Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Reverse-engineered NZXT RGB & Fan Controller/Smart Device v2 driver.
 *
 * Copyright (c) 2021 Aleksandr Mezin
 */

#include <linux/hid.h>
#include <linux/hwmon.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/wait.h>

#include <asm/byteorder.h>
#include <asm/unaligned.h>

/*
 * The device has only 3 fan channels/connectors. But all HID reports have
 * space reserved for up to 8 channels.
 */
#define FAN_CHANNELS 3
#define FAN_CHANNELS_MAX 8

#define UPDATE_INTERVAL_DEFAULT_MS 1000

/* These strings match labels on the device exactly */
static const char *const fan_label[] = {
	"FAN 1",
	"FAN 2",
	"FAN 3",
};

static const char *const curr_label[] = {
	"FAN 1 Current",
	"FAN 2 Current",
	"FAN 3 Current",
};

static const char *const in_label[] = {
	"FAN 1 Voltage",
	"FAN 2 Voltage",
	"FAN 3 Voltage",
};

enum {
	INPUT_REPORT_ID_FAN_CONFIG = 0x61,
	INPUT_REPORT_ID_FAN_STATUS = 0x67,
};

enum {
	FAN_STATUS_REPORT_SPEED = 0x02,
	FAN_STATUS_REPORT_VOLTAGE = 0x04,
};

enum {
	FAN_TYPE_NONE = 0,
	FAN_TYPE_DC = 1,
	FAN_TYPE_PWM = 2,
};

struct unknown_static_data {
	/*
	 * Some configuration data? Stays the same after fan speed changes,
	 * changes in fan configuration, reboots and driver reloads.
	 *
	 * The same data in multiple report types.
	 *
	 * Byte 12 seems to be the number of fan channels, but I am not sure.
	 */
	u8 unknown1[14];
} __packed;

/*
 * The device sends this input report in response to "detect fans" command:
 * a 2-byte output report { 0x60, 0x03 }.
 */
struct fan_config_report {
	/* report_id should be INPUT_REPORT_ID_FAN_CONFIG = 0x61 */
	u8 report_id;
	/* Always 0x03 */
	u8 magic;
	struct unknown_static_data unknown_data;
	/* Fan type as detected by the device. See FAN_TYPE_* enum. */
	u8 fan_type[FAN_CHANNELS_MAX];
} __packed;

/*
 * The device sends these reports at a fixed interval (update interval) -
 * one report with type = FAN_STATUS_REPORT_SPEED, and one report with type =
 * FAN_STATUS_REPORT_VOLTAGE per update interval.
 */
struct fan_status_report {
	/* report_id should be INPUT_REPORT_ID_STATUS = 0x67 */
	u8 report_id;
	/* FAN_STATUS_REPORT_SPEED = 0x02 or FAN_STATUS_REPORT_VOLTAGE = 0x04 */
	u8 type;
	struct unknown_static_data unknown_data;
	/* Fan type as detected by the device. See FAN_TYPE_* enum. */
	u8 fan_type[FAN_CHANNELS_MAX];

	union {
		/* When type == FAN_STATUS_REPORT_SPEED */
		struct {
			/*
			 * Fan speed, in RPM. Zero for channels without fans
			 * connected.
			 */
			__le16 fan_rpm[FAN_CHANNELS_MAX];
			/*
			 * Fan duty cycle, in percent. Non-zero even for
			 * channels without fans connected.
			 */
			u8 duty_percent[FAN_CHANNELS_MAX];
			/*
			 * Exactly the same values as duty_percent[], non-zero
			 * for disconnected fans too.
			 */
			u8 duty_percent_dup[FAN_CHANNELS_MAX];
			/* "Case Noise" in db */
			u8 noise_db;
		} __packed fan_speed;
		/* When type == FAN_STATUS_REPORT_VOLTAGE */
		struct {
			/*
			 * Voltage, in millivolts. Non-zero even when fan is
			 * not connected.
			 */
			__le16 fan_in[FAN_CHANNELS_MAX];
			/*
			 * Current, in milliamperes. Near-zero when
			 * disconnected.
			 */
			__le16 fan_current[FAN_CHANNELS_MAX];
		} __packed fan_voltage;
	} __packed;
} __packed;

