # T2 = (a1+a0) vpxor \HK , \T3, \T3 # T3 = (b1+b0) vpclmulqdq $0x11, \HK, \GH, \T1 # T1 = a1*b1 vpclmulqdq $0x00, \HK, \GH, \GH # GH = a0*b0 vpclmulqdq $0x00, \T3, \T2, \T2 # T2 = (a1+a0)*(b1+b0) vpxor \GH, \T2,\T2 vpxor \T1, \T2,\T2 # T2 = a0*b1+a1*b0 vpslldq $8, \T2,\T3 # shift-L T3 2 DWs vpsrldq $8, \T2,\T2 # shift-R T2 2 DWs vpxor \T3, \GH, \GH vpxor \T2, \T1, \T1 # <T1:GH> = GH x HK #first phase of the reduction vpslld $31, \GH, \T2 # packed right shifting << 31 vpslld $30, \GH, \T3 # packed right shifting shift << 30 vpslld $25, \GH, \T4 # packed right shifting shift << 25 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpsrldq $4, \T2, \T5 # shift-R T5 1 DW vpslldq $12, \T2, \T2 # shift-L T2 3 DWs vpxor \T2, \GH, \GH # first phase of the reduction complete #second phase of the reduction vpsrld $1,\GH, \T2 # packed left shifting >> 1 vpsrld $2,\GH, \T3 # packed left shifting >> 2 vpsrld $7,\GH, \T4 # packed left shifting >> 7 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpxor \T5, \T2, \T2 vpxor \T2, \GH, \GH vpxor \T1, \GH, \GH # the result is in GH .endm .macro PRECOMPUTE_AVX HK T1 T2 T3 T4 T5 T6 # Haskey_i_k holds XORed values of the low and high parts of the Haskey_i vmovdqa \HK, \T5 vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqu \T1, HashKey_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^2<<1 mod poly vmovdqu \T5, HashKey_2(arg2) # [HashKey_2] = HashKey^2<<1 mod poly vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqu \T1, HashKey_2_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^3<<1 mod poly vmovdqu \T5, HashKey_3(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqu \T1, HashKey_3_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^4<<1 mod poly vmovdqu \T5, HashKey_4(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqu \T1, HashKey_4_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^5<<1 mod poly vmovdqu \T5, HashKey_5(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqu \T1, HashKey_5_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^6<<1 mod poly vmovdqu \T5, HashKey_6(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqu \T1, HashKey_6_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^7<<1 mod poly vmovdqu \T5, HashKey_7(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqu \T1, HashKey_7_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^8<<1 mod poly vmovdqu \T5, HashKey_8(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 vmovdqu \T1, HashKey_8_k(arg2) .endm ## if a = number of total plaintext bytes ## b = floor(a/16) ## num_initial_blocks = b mod 4# ## encrypt the initial num_initial_blocks blocks and apply ghash on the ciphertext ## r10, r11, r12, rax are clobbered ## arg1, arg2, arg3, arg4 are used as pointers only, not modified .macro INITIAL_BLOCKS_AVX REP num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC i = (8-\num_initial_blocks) setreg vmovdqu AadHash(arg2), reg_i # start AES for num_initial_blocks blocks vmovdqu CurCount(arg2), \CTR i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, reg_i vpshufb SHUF_MASK(%rip), reg_i, reg_i # perform a 16Byte swap i = (i+1) setreg .endr vmovdqa (arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpxor \T_key, reg_i, reg_i i = (i+1) setreg .endr j = 1 setreg .rep \REP vmovdqa 16*j(arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vaesenc \T_key, reg_i, reg_i i = (i+1) setreg .endr j = (j+1) setreg .endr vmovdqa 16*j(arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vaesenclast \T_key, reg_i, reg_i i = (i+1) setreg .endr i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vmovdqu (arg4, %r11), \T1 vpxor \T1, reg_i, reg_i vmovdqu reg_i, (arg3 , %r11) # write back ciphertext for num_initial_blocks blocks add $16, %r11 .if \ENC_DEC == DEC vmovdqa \T1, reg_i .endif vpshufb SHUF_MASK(%rip), reg_i, reg_i # prepare ciphertext for GHASH computations i = (i+1) setreg .endr i = (8-\num_initial_blocks) j = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpxor reg_i, reg_j, reg_j GHASH_MUL_AVX reg_j, \T2, \T1, \T3, \T4, \T5, \T6 # apply GHASH on num_initial_blocks blocks i = (i+1) j = (j+1) setreg .endr # XMM8 has the combined result here vmovdqa \XMM8, TMP1(%rsp) vmovdqa \XMM8, \T3 cmp $128, %r13 jl .L_initial_blocks_done\@ # no need for precomputed constants ############################################################################### # Haskey_i_k holds XORed values of the low and high parts of the Haskey_i vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM1 vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM2 vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM3 vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM4 vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM5 vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM6 vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM7 vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM8 vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap vmovdqa (arg1), \T_key vpxor \T_key, \XMM1, \XMM1 vpxor \T_key, \XMM2, \XMM2 vpxor \T_key, \XMM3, \XMM3 vpxor \T_key, \XMM4, \XMM4 vpxor \T_key, \XMM5, \XMM5 vpxor \T_key, \XMM6, \XMM6 vpxor \T_key, \XMM7, \XMM7 vpxor \T_key, \XMM8, \XMM8 i = 1 setreg .rep \REP # do REP rounds vmovdqa 16*i(arg1), \T_key vaesenc \T_key, \XMM1, \XMM1 vaesenc \T_key, \XMM2, \XMM2 vaesenc \T_key, \XMM3, \XMM3 vaesenc \T_key, \XMM4, \XMM4 vaesenc \T_key, \XMM5, \XMM5 vaesenc \T_key, \XMM6, \XMM6 vaesenc \T_key, \XMM7, \XMM7 vaesenc \T_key, \XMM8, \XMM8 i = (i+1) setreg .endr vmovdqa 16*i(arg1), \T_key vaesenclast \T_key, \XMM1, \XMM1 vaesenclast \T_key, \XMM2, \XMM2 vaesenclast \T_key, \XMM3, \XMM3 vaesenclast \T_key, \XMM4, \XMM4 vaesenclast \T_key, \XMM5, \XMM5 vaesenclast \T_key, \XMM6, \XMM6 vaesenclast \T_key, \XMM7, \XMM7 vaesenclast \T_key, \XMM8, \XMM8 vmovdqu (arg4, %r11), \T1 vpxor \T1, \XMM1, \XMM1 vmovdqu \XMM1, (arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM1 .endif vmovdqu 16*1(arg4, %r11), \T1 vpxor \T1, \XMM2, \XMM2 vmovdqu \XMM2, 16*1(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM2 .endif vmovdqu 16*2(arg4, %r11), \T1 vpxor \T1, \XMM3, \XMM3 vmovdqu \XMM3, 16*2(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM3 .endif vmovdqu 16*3(arg4, %r11), \T1 vpxor \T1, \XMM4, \XMM4 vmovdqu \XMM4, 16*3(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM4 .endif vmovdqu 16*4(arg4, %r11), \T1 vpxor \T1, \XMM5, \XMM5 vmovdqu \XMM5, 16*4(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM5 .endif vmovdqu 16*5(arg4, %r11), \T1 vpxor \T1, \XMM6, \XMM6 vmovdqu \XMM6, 16*5(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM6 .endif vmovdqu 16*6(arg4, %r11), \T1 vpxor \T1, \XMM7, \XMM7 vmovdqu \XMM7, 16*6(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM7 .endif vmovdqu 16*7(arg4, %r11), \T1 vpxor \T1, \XMM8, \XMM8 vmovdqu \XMM8, 16*7(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM8 .endif add $128, %r11 vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpxor TMP1(%rsp), \XMM1, \XMM1 # combine GHASHed value with the corresponding ciphertext vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap ############################################################################### .L_initial_blocks_done\@: .endm # encrypt 8 blocks at a time # ghash the 8 previously encrypted ciphertext blocks # arg1, arg2, arg3, arg4 are used as pointers only, not modified # r11 is the data offset value .macro GHASH_8_ENCRYPT_8_PARALLEL_AVX REP T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC vmovdqa \XMM1, \T2 vmovdqa \XMM2, TMP2(%rsp) vmovdqa \XMM3, TMP3(%rsp) vmovdqa \XMM4, TMP4(%rsp) vmovdqa \XMM5, TMP5(%rsp) vmovdqa \XMM6, TMP6(%rsp) vmovdqa \XMM7, TMP7(%rsp) vmovdqa \XMM8, TMP8(%rsp) .if \loop_idx == in_order vpaddd ONE(%rip), \CTR, \XMM1 # INCR CNT vpaddd ONE(%rip), \XMM1, \XMM2 vpaddd ONE(%rip), \XMM2, \XMM3 vpaddd ONE(%rip), \XMM3, \XMM4 vpaddd ONE(%rip), \XMM4, \XMM5 vpaddd ONE(%rip), \XMM5, \XMM6 vpaddd ONE(%rip), \XMM6, \XMM7 vpaddd ONE(%rip), \XMM7, \XMM8 vmovdqa \XMM8, \CTR vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap .else vpaddd ONEf(%rip), \CTR, \XMM1 # INCR CNT vpaddd ONEf(%rip), \XMM1, \XMM2 vpaddd ONEf(%rip), \XMM2, \XMM3 vpaddd ONEf(%rip), \XMM3, \XMM4 vpaddd ONEf(%rip), \XMM4, \XMM5 vpaddd ONEf(%rip), \XMM5, \XMM6 vpaddd ONEf(%rip), \XMM6, \XMM7 vpaddd ONEf(%rip), \XMM7, \XMM8 vmovdqa \XMM8, \CTR .endif ####################################################################### vmovdqu (arg1), \T1 vpxor \T1, \XMM1, \XMM1 vpxor \T1, \XMM2, \XMM2 vpxor \T1, \XMM3, \XMM3 vpxor \T1, \XMM4, \XMM4 vpxor \T1, \XMM5, \XMM5 vpxor \T1, \XMM6, \XMM6 vpxor \T1, \XMM7, \XMM7 vpxor \T1, \XMM8, \XMM8 ####################################################################### vmovdqu 16*1(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqu 16*2(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 ####################################################################### vmovdqu HashKey_8(arg2), \T5 vpclmulqdq $0x11, \T5, \T2, \T4 # T4 = a1*b1 vpclmulqdq $0x00, \T5, \T2, \T7 # T7 = a0*b0 vpshufd $0b01001110, \T2, \T6 vpxor \T2, \T6, \T6 vmovdqu HashKey_8_k(arg2), \T5 vpclmulqdq $0x00, \T5, \T6, \T6 vmovdqu 16*3(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP2(%rsp), \T1 vmovdqu HashKey_7(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqu HashKey_7_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*4(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 ####################################################################### vmovdqa TMP3(%rsp), \T1 vmovdqu HashKey_6(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqu HashKey_6_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*5(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP4(%rsp), \T1 vmovdqu HashKey_5(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqu HashKey_5_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*6(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP5(%rsp), \T1 vmovdqu HashKey_4(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqu