Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> */ #include <linux/arm-smccc.h> #include <linux/preempt.h> #include <linux/kvm_host.h> #include <linux/uaccess.h> #include <linux/wait.h> #include <asm/cputype.h> #include <asm/kvm_emulate.h> #include <kvm/arm_psci.h> #include <kvm/arm_hypercalls.h> /* * This is an implementation of the Power State Coordination Interface * as described in ARM document number ARM DEN 0022A. */ #define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1) static unsigned long psci_affinity_mask(unsigned long affinity_level) { if (affinity_level <= 3) return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level); return 0; } static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu) { /* * NOTE: For simplicity, we make VCPU suspend emulation to be * same-as WFI (Wait-for-interrupt) emulation. * * This means for KVM the wakeup events are interrupts and * this is consistent with intended use of StateID as described * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A). * * Further, we also treat power-down request to be same as * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2 * specification (ARM DEN 0022A). This means all suspend states * for KVM will preserve the register state. */ kvm_vcpu_wfi(vcpu); return PSCI_RET_SUCCESS; } static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu, unsigned long affinity) { return !(affinity & ~MPIDR_HWID_BITMASK); } static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu) { struct vcpu_reset_state *reset_state; struct kvm *kvm = source_vcpu->kvm; struct kvm_vcpu *vcpu = NULL; int ret = PSCI_RET_SUCCESS; unsigned long cpu_id; cpu_id = smccc_get_arg1(source_vcpu); if (!kvm_psci_valid_affinity(source_vcpu, cpu_id)) return PSCI_RET_INVALID_PARAMS; vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id); /* * Make sure the caller requested a valid CPU and that the CPU is * turned off. */ if (!vcpu) return PSCI_RET_INVALID_PARAMS; spin_lock(&vcpu->arch.mp_state_lock); if (!kvm_arm_vcpu_stopped(vcpu)) { if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1) ret = PSCI_RET_ALREADY_ON; else ret = PSCI_RET_INVALID_PARAMS; goto out_unlock; } reset_state = &vcpu->arch.reset_state; reset_state->pc = smccc_get_arg2(source_vcpu); /* Propagate caller endianness */ reset_state->be = kvm_vcpu_is_be(source_vcpu); /* * NOTE: We always update r0 (or x0) because for PSCI v0.1 * the general purpose registers are undefined upon CPU_ON. */ reset_state->r0 = smccc_get_arg3(source_vcpu); reset_state->reset = true; kvm_make_request(KVM_REQ_VCPU_RESET, vcpu); /* * Make sure the reset request is observed if the RUNNABLE mp_state is * observed. */ smp_wmb(); WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); kvm_vcpu_wake_up(vcpu); out_unlock: spin_unlock(&vcpu->arch.mp_state_lock); return ret; } static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu) { int matching_cpus = 0; unsigned long i, mpidr; unsigned long target_affinity; unsigned long target_affinity_mask; unsigned long lowest_affinity_level; struct kvm *kvm = vcpu->kvm; struct kvm_vcpu *tmp; target_affinity = smccc_get_arg1(vcpu); lowest_affinity_level = smccc_get_arg2(vcpu); if (!kvm_psci_valid_affinity(vcpu, target_affinity)) return PSCI_RET_INVALID_PARAMS; /* Determine target affinity mask */ target_affinity_mask = psci_affinity_mask(lowest_affinity_level); if (!target_affinity_mask) return PSCI_RET_INVALID_PARAMS; /* Ignore other bits of target affinity */ target_affinity &= target_affinity_mask; /* * If one or more VCPU matching target affinity are running * then ON else OFF */ kvm_for_each_vcpu(i, tmp, kvm) { mpidr = kvm_vcpu_get_mpidr_aff(tmp); if ((mpidr & target_affinity_mask) == target_affinity) { matching_cpus++; if (!kvm_arm_vcpu_stopped(tmp)) return PSCI_0_2_AFFINITY_LEVEL_ON; } } if (!matching_cpus) return PSCI_RET_INVALID_PARAMS; return PSCI_0_2_AFFINITY_LEVEL_OFF; } static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags) { unsigned long i; struct kvm_vcpu *tmp; /* * The KVM ABI specifies that a system event exit may call KVM_RUN * again and may perform shutdown/reboot at a later time that when the * actual request is made. Since we are implementing PSCI and a * caller of PSCI reboot and shutdown expects that the system shuts * down or reboots immediately, let's make sure that VCPUs are not run * after this call is handled and before the VCPUs have been * re-initialized. */ kvm_for_each_vcpu(i, tmp, vcpu->kvm) { spin_lock(&tmp->arch.mp_state_lock); WRITE_ONCE(tmp->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); spin_unlock(&tmp->arch.mp_state_lock); } kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP); memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); vcpu->run->system_event.type = type; vcpu->run->system_event.ndata = 1; vcpu->run->system_event.data[0] = flags; vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; } static void kvm_psci_system_off(struct kvm_vcpu *vcpu) { kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0); } static void kvm_psci_system_reset(struct kvm_vcpu *vcpu) { kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0); } static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu) { kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2); } static void kvm_psci_system_suspend(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; memset(&run->system_event, 0, sizeof(vcpu->run->system_event)); run->system_event.type = KVM_SYSTEM_EVENT_SUSPEND; run->exit_reason = KVM_EXIT_SYSTEM_EVENT; } static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu) { int i; /* * Zero the input registers' upper 32 bits. They will be fully * zeroed on exit, so we're fine changing them in place. */ for (i = 1; i < 4; i++) vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i))); } static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn) { /* * Prevent 32 bit guests from calling 64 bit PSCI functions. */ if ((fn & PSCI_0_2_64BIT) && vcpu_mode_is_32bit(vcpu)) return PSCI_RET_NOT_SUPPORTED; return 0; } static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu) { u32 psci_fn = smccc_get_function(vcpu); unsigned long val; int ret = 1; switch (psci_fn) { case PSCI_0_2_FN_PSCI_VERSION: /* * Bits[31:16] = Major Version = 0 * Bits[15:0] = Minor Version = 2 */ val = KVM_ARM_PSCI_0_2; break; case PSCI_0_2_FN_CPU_SUSPEND: case PSCI_0_2_FN64_CPU_SUSPEND: val = kvm_psci_vcpu_suspend(vcpu); break; case PSCI_0_2_FN_CPU_OFF: kvm_arm_vcpu_power_off(vcpu); val = PSCI_RET_SUCCESS; break; case PSCI_0_2_FN_CPU_ON: kvm_psci_narrow_to_32bit(vcpu); fallthrough; case PSCI_0_2_FN64_CPU_ON: val = kvm_psci_vcpu_on(vcpu); break; case PSCI_0_2_FN_AFFINITY_INFO: kvm_psci_narrow_to_32bit(vcpu); fallthrough; case PSCI_0_2_FN64_AFFINITY_INFO: val = kvm_psci_vcpu_affinity_info(vcpu); break; case PSCI_0_2_FN_MIGRATE_INFO_TYPE: /* * Trusted OS is MP hence does not require migration * or * Trusted OS is not present */ val = PSCI_0_2_TOS_MP; break; case PSCI_0_2_FN_SYSTEM_OFF: kvm_psci_system_off(vcpu); /* * We shouldn't be going back to guest VCPU after * receiving SYSTEM_OFF request. * * If user space accidentally/deliberately resumes * guest VCPU after SYSTEM_OFF request then guest * VCPU should see internal failure from PSCI return * value. To achieve this, we preload r0 (or x0) with * PSCI return value INTERNAL_FAILURE. */ val = PSCI_RET_INTERNAL_FAILURE; ret = 0; break; case PSCI_0_2_FN_SYSTEM_RESET: kvm_psci_system_reset(vcpu); /* * Same reason