#define OUTPUT_REPORT_SIZE 64

enum {
	OUTPUT_REPORT_ID_INIT_COMMAND = 0x60,
	OUTPUT_REPORT_ID_SET_FAN_SPEED = 0x62,
};

enum {
	INIT_COMMAND_SET_UPDATE_INTERVAL = 0x02,
	INIT_COMMAND_DETECT_FANS = 0x03,
};

/*
 * This output report sets pwm duty cycle/target fan speed for one or more
 * channels.
 */
struct set_fan_speed_report {
	/* report_id should be OUTPUT_REPORT_ID_SET_FAN_SPEED = 0x62 */
	u8 report_id;
	/* Should be 0x01 */
	u8 magic;
	/* To change fan speed on i-th channel, set i-th bit here */
	u8 channel_bit_mask;
	/*
	 * Fan duty cycle/target speed in percent. For voltage-controlled fans,
	 * the minimal voltage (duty_percent = 1) is about 9V.
	 * Setting duty_percent to 0 (if the channel is selected in
	 * channel_bit_mask) turns off the fan completely (regardless of the
	 * control mode).
	 */
	u8 duty_percent[FAN_CHANNELS_MAX];
} __packed;

struct drvdata {
	struct hid_device *hid;
	struct device *hwmon;

	u8 fan_duty_percent[FAN_CHANNELS];
	u16 fan_rpm[FAN_CHANNELS];
	bool pwm_status_received;

	u16 fan_in[FAN_CHANNELS];
	u16 fan_curr[FAN_CHANNELS];
	bool voltage_status_received;

	u8 fan_type[FAN_CHANNELS];
	bool fan_config_received;

	/*
	 * wq is used to wait for *_received flags to become true.
	 * All accesses to *_received flags and fan_* arrays are performed with
	 * wq.lock held.
	 */
	wait_queue_head_t wq;
	/*
	 * mutex is used to:
	 * 1) Prevent concurrent conflicting changes to update interval and pwm
	 * values (after sending an output hid report, the corresponding field
	 * in drvdata must be updated, and only then new output reports can be
	 * sent).
	 * 2) Synchronize access to output_buffer (well, the buffer is here,
	 * because synchronization is necessary anyway - so why not get rid of
	 * a kmalloc?).
	 */
	struct mutex mutex;
	long update_interval;
	u8 output_buffer[OUTPUT_REPORT_SIZE];
};

static long scale_pwm_value(long val, long orig_max, long new_max)
{
	if (val <= 0)
		return 0;

	/*
	 * Positive values should not become zero: 0 completely turns off the
	 * fan.
	 */
	return max(1L, DIV_ROUND_CLOSEST(min(val, orig_max) * new_max, orig_max));
}

static void handle_fan_config_report(struct drvdata *drvdata, void *data, int size)
{
	struct fan_config_report *report = data;
	int i;

	if (size < sizeof(struct fan_config_report))
		return;

	if (report->magic != 0x03)
		return;

	spin_lock(&drvdata->wq.lock);

	for (i = 0; i < FAN_CHANNELS; i++)
		drvdata->fan_type[i] = report->fan_type[i];

	drvdata->fan_config_received = true;
	wake_up_all_locked(&drvdata->wq);
	spin_unlock(&drvdata->wq.lock);
}

static void handle_fan_status_report(struct drvdata *drvdata, void *data, int size)
{
	struct fan_status_report *report = data;
	int i;

	if (size < sizeof(struct fan_status_report))
		return;

	spin_lock(&drvdata->wq.lock);

	/*
	 * The device sends INPUT_REPORT_ID_FAN_CONFIG = 0x61 report in response
	 * to "detect fans" command. Only accept other data after getting 0x61,
	 * to make sure that fan detection is complete. In particular, fan
	 * detection resets pwm values.
	 */
	if (!drvdata->fan_config_received) {
		spin_unlock(&drvdata->wq.lock);
		return;
	}

	for (i = 0; i < FAN_CHANNELS; i++) {
		if (drvdata->fan_type[i] == report->fan_type[i])
			continue;