HashKey_4_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*7(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP6(%rsp), \T1 vmovdqu HashKey_3(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqu HashKey_3_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*8(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP7(%rsp), \T1 vmovdqu HashKey_2(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqu HashKey_2_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 ####################################################################### vmovdqu 16*9(arg1), \T5 vaesenc \T5, \XMM1, \XMM1 vaesenc \T5, \XMM2, \XMM2 vaesenc \T5, \XMM3, \XMM3 vaesenc \T5, \XMM4, \XMM4 vaesenc \T5, \XMM5, \XMM5 vaesenc \T5, \XMM6, \XMM6 vaesenc \T5, \XMM7, \XMM7 vaesenc \T5, \XMM8, \XMM8 vmovdqa TMP8(%rsp), \T1 vmovdqu HashKey(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 vmovdqu HashKey_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 vpxor \T4, \T6, \T6 vpxor \T7, \T6, \T6 vmovdqu 16*10(arg1), \T5 i = 11 setreg .rep (\REP-9) vaesenc \T5, \XMM1, \XMM1 vaesenc \T5, \XMM2, \XMM2 vaesenc \T5, \XMM3, \XMM3 vaesenc \T5, \XMM4, \XMM4 vaesenc \T5, \XMM5, \XMM5 vaesenc \T5, \XMM6, \XMM6 vaesenc \T5, \XMM7, \XMM7 vaesenc \T5, \XMM8, \XMM8 vmovdqu 16*i(arg1), \T5 i = i + 1 setreg .endr i = 0 j = 1 setreg .rep 8 vpxor 16*i(arg4, %r11), \T5, \T2 .if \ENC_DEC == ENC vaesenclast \T2, reg_j, reg_j .else vaesenclast \T2, reg_j, \T3 vmovdqu 16*i(arg4, %r11), reg_j vmovdqu \T3, 16*i(arg3, %r11) .endif i = (i+1) j = (j+1) setreg .endr ####################################################################### vpslldq $8, \T6, \T3 # shift-L T3 2 DWs vpsrldq $8, \T6, \T6 # shift-R T2 2 DWs vpxor \T3, \T7, \T7 vpxor \T4, \T6, \T6 # accumulate the results in T6:T7 ####################################################################### #first phase of the reduction ####################################################################### vpslld $31, \T7, \T2 # packed right shifting << 31 vpslld $30, \T7, \T3 # packed right shifting shift << 30 vpslld $25, \T7, \T4 # packed right shifting shift << 25 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpsrldq $4, \T2, \T1 # shift-R T1 1 DW vpslldq $12, \T2, \T2 # shift-L T2 3 DWs vpxor \T2, \T7, \T7 # first phase of the reduction complete ####################################################################### .if \ENC_DEC == ENC vmovdqu \XMM1, 16*0(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM2, 16*1(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM3, 16*2(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM4, 16*3(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM5, 16*4(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM6, 16*5(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM7, 16*6(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM8, 16*7(arg3,%r11) # Write to the Ciphertext buffer .endif ####################################################################### #second phase of the reduction vpsrld $1, \T7, \T2 # packed left shifting >> 1 vpsrld $2, \T7, \T3 # packed left shifting >> 2 vpsrld $7, \T7, \T4 # packed left shifting >> 7 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpxor \T1, \T2, \T2 vpxor \T2, \T7, \T7 vpxor \T7, \T6, \T6 # the result is in T6 ####################################################################### vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap vpxor \T6, \XMM1, \XMM1 .endm # GHASH the last 4 ciphertext blocks. .macro GHASH_LAST_8_AVX T1 T2 T3 T4 T5 T6 T7 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 ## Karatsuba Method vpshufd $0b01001110, \XMM1, \T2 vpxor \XMM1, \T2, \T2 vmovdqu HashKey_8(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM1, \T6 vpclmulqdq $0x00, \T5, \XMM1, \T7 vmovdqu HashKey_8_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \XMM1 ###################### vpshufd $0b01001110, \XMM2, \T2 vpxor \XMM2, \T2, \T2 vmovdqu HashKey_7(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM2, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM2, \T4 vpxor \T4, \T7, \T7 vmovdqu HashKey_7_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM3, \T2 vpxor \XMM3, \T2, \T2 vmovdqu HashKey_6(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM3, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM3, \T4 vpxor \T4, \T7, \T7 vmovdqu HashKey_6_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM4, \T2 vpxor \XMM4, \T2, \T2 vmovdqu HashKey_5(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM4, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM4, \T4 vpxor \T4, \T7, \T7 vmovdqu HashKey_5_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM5, \T2 vpxor \XMM5, \T2, \T2 vmovdqu HashKey_4(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM5, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM5, \T4 vpxor \T4, \T7, \T7 vmovdqu HashKey_4_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM6, \T2 vpxor \XMM6, \T2, \T2 vmovdqu HashKey_3(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM6, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM6, \T4 