Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 | // SPDX-License-Identifier: GPL-2.0 /* * kvm guest debug support * * Copyright IBM Corp. 2014 * * Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com> */ #include <linux/kvm_host.h> #include <linux/errno.h> #include "kvm-s390.h" #include "gaccess.h" /* * Extends the address range given by *start and *stop to include the address * range starting with estart and the length len. Takes care of overflowing * intervals and tries to minimize the overall interval size. */ static void extend_address_range(u64 *start, u64 *stop, u64 estart, int len) { u64 estop; if (len > 0) len--; else len = 0; estop = estart + len; /* 0-0 range represents "not set" */ if ((*start == 0) && (*stop == 0)) { *start = estart; *stop = estop; } else if (*start <= *stop) { /* increase the existing range */ if (estart < *start) *start = estart; if (estop > *stop) *stop = estop; } else { /* "overflowing" interval, whereby *stop > *start */ if (estart <= *stop) { if (estop > *stop) *stop = estop; } else if (estop > *start) { if (estart < *start) *start = estart; } /* minimize the range */ else if ((estop - *stop) < (*start - estart)) *stop = estop; else *start = estart; } } #define MAX_INST_SIZE 6 static void enable_all_hw_bp(struct kvm_vcpu *vcpu) { unsigned long start, len; u64 *cr9 = &vcpu->arch.sie_block->gcr[9]; u64 *cr10 = &vcpu->arch.sie_block->gcr[10]; u64 *cr11 = &vcpu->arch.sie_block->gcr[11]; int i; if (vcpu->arch.guestdbg.nr_hw_bp <= 0 || vcpu->arch.guestdbg.hw_bp_info == NULL) return; /* * If the guest is not interested in branching events, we can safely * limit them to the PER address range. */ if (!(*cr9 & PER_EVENT_BRANCH)) *cr9 |= PER_CONTROL_BRANCH_ADDRESS; *cr9 |= PER_EVENT_IFETCH | PER_EVENT_BRANCH; for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) { start = vcpu->arch.guestdbg.hw_bp_info[i].addr; len = vcpu->arch.guestdbg.hw_bp_info[i].len; /* * The instruction in front of the desired bp has to * report instruction-fetching events */ if (start < MAX_INST_SIZE) { len += start; start = 0; } else { start -= MAX_INST_SIZE; len += MAX_INST_SIZE; } extend_address_range(cr10, cr11, start, len); } } static void enable_all_hw_wp(struct kvm_vcpu *vcpu) { unsigned long start, len; u64 *cr9 = &vcpu->arch.sie_block->gcr[9]; u64 *cr10 = &vcpu->arch.sie_block->gcr[10]; u64 *cr11 = &vcpu->arch.sie_block->gcr[11]; int i; if (vcpu->arch.guestdbg.nr_hw_wp <= 0 || vcpu->arch.guestdbg.hw_wp_info == NULL) return; /* if host uses storage alternation for special address * spaces, enable all events and give all to the guest */ if (*cr9 & PER_EVENT_STORE && *cr9 & PER_CONTROL_ALTERATION) { *cr9 &= ~PER_CONTROL_ALTERATION; *cr10 = 0; *cr11 = -1UL; } else { *cr9 &= ~PER_CONTROL_ALTERATION; *cr9 |= PER_EVENT_STORE; for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) { start = vcpu->arch.guestdbg.hw_wp_info[i].addr; len = vcpu->arch.guestdbg.hw_wp_info[i].len; extend_address_range(cr10, cr11, start, len); } } } void kvm_s390_backup_guest_per_regs(struct kvm_vcpu *vcpu) { vcpu->arch.guestdbg.cr0 = vcpu->arch.sie_block->gcr[0]; vcpu->arch.guestdbg.cr9 = vcpu->arch.sie_block->gcr[9]; vcpu->arch.guestdbg.cr10 = vcpu->arch.sie_block->gcr[10]; vcpu->arch.guestdbg.cr11 = vcpu->arch.sie_block->gcr[11]; } void kvm_s390_restore_guest_per_regs(struct kvm_vcpu *vcpu) { vcpu->arch.sie_block->gcr[0] = vcpu->arch.guestdbg.cr0; vcpu->arch.sie_block->gcr[9] = vcpu->arch.guestdbg.cr9; vcpu->arch.sie_block->gcr[10] = vcpu->arch.guestdbg.cr10; vcpu->arch.sie_block->gcr[11] = vcpu->arch.guestdbg.cr11; } void kvm_s390_patch_guest_per_regs(struct kvm_vcpu *vcpu) { /* * TODO: if guest psw has per enabled, otherwise 0s! * This reduces the amount of reported events. * Need to intercept all psw changes! */ if (guestdbg_sstep_enabled(vcpu)) { /* disable timer (clock-comparator) interrupts */ vcpu->arch.sie_block->gcr[0] &= ~CR0_CLOCK_COMPARATOR_SUBMASK; vcpu->arch.sie_block->gcr[9] |= PER_EVENT_IFETCH; vcpu->arch.sie_block->gcr[10] = 0; vcpu->arch.sie_block->gcr[11] = -1UL; } if (guestdbg_hw_bp_enabled(vcpu)) { enable_all_hw_bp(vcpu); enable_all_hw_wp(vcpu); } /* TODO: Instruction-fetching-nullification not allowed for now */ if (vcpu->arch.sie_block->gcr[9] & PER_EVENT_NULLIFICATION) vcpu->arch.sie_block->gcr[9] &= ~PER_EVENT_NULLIFICATION; } #define MAX_WP_SIZE 100 static int __import_wp_info(struct kvm_vcpu *vcpu, struct kvm_hw_breakpoint *bp_data, struct kvm_hw_wp_info_arch *wp_info) { int ret = 0; wp_info->len = bp_data->len; wp_info->addr = bp_data->addr; wp_info->phys_addr = bp_data->phys_addr; wp_info->old_data = NULL; if (wp_info->len < 0 || wp_info->len > MAX_WP_SIZE) return -EINVAL; wp_info->old_data = kmalloc(bp_data->len, GFP_KERNEL_ACCOUNT); if (!wp_info->old_data) return -ENOMEM; /* try to backup the original value */ ret = read_guest_abs(vcpu, wp_info->phys_addr, wp_info->old_data, wp_info->len); if (ret) { kfree(wp_info->old_data); wp_info->old_data = NULL; } return ret; } #define MAX_BP_COUNT 50 int kvm_s390_import_bp_data(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { int ret = 0, nr_wp = 0, nr_bp = 0, i; struct kvm_hw_breakpoint *bp_data = NULL; struct kvm_hw_wp_info_arch *wp_info = NULL; struct kvm_hw_bp_info_arch *bp_info = NULL; if (dbg->arch.nr_hw_bp <= 0 || !dbg->arch.hw_bp) return 0; else if (dbg->arch.nr_hw_bp > MAX_BP_COUNT) return -EINVAL; bp_data = memdup_user(dbg->arch.hw_bp, sizeof(*bp_data) * dbg->arch.nr_hw_bp); if (IS_ERR(bp_data)) return PTR_ERR(bp_data); for (i = 0; i < dbg->arch.nr_hw_bp; i++) { switch (bp_data[i].type) { case KVM_HW_WP_WRITE: nr_wp++; break; case KVM_HW_BP: nr_bp++; break; default: break; } } if (nr_wp > 0) { wp_info = kmalloc_array(nr_wp, sizeof(*wp_info), GFP_KERNEL_ACCOUNT); if (!wp_info) { ret = -ENOMEM; goto error; } } if (nr_bp > 0) { bp_info = kmalloc_array(nr_bp, sizeof(*bp_info), GFP_KERNEL_ACCOUNT); if (!bp_info) { ret = -ENOMEM; goto error; } } for (nr_wp = 0, nr_bp = 0, i = 0; i < dbg->arch.nr_hw_bp; i++) { switch (bp_data[i].type) { case KVM_HW_WP_WRITE: ret = __import_wp_info(vcpu, &bp_data[i], &wp_info[nr_wp]); if (ret) goto error; nr_wp++; break; case KVM_HW_BP: bp_info[nr_bp].len = bp_data[i].len; bp_info[nr_bp].addr = bp_data[i].addr; nr_bp++; break; } } vcpu->arch.guestdbg.nr_hw_bp = nr_bp; vcpu->arch.guestdbg.hw_bp_info = bp_info; vcpu->arch.guestdbg.nr_hw_wp = nr_wp; vcpu->arch.guestdbg.hw_wp_info = wp_info; return 0; error: kfree(bp_data); kfree(wp_info); kfree(bp_info); return ret; } void kvm_s390_clear_bp_data(struct kvm_vcpu *vcpu) { int i; struct kvm_hw_wp_info_arch *hw_wp_info = NULL; for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) { hw_wp_info = &vcpu->arch.guestdbg.hw_wp_info[i]; kfree(hw_wp_info->old_data); hw_wp_info->old_data = NULL; } kfree(vcpu->arch.guestdbg.hw_wp_info); vcpu->arch.guestdbg.hw_wp_info = NULL; kfree(vcpu->arch.guestdbg.hw_bp_info); vcpu->arch.guestdbg.hw_bp_info = NULL; vcpu->arch.guestdbg.nr_hw_wp = 0; vcpu->arch.guestdbg.nr_hw_bp = 0; } static inline int in_addr_range(u64 addr, u64 a, u64 b) { if (a <= b) return (addr >= a) && (addr <= b); else /* "overflowing" interval */ return (addr >= a) || (addr <= b); } #define end_of_range(bp_info) (bp_info->addr + bp_info->len - 1) static struct kvm_hw_bp_info_arch *find_hw_bp(struct kvm_vcpu *vcpu, unsigned long addr) { struct kvm_hw_bp_info_arch *bp_info = vcpu->arch.guestdbg.hw_bp_info; int i; if (vcpu->arch.guestdbg.nr_hw_bp == 0) return NULL; for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) { /* addr is directly the start or in the range of a bp */ if (addr == bp_info->addr) goto found; if (bp_info->len > 0 && in_addr_range(addr, bp_info->addr, end_of_range(bp_info))) goto found; bp_info++; } return NULL; found: return bp_info; } static struct kvm_hw_wp_info_arch *any_wp_changed(struct kvm_vcpu *vcpu) { int i; struct kvm_hw_wp_info_arch *wp_info = NULL; void *temp = NULL; if (vcpu->arch.guestdbg.nr_hw_wp == 0) return NULL; for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) { wp_info = &vcpu->arch.guestdbg.hw_wp_info[i]; if (!wp_info || !wp_info->old_data || wp_info->len <= 0) continue; temp = kmalloc(wp_info->len, GFP_KERNEL_ACCOUNT); if (!temp) continue; /* refetch the wp data and compare it to the old value */ if (!read_guest_abs(vcpu, wp_info->phys_addr, temp, wp_info->len)) { if (memcmp(temp, wp_info->old_data, wp_info->len)) { kfree(temp); return wp_info; } } kfree(temp); temp = NULL; } return NULL; } void kvm_s390_prepare_debug_exit(struct kvm_vcpu *vcpu) { vcpu->run->exit_reason = KVM_EXIT_DEBUG; vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; } #define PER_CODE_MASK (PER_EVENT_MASK >> 24) #define PER_CODE_BRANCH (PER_EVENT_BRANCH >> 24) #define PER_CODE_IFETCH (PER_EVENT_IFETCH >> 24) #define PER_CODE_STORE (PER_EVENT_STORE >> 24) #define PER_CODE_STORE_REAL (PER_EVENT_STORE_REAL >> 24) #define per_bp_event(code) \ (code & (PER_CODE_IFETCH | PER_CODE_BRANCH)) #define per_write_wp_event(code) \ (code & (PER_CODE_STORE | PER_CODE_STORE_REAL)) static int debug_exit_required(struct kvm_vcpu *vcpu, u8 perc, unsigned long peraddr) { struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch; struct kvm_hw_wp_info_arch *wp_info = NULL; struct kvm_hw_bp_info_arch *bp_info = NULL; unsigned long addr = vcpu->arch.sie_block->gpsw.addr; if (guestdbg_hw_bp_enabled(vcpu)) { if (per_write_wp_event(perc) && vcpu->arch.guestdbg.nr_hw_wp > 0) { wp_info = any_wp_changed(vcpu); if (wp_info) { debug_exit->addr = wp_info->addr; debug_exit->type = KVM_HW_WP_WRITE; goto exit_required; } } if (per_bp_event(perc) && vcpu->arch.guestdbg.nr_hw_bp > 0) { bp_info = find_hw_bp(vcpu, addr); /* remove duplicate events if PC==PER address */ if (bp_info && (addr != peraddr)) { debug_exit->addr = addr; debug_exit->type = KVM_HW_BP; vcpu->arch.guestdbg.last_bp = addr; goto exit_required; } /* breakpoint missed */ bp_info = find_hw_bp(vcpu, peraddr); if (bp_info && vcpu->arch.guestdbg.last_bp != peraddr) { debug_exit->addr = peraddr; debug_exit->type = KVM_HW_BP; goto exit_required; } } } if (guestdbg_sstep_enabled(vcpu) && per_bp_event(perc)) { debug_exit->addr = addr; debug_exit->type = KVM_SINGLESTEP; goto exit_required; } return 0; exit_required: return 1; } static int per_fetched_addr(struct kvm_vcpu *vcpu, unsigned long *addr) { u8 exec_ilen = 0; u16 opcode[3]; int rc; if (vcpu->arch.sie_block->icptcode == ICPT_PROGI) { /* PER address references the fetched or the execute instr */ *addr = vcpu->arch.sie_block->peraddr; /* * Manually detect if we have an EXECUTE instruction. As * instructions are always 2 byte aligned we can read the * first two bytes unconditionally */ rc = read_guest_instr(vcpu, *addr, &opcode, 2); if (rc) return rc; if (opcode[0] >> 8 == 0x44) exec_ilen = 4; if ((opcode[0] & 0xff0f) == 0xc600) exec_ilen = 6; } else { /* instr was suppressed, calculate the responsible instr */ *addr = __rewind_psw(vcpu->arch.sie_block->gpsw, kvm_s390_get_ilen(vcpu)); if (vcpu->arch.sie_block->icptstatus & 0x01) { exec_ilen = (vcpu->arch.sie_block->icptstatus & 0x60) >> 4; if (!exec_ilen) exec_ilen = 4; } } if (exec_ilen) { /* read the complete EXECUTE instr to detect the fetched addr */ rc = read_guest_instr(vcpu, *addr, &opcode, exec_ilen); if (rc) return rc; if (exec_ilen == 6) { /* EXECUTE RELATIVE LONG - RIL-b format */ s32 rl = *((s32 *) (opcode + 1)); /* rl is a _signed_ 32 bit value specifying halfwords */ *addr += (u64)(s64) rl * 2; } else { /* EXECUTE - RX-a format */ u32 base = (opcode[1] & 0xf000) >> 12; u32 disp = opcode[1] & 0x0fff; u32 index = opcode[0] & 0x000f; *addr = base ? vcpu->run->s.regs.gprs[base] : 0; *addr += index ? vcpu->run->s.regs.gprs[index] : 0; *addr += disp; } *addr = kvm_s390_logical_to_effective(vcpu, *addr); } return 0; } #define guest_per_enabled(vcpu) \ (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER) int kvm_s390_handle_per_ifetch_icpt(struct kvm_vcpu *vcpu) { const u64 cr10 = vcpu->arch.sie_block->gcr[10]; const u64 cr11 = vcpu->arch.sie_block->gcr[11]; const u8 ilen = kvm_s390_get_ilen(vcpu); struct kvm_s390_pgm_info pgm_info = { .code = PGM_PER, .per_code = PER_CODE_IFETCH, .per_address = __rewind_psw(vcpu->arch.sie_block->gpsw, ilen), }; unsigned long fetched_addr; int rc; /* * The PSW points to the next instruction, therefore the intercepted * instruction generated a PER i-fetch event. PER address therefore * points at the previous PSW address (could be an EXECUTE function). */ if (!guestdbg_enabled(vcpu)) return kvm_s390_inject_prog_irq(vcpu, &pgm_info); if (debug_exit_required(vcpu, pgm_info.per_code, pgm_info.per_address)) vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; if (!guest_per_enabled(vcpu) || !