		/*
		 * This should not happen (if my expectations about the device
		 * are correct).
		 *
		 * Even if the userspace sends fan detect command through
		 * hidraw, fan config report should arrive first.
		 */
		hid_warn_once(drvdata->hid,
			      "Fan %d type changed unexpectedly from %d to %d",
			      i, drvdata->fan_type[i], report->fan_type[i]);
		drvdata->fan_type[i] = report->fan_type[i];
	}

	switch (report->type) {
	case FAN_STATUS_REPORT_SPEED:
		for (i = 0; i < FAN_CHANNELS; i++) {
			drvdata->fan_rpm[i] =
				get_unaligned_le16(&report->fan_speed.fan_rpm[i]);
			drvdata->fan_duty_percent[i] =
				report->fan_speed.duty_percent[i];
		}

		drvdata->pwm_status_received = true;
		wake_up_all_locked(&drvdata->wq);
		break;

	case FAN_STATUS_REPORT_VOLTAGE:
		for (i = 0; i < FAN_CHANNELS; i++) {
			drvdata->fan_in[i] =
				get_unaligned_le16(&report->fan_voltage.fan_in[i]);
			drvdata->fan_curr[i] =
				get_unaligned_le16(&report->fan_voltage.fan_current[i]);
		}

		drvdata->voltage_status_received = true;
		wake_up_all_locked(&drvdata->wq);
		break;
	}

	spin_unlock(&drvdata->wq.lock);
}

static umode_t nzxt_smart2_hwmon_is_visible(const void *data,
					    enum hwmon_sensor_types type,
					    u32 attr, int channel)
{
	switch (type) {
	case hwmon_pwm:
		switch (attr) {
		case hwmon_pwm_input:
		case hwmon_pwm_enable:
			return 0644;

		default:
			return 0444;
		}

	case hwmon_chip:
		switch (attr) {
		case hwmon_chip_update_interval:
			return 0644;

		default:
			return 0444;
		}

	default:
		return 0444;
	}
}

static int nzxt_smart2_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
				  u32 attr, int channel, long *val)
{
	struct drvdata *drvdata = dev_get_drvdata(dev);
	int res = -EINVAL;

	if (type == hwmon_chip) {
		switch (attr) {
		case hwmon_chip_update_interval:
			*val = drvdata->update_interval;
			return 0;

		default:
			return -EINVAL;
		}
	}

	spin_lock_irq(&drvdata->wq.lock);

	switch (type) {
	case hwmon_pwm:
		/*
		 * fancontrol:
		 * 1) remembers pwm* values when it starts
		 * 2) needs pwm*_enable to be 1 on controlled fans
		 * So make sure we have correct data before allowing pwm* reads.
		 * Returning errors for pwm of fan speed read can even cause
		 * fancontrol to shut down. So the wait is unavoidable.
		 */
		switch (attr) {
		case hwmon_pwm_enable:
			res = wait_event_interruptible_locked_irq(drvdata->wq,
								  drvdata->fan_config_received);
			if (res)
				goto unlock;

			*val = drvdata->fan_type[channel] != FAN_TYPE_NONE;
			break;

		case hwmon_pwm_mode:
			res = wait_event_interruptible_locked_irq(drvdata->wq,
								  drvdata->fan_config_received);
			if (res)
				goto unlock;

			*val = drvdata->fan_type[channel] == FAN_TYPE_PWM;
			break;

		case hwmon_pwm_input:
			res = wait_event_interruptible_locked_irq(drvdata->wq,
								  drvdata->pwm_status_received);
			if (res)
				goto unlock;

			*val = scale_pwm_value(drvdata->fan_duty_percent[channel],
					       100, 255);
			break;
		}
		break;

	case hwmon_fan:
		/*
		 * It's not strictly necessary to wait for *_received in the
		 * remaining cases (fancontrol doesn't care about them). But I'm
		 * doing it to have consistent behavior.
		 */
		if (attr == hwmon_fan_input) {
			res = wait_event_interruptible_locked_irq(drvdata->wq,
								  drvdata->pwm_status_received);
			if (res)
				goto unlock;

			*val = drvdata->fan_rpm[channel];
		}
		break;

	case hwmon_in:
		if (attr == hwmon_in_input) {
			res = wait_event_interruptible_locked_irq(drvdata->wq,
								  drvdata->voltage_status_received);
			if (res)
				goto unlock;

			*val = drvdata->fan_in[channel];
		}
		break;

	case hwmon_curr:
		if (attr == hwmon_curr_input) {
			res = wait_event_interruptible_locked_irq(drvdata->wq,
								  drvdata->voltage_status_received);
			if (res)
				goto unlock;