vpxor \T4, \T7, \T7 vmovdqu HashKey_3_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM7, \T2 vpxor \XMM7, \T2, \T2 vmovdqu HashKey_2(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM7, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM7, \T4 vpxor \T4, \T7, \T7 vmovdqu HashKey_2_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vpshufd $0b01001110, \XMM8, \T2 vpxor \XMM8, \T2, \T2 vmovdqu HashKey(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM8, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM8, \T4 vpxor \T4, \T7, \T7 vmovdqu HashKey_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 vpxor \T6, \XMM1, \XMM1 vpxor \T7, \XMM1, \T2 vpslldq $8, \T2, \T4 vpsrldq $8, \T2, \T2 vpxor \T4, \T7, \T7 vpxor \T2, \T6, \T6 # <T6:T7> holds the result of # the accumulated carry-less multiplications ####################################################################### #first phase of the reduction vpslld $31, \T7, \T2 # packed right shifting << 31 vpslld $30, \T7, \T3 # packed right shifting shift << 30 vpslld $25, \T7, \T4 # packed right shifting shift << 25 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpsrldq $4, \T2, \T1 # shift-R T1 1 DW vpslldq $12, \T2, \T2 # shift-L T2 3 DWs vpxor \T2, \T7, \T7 # first phase of the reduction complete ####################################################################### #second phase of the reduction vpsrld $1, \T7, \T2 # packed left shifting >> 1 vpsrld $2, \T7, \T3 # packed left shifting >> 2 vpsrld $7, \T7, \T4 # packed left shifting >> 7 vpxor \T3, \T2, \T2 # xor the shifted versions vpxor \T4, \T2, \T2 vpxor \T1, \T2, \T2 vpxor \T2, \T7, \T7 vpxor \T7, \T6, \T6 # the result is in T6 .endm ############################################################# #void aesni_gcm_precomp_avx_gen2 # (gcm_data *my_ctx_data, # gcm_context_data *data, # u8 *hash_subkey# /* H, the Hash sub key input. Data starts on a 16-byte boundary. */ # u8 *iv, /* Pre-counter block j0: 4 byte salt # (from Security Association) concatenated with 8 byte # Initialisation Vector (from IPSec ESP Payload) # concatenated with 0x00000001. 16-byte aligned pointer. */ # const u8 *aad, /* Additional Authentication Data (AAD)*/ # u64 aad_len) /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ ############################################################# SYM_FUNC_START(aesni_gcm_init_avx_gen2) FUNC_SAVE INIT GHASH_MUL_AVX, PRECOMPUTE_AVX FUNC_RESTORE RET SYM_FUNC_END(aesni_gcm_init_avx_gen2) ############################################################################### #void aesni_gcm_enc_update_avx_gen2( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ # gcm_context_data *data, # u8 *out, /* Ciphertext output. Encrypt in-place is allowed. */ # const u8 *in, /* Plaintext input */ # u64 plaintext_len) /* Length of data in Bytes for encryption. */ ############################################################################### SYM_FUNC_START(aesni_gcm_enc_update_avx_gen2) FUNC_SAVE mov keysize, %eax cmp $32, %eax je key_256_enc_update cmp $16, %eax je key_128_enc_update # must be 192 GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 11 FUNC_RESTORE RET key_128_enc_update: GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 9 FUNC_RESTORE RET key_256_enc_update: GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 13 FUNC_RESTORE RET SYM_FUNC_END(aesni_gcm_enc_update_avx_gen2) ############################################################################### #void aesni_gcm_dec_update_avx_gen2( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ # gcm_context_data *data, # u8 *out, /* Plaintext output. Decrypt in-place is allowed. */ # const u8 *in, /* Ciphertext input */ # u64 plaintext_len) /* Length of data in Bytes for encryption. */ ############################################################################### SYM_FUNC_START(aesni_gcm_dec_update_avx_gen2) FUNC_SAVE mov keysize,%eax cmp $32, %eax je key_256_dec_update cmp $16, %eax je key_128_dec_update # must be 192 GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 11 FUNC_RESTORE RET key_128_dec_update: GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 9 FUNC_RESTORE RET key_256_dec_update: GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 13 FUNC_RESTORE RET SYM_FUNC_END(aesni_gcm_dec_update_avx_gen2) ############################################################################### #void aesni_gcm_finalize_avx_gen2( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ # gcm_context_data *data, # u8 *auth_tag, /* Authenticated Tag output. */ # u64 auth_tag_len)# /* Authenticated Tag Length in bytes. # Valid values are 16 (most likely), 12 or 8. */ ############################################################################### SYM_FUNC_START(aesni_gcm_finalize_avx_gen2) FUNC_SAVE mov keysize,%eax cmp $32, %eax je key_256_finalize cmp $16, %eax je key_128_finalize # must be 192 GCM_COMPLETE GHASH_MUL_AVX, 11, arg3, arg4 FUNC_RESTORE RET key_128_finalize: GCM_COMPLETE GHASH_MUL_AVX, 9, arg3, arg4 