(vcpu->arch.sie_block->gcr[9] & PER_EVENT_IFETCH)) return 0; rc = per_fetched_addr(vcpu, &fetched_addr); if (rc < 0) return rc; if (rc) /* instruction-fetching exceptions */ return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); if (in_addr_range(fetched_addr, cr10, cr11)) return kvm_s390_inject_prog_irq(vcpu, &pgm_info); return 0; } static int filter_guest_per_event(struct kvm_vcpu *vcpu) { const u8 perc = vcpu->arch.sie_block->perc; u64 addr = vcpu->arch.sie_block->gpsw.addr; u64 cr9 = vcpu->arch.sie_block->gcr[9]; u64 cr10 = vcpu->arch.sie_block->gcr[10]; u64 cr11 = vcpu->arch.sie_block->gcr[11]; /* filter all events, demanded by the guest */ u8 guest_perc = perc & (cr9 >> 24) & PER_CODE_MASK; unsigned long fetched_addr; int rc; if (!guest_per_enabled(vcpu)) guest_perc = 0; /* filter "successful-branching" events */ if (guest_perc & PER_CODE_BRANCH && cr9 & PER_CONTROL_BRANCH_ADDRESS && !in_addr_range(addr, cr10, cr11)) guest_perc &= ~PER_CODE_BRANCH; /* filter "instruction-fetching" events */ if (guest_perc & PER_CODE_IFETCH) { rc = per_fetched_addr(vcpu, &fetched_addr); if (rc < 0) return rc; /* * Don't inject an irq on exceptions. This would make handling * on icpt code 8 very complex (as PSW was already rewound). */ if (rc || !in_addr_range(fetched_addr, cr10, cr11)) guest_perc &= ~PER_CODE_IFETCH; } /* All other PER events will be given to the guest */ /* TODO: Check altered address/address space */ vcpu->arch.sie_block->perc = guest_perc; if (!guest_perc) vcpu->arch.sie_block->iprcc &= ~PGM_PER; return 0; } #define pssec(vcpu) (vcpu->arch.sie_block->gcr[1] & _ASCE_SPACE_SWITCH) #define hssec(vcpu) (vcpu->arch.sie_block->gcr[13] & _ASCE_SPACE_SWITCH) #define old_ssec(vcpu) ((vcpu->arch.sie_block->tecmc >> 31) & 0x1) #define old_as_is_home(vcpu) !(vcpu->arch.sie_block->tecmc & 0xffff) int kvm_s390_handle_per_event(struct kvm_vcpu *vcpu) { int rc, new_as; if (debug_exit_required(vcpu, vcpu->arch.sie_block->perc, vcpu->arch.sie_block->peraddr)) vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; rc = filter_guest_per_event(vcpu); if (rc) return rc; /* * Only RP, SAC, SACF, PT, PTI, PR, PC instructions can trigger * a space-switch event. PER events enforce space-switch events * for these instructions. So if no PER event for the guest is left, * we might have to filter the space-switch element out, too. */ if (vcpu->arch.sie_block->iprcc == PGM_SPACE_SWITCH) { vcpu->arch.sie_block->iprcc = 0; new_as = psw_bits(vcpu->arch.sie_block->gpsw).as; /* * If the AS changed from / to home, we had RP, SAC or SACF * instruction. Check primary and home space-switch-event * controls. (theoretically home -> home produced no event) */ if (((new_as == PSW_BITS_AS_HOME) ^ old_as_is_home(vcpu)) && (pssec(vcpu) || hssec(vcpu))) vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH; /* * PT, PTI, PR, PC instruction operate on primary AS only. Check * if the primary-space-switch-event control was or got set. */ if (new_as == PSW_BITS_AS_PRIMARY && !old_as_is_home(vcpu) && (pssec(vcpu) || old_ssec(vcpu))) vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH; } return 0; } |