as SYSTEM_OFF for preloading r0 (or x0) * with PSCI return value INTERNAL_FAILURE. */ val = PSCI_RET_INTERNAL_FAILURE; ret = 0; break; default: val = PSCI_RET_NOT_SUPPORTED; break; } smccc_set_retval(vcpu, val, 0, 0, 0); return ret; } static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor) { unsigned long val = PSCI_RET_NOT_SUPPORTED; u32 psci_fn = smccc_get_function(vcpu); struct kvm *kvm = vcpu->kvm; u32 arg; int ret = 1; switch(psci_fn) { case PSCI_0_2_FN_PSCI_VERSION: val = minor == 0 ? KVM_ARM_PSCI_1_0 : KVM_ARM_PSCI_1_1; break; case PSCI_1_0_FN_PSCI_FEATURES: arg = smccc_get_arg1(vcpu); val = kvm_psci_check_allowed_function(vcpu, arg); if (val) break; val = PSCI_RET_NOT_SUPPORTED; switch(arg) { case PSCI_0_2_FN_PSCI_VERSION: case PSCI_0_2_FN_CPU_SUSPEND: case PSCI_0_2_FN64_CPU_SUSPEND: case PSCI_0_2_FN_CPU_OFF: case PSCI_0_2_FN_CPU_ON: case PSCI_0_2_FN64_CPU_ON: case PSCI_0_2_FN_AFFINITY_INFO: case PSCI_0_2_FN64_AFFINITY_INFO: case PSCI_0_2_FN_MIGRATE_INFO_TYPE: case PSCI_0_2_FN_SYSTEM_OFF: case PSCI_0_2_FN_SYSTEM_RESET: case PSCI_1_0_FN_PSCI_FEATURES: case ARM_SMCCC_VERSION_FUNC_ID: val = 0; break; case PSCI_1_0_FN_SYSTEM_SUSPEND: case PSCI_1_0_FN64_SYSTEM_SUSPEND: if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags)) val = 0; break; case PSCI_1_1_FN_SYSTEM_RESET2: case PSCI_1_1_FN64_SYSTEM_RESET2: if (minor >= 1) val = 0; break; } break; case PSCI_1_0_FN_SYSTEM_SUSPEND: kvm_psci_narrow_to_32bit(vcpu); fallthrough; case PSCI_1_0_FN64_SYSTEM_SUSPEND: /* * Return directly to userspace without changing the vCPU's * registers. Userspace depends on reading the SMCCC parameters * to implement SYSTEM_SUSPEND. */ if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags)) { kvm_psci_system_suspend(vcpu); return 0; } break; case PSCI_1_1_FN_SYSTEM_RESET2: kvm_psci_narrow_to_32bit(vcpu); fallthrough; case PSCI_1_1_FN64_SYSTEM_RESET2: if (minor >= 1) { arg = smccc_get_arg1(vcpu); if (arg <= PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET || arg >= PSCI_1_1_RESET_TYPE_VENDOR_START) { kvm_psci_system_reset2(vcpu); vcpu_set_reg(vcpu, 0, PSCI_RET_INTERNAL_FAILURE); return 0; } val = PSCI_RET_INVALID_PARAMS; break; } break; default: return kvm_psci_0_2_call(vcpu); } smccc_set_retval(vcpu, val, 0, 0, 0); return ret; } static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu) { u32 psci_fn = smccc_get_function(vcpu); unsigned long val; switch (psci_fn) { case KVM_PSCI_FN_CPU_OFF: kvm_arm_vcpu_power_off(vcpu); val = PSCI_RET_SUCCESS; break; case KVM_PSCI_FN_CPU_ON: val = kvm_psci_vcpu_on(vcpu); break; default: val = PSCI_RET_NOT_SUPPORTED; break; } smccc_set_retval(vcpu, val, 0, 0, 0); return 1; } /** * kvm_psci_call - handle PSCI call if r0 value is in range * @vcpu: Pointer to the VCPU struct * * Handle PSCI calls from guests through traps from HVC instructions. * The calling convention is similar to SMC calls to the secure world * where the function number is placed in r0. * * This function returns: > 0 (success), 0 (success but exit to user * space), and < 0 (errors) * * Errors: * -EINVAL: Unrecognized PSCI function */ int kvm_psci_call(struct kvm_vcpu *vcpu) { u32 psci_fn = smccc_get_function(vcpu); int version = kvm_psci_version(vcpu); unsigned long val; val = kvm_psci_check_allowed_function(vcpu, psci_fn); if (val) { smccc_set_retval(vcpu, val, 0, 0, 0); return 1; } switch (version) { case KVM_ARM_PSCI_1_1: return kvm_psci_1_x_call(vcpu, 1); case KVM_ARM_PSCI_1_0: return kvm_psci_1_x_call(vcpu, 0); case KVM_ARM_PSCI_0_2: return kvm_psci_0_2_call(vcpu); case KVM_ARM_PSCI_0_1: return kvm_psci_0_1_call(vcpu); default: WARN_ONCE(1, "Unknown PSCI version %d", version); smccc_set_retval(vcpu, SMCCC_RET_NOT_SUPPORTED, 0, 0, 0); return 1; } } |