FUNC_RESTORE RET key_256_finalize: GCM_COMPLETE GHASH_MUL_AVX, 13, arg3, arg4 FUNC_RESTORE RET SYM_FUNC_END(aesni_gcm_finalize_avx_gen2) ############################################################################### # GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0) # Input: A and B (128-bits each, bit-reflected) # Output: C = A*B*x mod poly, (i.e. >>1 ) # To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input # GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly. ############################################################################### .macro GHASH_MUL_AVX2 GH HK T1 T2 T3 T4 T5 vpclmulqdq $0x11,\HK,\GH,\T1 # T1 = a1*b1 vpclmulqdq $0x00,\HK,\GH,\T2 # T2 = a0*b0 vpclmulqdq $0x01,\HK,\GH,\T3 # T3 = a1*b0 vpclmulqdq $0x10,\HK,\GH,\GH # GH = a0*b1 vpxor \T3, \GH, \GH vpsrldq $8 , \GH, \T3 # shift-R GH 2 DWs vpslldq $8 , \GH, \GH # shift-L GH 2 DWs vpxor \T3, \T1, \T1 vpxor \T2, \GH, \GH ####################################################################### #first phase of the reduction vmovdqa POLY2(%rip), \T3 vpclmulqdq $0x01, \GH, \T3, \T2 vpslldq $8, \T2, \T2 # shift-L T2 2 DWs vpxor \T2, \GH, \GH # first phase of the reduction complete ####################################################################### #second phase of the reduction vpclmulqdq $0x00, \GH, \T3, \T2 vpsrldq $4, \T2, \T2 # shift-R T2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R) vpclmulqdq $0x10, \GH, \T3, \GH vpslldq $4, \GH, \GH # shift-L GH 1 DW (Shift-L 1-DW to obtain result with no shifts) vpxor \T2, \GH, \GH # second phase of the reduction complete ####################################################################### vpxor \T1, \GH, \GH # the result is in GH .endm .macro PRECOMPUTE_AVX2 HK T1 T2 T3 T4 T5 T6 # Haskey_i_k holds XORed values of the low and high parts of the Haskey_i vmovdqa \HK, \T5 GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^2<<1 mod poly vmovdqu \T5, HashKey_2(arg2) # [HashKey_2] = HashKey^2<<1 mod poly GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^3<<1 mod poly vmovdqu \T5, HashKey_3(arg2) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^4<<1 mod poly vmovdqu \T5, HashKey_4(arg2) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^5<<1 mod poly vmovdqu \T5, HashKey_5(arg2) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^6<<1 mod poly vmovdqu \T5, HashKey_6(arg2) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^7<<1 mod poly vmovdqu \T5, HashKey_7(arg2) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^8<<1 mod poly vmovdqu \T5, HashKey_8(arg2) .endm ## if a = number of total plaintext bytes ## b = floor(a/16) ## num_initial_blocks = b mod 4# ## encrypt the initial num_initial_blocks blocks and apply ghash on the ciphertext ## r10, r11, r12, rax are clobbered ## arg1, arg2, arg3, arg4 are used as pointers only, not modified .macro INITIAL_BLOCKS_AVX2 REP num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC VER i = (8-\num_initial_blocks) setreg vmovdqu AadHash(arg2), reg_i # start AES for num_initial_blocks blocks vmovdqu CurCount(arg2), \CTR i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, reg_i vpshufb SHUF_MASK(%rip), reg_i, reg_i # perform a 16Byte swap i = (i+1) setreg .endr vmovdqa (arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpxor \T_key, reg_i, reg_i i = (i+1) setreg .endr j = 1 setreg .rep \REP vmovdqa 16*j(arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vaesenc \T_key, reg_i, reg_i i = (i+1) setreg .endr j = (j+1) setreg .endr vmovdqa 16*j(arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vaesenclast \T_key, reg_i, reg_i i = (i+1) setreg .endr i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vmovdqu (arg4, %r11), \T1 vpxor \T1, reg_i, reg_i vmovdqu reg_i, (arg3 , %r11) # write back ciphertext for # num_initial_blocks blocks add $16, %r11 .if \ENC_DEC == DEC vmovdqa \T1, reg_i .endif vpshufb SHUF_MASK(%rip), reg_i, reg_i # prepare ciphertext for GHASH computations i = (i+1) setreg .endr i = (8-\num_initial_blocks) j = (9-\num_initial_blocks) setreg .rep \num_initial_blocks vpxor reg_i, reg_j, reg_j GHASH_MUL_AVX2 reg_j, \T2, \T1, \T3, \T4, \T5, \T6 # apply GHASH on num_initial_blocks blocks i = (i+1) j = (j+1) setreg .endr # XMM8 has the combined result here vmovdqa \XMM8, TMP1(%rsp) vmovdqa \XMM8, \T3 cmp $128, %r13 jl .L_initial_blocks_done\@ # no need for precomputed constants ############################################################################### # Haskey_i_k holds XORed values of the low and high parts of the Haskey_i vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM1 vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM2 vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM3 vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM4 vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM5 vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM6 vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM7 vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpaddd ONE(%rip), \CTR, \CTR # INCR Y0 vmovdqa \CTR, \XMM8 vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap vmovdqa (arg1), \T_key vpxor \T_key, \XMM1, \XMM1 vpxor \T_key, \XMM2, \XMM2 vpxor \T_key, \XMM3, \XMM3 vpxor \T_key, \XMM4, \XMM4 vpxor \T_key, \XMM5, \XMM5 vpxor \T_key, \XMM6, \XMM6 vpxor \T_key, \XMM7, \XMM7 vpxor \T_key, \XMM8, \XMM8 i = 1 setreg .rep \REP # do REP rounds vmovdqa 16*i(arg1), \T_key vaesenc \T_key, \XMM1, \XMM1 vaesenc \T_key, \XMM2, \XMM2 vaesenc \T_key, \XMM3, \XMM3 vaesenc \T_key, \XMM4, \XMM4 vaesenc \T_key, \XMM5, \XMM5 vaesenc \T_key, \XMM6, \XMM6 vaesenc \T_key, \XMM7, \XMM7 vaesenc \T_key, \XMM8, \XMM8 i = (i+1) setreg .endr vmovdqa 16*i(arg1), \T_key vaesenclast \T_key, \XMM1, \XMM1 vaesenclast \T_key, \XMM2, \XMM2 vaesenclast \T_key, \XMM3, \XMM3 vaesenclast \T_key, \XMM4, \XMM4 vaesenclast \T_key, \XMM5, \XMM5 vaesenclast \T_key, \XMM6, \XMM6 vaesenclast \T_key, \XMM7, \XMM7 vaesenclast \T_key, \XMM8, \XMM8 vmovdqu (arg4, %r11), \T1 vpxor \T1, \XMM1, \XMM1 vmovdqu \XMM1, (arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM1 .endif vmovdqu 16*1(arg4, %r11), \T1 vpxor \T1, \XMM2, \XMM2 vmovdqu \XMM2, 16*1(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM2 .endif vmovdqu 16*2(arg4, %r11), \T1 vpxor \T1, \XMM3, \XMM3 vmovdqu \XMM3, 16*2(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM3 .endif vmovdqu 16*3(arg4, %r11), \T1 vpxor \T1, \XMM4, \XMM4 vmovdqu \XMM4, 16*3(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM4 .endif vmovdqu 16*4(arg4, %r11), \T1 vpxor \T1, \XMM5, \XMM5 vmovdqu \XMM5, 16*4(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM5 .endif vmovdqu 16*5(arg4, %r11), \T1 vpxor \T1, \XMM6, \XMM6 vmovdqu \XMM6, 16*5(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM6 .endif vmovdqu 16*6(arg4, %r11), \T1 vpxor \T1, \XMM7, \XMM7 vmovdqu \XMM7, 16*6(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM7 .endif vmovdqu 16*7(arg4, %r11), \T1 vpxor \T1, \XMM8, \XMM8 vmovdqu \XMM8, 16*7(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM8 .endif add $128, %r11 vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpxor TMP1(%rsp), \XMM1, \XMM1 # combine GHASHed value with # the corresponding ciphertext vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap ############################################################################### .L_initial_blocks_done\@: .endm # encrypt 8 blocks at a time # ghash the 8 previously encrypted ciphertext blocks # arg1, arg2, arg3, arg4 are used as pointers only, not modified # r11 is the data offset value .macro GHASH_8_ENCRYPT_8_PARALLEL_AVX2 REP T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC vmovdqa \XMM1, \T2 vmovdqa \XMM2, TMP2(%rsp) vmovdqa \XMM3, TMP3(%rsp) vmovdqa \XMM4, TMP4(%rsp) vmovdqa \XMM5, TMP5(%rsp) vmovdqa \XMM6, TMP6(%rsp) vmovdqa \XMM7, TMP7(%rsp) vmovdqa \XMM8, TMP8(%rsp) .if \loop_idx == in_order vpaddd ONE(%rip), \CTR, \XMM1 # INCR CNT vpaddd ONE(%rip), \XMM1, \XMM2 vpaddd ONE(%rip), \XMM2, \XMM3 vpaddd ONE(%rip), \XMM3, \XMM4 vpaddd ONE(%rip), \XMM4, \XMM5 vpaddd ONE(%rip), \XMM5, \XMM6 vpaddd ONE(%rip), \XMM6, \XMM7 vpaddd ONE(%rip), \XMM7, \XMM8 vmovdqa \XMM8, \CTR vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap .else vpaddd ONEf(%rip), \CTR, \XMM1 # INCR CNT vpaddd ONEf(%rip), \XMM1, \XMM2 vpaddd ONEf(%rip), \XMM2, \XMM3 vpaddd ONEf(%rip), \XMM3, \XMM4 vpaddd ONEf(%rip), \XMM4, \XMM5 vpaddd ONEf(%rip), \XMM5, \XMM6 vpaddd ONEf(%rip), \XMM6, \XMM7 vpaddd ONEf(%rip), \XMM7, \XMM8 vmovdqa \XMM8, \CTR .endif ####################################################################### vmovdqu (arg1), \T1 vpxor \T1, \XMM1, \XMM1 vpxor \T1, \XMM2, \XMM2 vpxor \T1, \XMM3, \XMM3 vpxor \T1, \XMM4, \XMM4 vpxor \T1, \XMM5, \XMM5 vpxor \T1, \XMM6, \XMM6 vpxor \T1, \XMM7, \XMM7 vpxor \T1, \XMM8, \XMM8 ####################################################################### vmovdqu 16*1(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqu 16*2(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 ####################################################################### vmovdqu HashKey_8(arg2), \T5 vpclmulqdq $0x11, \T5, \T2, \T4 # T4 = a1*b1 vpclmulqdq $0x00, \T5, \T2, \T7 # T7 = a0*b0 vpclmulqdq $0x01, \T5, \T2, \T6 # T6 = a1*b0 vpclmulqdq $0x10, \T5, \T2, \T5 # T5 = a0*b1 vpxor \T5, \T6, \T6 vmovdqu 16*3(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP2(%rsp), \T1 vmovdqu HashKey_7(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*4(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 ####################################################################### vmovdqa TMP3(%rsp), \T1 vmovdqu HashKey_6(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*5(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP4(%rsp), \T1 vmovdqu HashKey_5(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*6(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP5(%rsp), \T1 vmovdqu HashKey_4(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*7(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP6(%rsp), \T1 vmovdqu HashKey_3(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vmovdqu 16*8(arg1), \T1 vaesenc \T1, \XMM1, \XMM1 vaesenc \T1, \XMM2, \XMM2 vaesenc \T1, \XMM3, \XMM3 vaesenc \T1, \XMM4, \XMM4 vaesenc \T1, \XMM5, \XMM5 vaesenc \T1, \XMM6, \XMM6 vaesenc \T1, \XMM7, \XMM7 vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP7(%rsp), \T1 vmovdqu HashKey_2(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 ####################################################################### vmovdqu 16*9(arg1), \T5 vaesenc \T5, \XMM1, \XMM1 vaesenc \T5, \XMM2, \XMM2 vaesenc \T5, \XMM3, \XMM3 vaesenc \T5, \XMM4, \XMM4 vaesenc \T5, \XMM5, \XMM5 vaesenc \T5, \XMM6, \XMM6 vaesenc \T5, \XMM7, \XMM7 vaesenc \T5, \XMM8, \XMM8 vmovdqa TMP8(%rsp), \T1 vmovdqu HashKey(arg2), \T5 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 vpclmulqdq $0x01, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x10, \T5, \T1, \T3 vpxor \T3, \T6, \T6 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T1 vmovdqu 16*10(arg1), \T5 i = 11 setreg .rep (\REP-9) vaesenc \T5, \XMM1, \XMM1 vaesenc \T5, \XMM2, \XMM2 vaesenc \T5, \XMM3, \XMM3 vaesenc \T5, \XMM4, \XMM4 vaesenc \T5, \XMM5, \XMM5 vaesenc \T5, \XMM6, \XMM6 vaesenc \T5, \XMM7, \XMM7 vaesenc \T5, \XMM8, \XMM8 vmovdqu 16*i(arg1), \T5 i = i + 1 setreg .endr i = 0 j = 1 setreg .rep 8 vpxor 16*i(arg4, %r11), \T5, \T2 .if \ENC_DEC == ENC vaesenclast \T2, reg_j, reg_j .else vaesenclast \T2, reg_j, \T3 vmovdqu 16*i(arg4, %r11), reg_j vmovdqu \T3, 16*i(arg3, %r11) .endif i = (i+1) j = (j+1) setreg .endr ####################################################################### vpslldq $8, \T6, \T3 # shift-L T3 2 DWs vpsrldq $8, \T6, \T6 # shift-R T2 2 DWs vpxor \T3, \T7, \T7 vpxor \T6, \T1, \T1 # accumulate the results in T1:T7 ####################################################################### #first phase of the reduction vmovdqa POLY2(%rip), \T3 vpclmulqdq $0x01, \T7, \T3, \T2 vpslldq $8, \T2, \T2 # shift-L xmm2 2 DWs vpxor \T2, \T7, \T7 # first phase of the reduction complete ####################################################################### .if \ENC_DEC == ENC vmovdqu \XMM1, 16*0(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM2, 16*1(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM3, 16*2(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM4, 16*3(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM5, 16*4(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM6, 16*5(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM7, 16*6(arg3,%r11) # Write to the Ciphertext buffer vmovdqu \XMM8, 16*7(arg3,%r11) # Write to the Ciphertext buffer .endif ####################################################################### #second phase of the reduction vpclmulqdq $0x00, \T7, \T3, \T2 vpsrldq $4, \T2, \T2 # shift-R xmm2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R) vpclmulqdq $0x10, \T7, \T3, \T4 vpslldq $4, \T4, \T4 # shift-L xmm0 1 DW (Shift-L 1-DW to obtain result with no shifts) vpxor \T2, \T4, \T4 # second phase of the reduction complete ####################################################################### vpxor \T4, \T1, \T1 # the result is in T1 vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap vpxor \T1, \XMM1, \XMM1 .endm # GHASH the last 4 ciphertext blocks. .macro GHASH_LAST_8_AVX2 T1 T2 T3 T4 T5 T6 T7 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 ## Karatsuba Method vmovdqu HashKey_8(arg2), \T5 vpshufd $0b01001110, \XMM1, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM1, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM1, \T6 vpclmulqdq $0x00, \T5, \XMM1, \T7 vpclmulqdq $0x00, \T3, \T2, \XMM1 ###################### vmovdqu HashKey_7(arg2), \T5 vpshufd $0b01001110, \XMM2, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM2, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM2, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM2, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqu HashKey_6(arg2), \T5 vpshufd $0b01001110, \XMM3, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM3, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM3, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM3, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqu HashKey_5(arg2), \T5 vpshufd $0b01001110, \XMM4, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM4, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM4, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM4, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqu HashKey_4(arg2), \T5 vpshufd $0b01001110, \XMM5, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM5, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM5, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM5, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqu HashKey_3(arg2), \T5 vpshufd $0b01001110, \XMM6, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM6, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM6, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM6, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqu HashKey_2(arg2), \T5 vpshufd $0b01001110, \XMM7, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM7, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM7, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM7, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 ###################### vmovdqu HashKey(arg2), \T5 vpshufd $0b01001110, \XMM8, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM8, \T2, \T2 vpxor \T5, \T3, \T3 vpclmulqdq $0x11, \T5, \XMM8, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM8, \T4 vpxor \T4, \T7, \T7 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 vpxor \T6, \XMM1, \XMM1 vpxor \T7, \XMM1, \T2 vpslldq $8, \T2, \T4 vpsrldq $8, \T2, \T2 vpxor \T4, \T7, \T7 vpxor \T2, \T6, \T6 # <T6:T7> holds the result of the # accumulated carry-less multiplications ####################################################################### #first phase of the reduction vmovdqa POLY2(%rip), \T3 vpclmulqdq $0x01, \T7, \T3, \T2 vpslldq $8, \T2, \T2 # shift-L xmm2 2 DWs vpxor \T2, \T7, \T7 # first phase of the reduction complete ####################################################################### #second phase of the reduction vpclmulqdq $0x00, \T7, \T3, \T2 vpsrldq $4, \T2, \T2 # shift-R T2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R) vpclmulqdq $0x10, \T7, \T3, \T4 vpslldq $4, \T4, \T4 # shift-L T4 1 DW (Shift-L 1-DW to obtain result with no shifts) vpxor \T2, \T4, \T4 # second phase of the reduction complete ####################################################################### vpxor \T4, \T6, \T6 # the result is in T6 .endm ############################################################# #void aesni_gcm_init_avx_gen4 # (gcm_data *my_ctx_data, # gcm_context_data *data, # u8 *iv, /* Pre-counter block j0: 4 byte salt # (from Security Association) concatenated with 8 byte # Initialisation Vector (from IPSec ESP Payload) # concatenated with 0x00000001. 16-byte aligned pointer. */ # u8 *hash_subkey# /* H, the Hash sub key input. Data starts on a 16-byte boundary. */ # const u8 *aad, /* Additional Authentication Data (AAD)*/ # u64 aad_len) /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ ############################################################# SYM_FUNC_START(aesni_gcm_init_avx_gen4) FUNC_SAVE INIT GHASH_MUL_AVX2, PRECOMPUTE_AVX2 FUNC_RESTORE RET SYM_FUNC_END(aesni_gcm_init_avx_gen4) ############################################################################### #void aesni_gcm_enc_avx_gen4( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ # gcm_context_data *data, # u8 *out, /* Ciphertext output. Encrypt in-place is allowed. */ # const u8 *in, /* Plaintext input */ # u64 plaintext_len) /* Length of data in Bytes for encryption. */ ############################################################################### SYM_FUNC_START(aesni_gcm_enc_update_avx_gen4) FUNC_SAVE mov keysize,%eax cmp $32, %eax je key_256_enc_update4 cmp $16, %eax je key_128_enc_update4 # must be 192 GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 11 FUNC_RESTORE RET key_128_enc_update4: GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 9 FUNC_RESTORE RET key_256_enc_update4: GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 13 FUNC_RESTORE RET SYM_FUNC_END(aesni_gcm_enc_update_avx_gen4) ############################################################################### #void aesni_gcm_dec_update_avx_gen4( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ # gcm_context_data *data, # u8 *out, /* Plaintext output. Decrypt in-place is allowed. */ # const u8 *in, /* Ciphertext input */ # u64 plaintext_len) /* Length of data in Bytes for encryption. */ ############################################################################### SYM_FUNC_START(aesni_gcm_dec_update_avx_gen4) FUNC_SAVE mov keysize,%eax cmp $32, %eax je key_256_dec_update4 cmp $16, %eax je key_128_dec_update4 # must be 192 GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 11 FUNC_RESTORE RET key_128_dec_update4: GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 9 FUNC_RESTORE RET key_256_dec_update4: GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 13 FUNC_RESTORE RET SYM_FUNC_END(aesni_gcm_dec_update_avx_gen4) ############################################################################### #void aesni_gcm_finalize_avx_gen4( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ # gcm_context_data *data, # u8 *auth_tag, /* Authenticated Tag output. */ # u64 auth_tag_len)# /* Authenticated Tag Length in bytes. # Valid values are 16 (most likely), 12 or 8. */ ############################################################################### SYM_FUNC_START(aesni_gcm_finalize_avx_gen4) FUNC_SAVE mov keysize,%eax cmp $32, %eax je key_256_finalize4 cmp $16, %eax je key_128_finalize4 # must be 192 GCM_COMPLETE GHASH_MUL_AVX2, 11, arg3, arg4 FUNC_RESTORE RET key_128_finalize4: GCM_COMPLETE GHASH_MUL_AVX2, 9, arg3, arg4 FUNC_RESTORE RET key_256_finalize4: GCM_COMPLETE GHASH_MUL_AVX2, 13, arg3, arg4 FUNC_RESTORE RET SYM_FUNC_END(aesni_gcm_finalize_avx_gen4) |