			*val = drvdata->fan_curr[channel];
		}
		break;

	default:
		break;
	}

unlock:
	spin_unlock_irq(&drvdata->wq.lock);
	return res;
}

static int send_output_report(struct drvdata *drvdata, const void *data,
			      size_t data_size)
{
	int ret;

	if (data_size > sizeof(drvdata->output_buffer))
		return -EINVAL;

	memcpy(drvdata->output_buffer, data, data_size);

	if (data_size < sizeof(drvdata->output_buffer))
		memset(drvdata->output_buffer + data_size, 0,
		       sizeof(drvdata->output_buffer) - data_size);

	ret = hid_hw_output_report(drvdata->hid, drvdata->output_buffer,
				   sizeof(drvdata->output_buffer));
	return ret < 0 ? ret : 0;
}

static int set_pwm(struct drvdata *drvdata, int channel, long val)
{
	int ret;
	u8 duty_percent = scale_pwm_value(val, 255, 100);

	struct set_fan_speed_report report = {
		.report_id = OUTPUT_REPORT_ID_SET_FAN_SPEED,
		.magic = 1,
		.channel_bit_mask = 1 << channel
	};

	ret = mutex_lock_interruptible(&drvdata->mutex);
	if (ret)
		return ret;

	report.duty_percent[channel] = duty_percent;
	ret = send_output_report(drvdata, &report, sizeof(report));
	if (ret)
		goto unlock;

	/*
	 * pwmconfig and fancontrol scripts expect pwm writes to take effect
	 * immediately (i. e. read from pwm* sysfs should return the value
	 * written into it). The device seems to always accept pwm values - even
	 * when there is no fan connected - so update pwm status without waiting
	 * for a report, to make pwmconfig and fancontrol happy. Worst case -
	 * if the device didn't accept new pwm value for some reason (never seen
	 * this in practice) - it will be reported incorrectly only until next
	 * update. This avoids "fan stuck" messages from pwmconfig, and
	 * fancontrol setting fan speed to 100% during shutdown.
	 */
	spin_lock_bh(&drvdata->wq.lock);
	drvdata->fan_duty_percent[channel] = duty_percent;
	spin_unlock_bh(&drvdata->wq.lock);

unlock:
	mutex_unlock(&drvdata->mutex);
	return ret;
}

/*
 * Workaround for fancontrol/pwmconfig trying to write to pwm*_enable even if it
 * already is 1 and read-only. Otherwise, fancontrol won't restore pwm on
 * shutdown properly.
 */
static int set_pwm_enable(struct drvdata *drvdata, int channel, long val)
{
	long expected_val;
	int res;

	spin_lock_irq(&drvdata->wq.lock);

	res = wait_event_interruptible_locked_irq(drvdata->wq,
						  drvdata->fan_config_received);
	if (res) {
		spin_unlock_irq(&drvdata->wq.lock);
		return res;
	}

	expected_val = drvdata->fan_type[channel] != FAN_TYPE_NONE;

	spin_unlock_irq(&drvdata->wq.lock);

	return (val == expected_val) ? 0 : -EOPNOTSUPP;
}

/*
 * Control byte	| Actual update interval in seconds
 * 0xff		| 65.5
 * 0xf7		| 63.46
 * 0x7f		| 32.74
 * 0x3f		| 16.36
 * 0x1f		| 8.17
 * 0x0f		| 4.07
 * 0x07		| 2.02
 * 0x03		| 1.00
 * 0x02		| 0.744
 * 0x01		| 0.488
 * 0x00		| 0.25
 */
static u8 update_interval_to_control_byte(long interval)
{
	if (interval <= 250)
		return 0;

	return clamp_val(1 + DIV_ROUND_CLOSEST(interval - 488, 256), 0, 255);
}

static long control_byte_to_update_interval(u8 control_byte)
{
	if (control_byte == 0)
		return 250;

	return 488 + (control_byte - 1) * 256;
}

static int set_update_interval(struct drvdata *drvdata, long val)
{
	u8 control = update_interval_to_control_byte(val);
	u8 report[] = {
		OUTPUT_REPORT_ID_INIT_COMMAND,
		INIT_COMMAND_SET_UPDATE_INTERVAL,
		0x01,
		0xe8,
		control,
		0x01,
		0xe8,
		control,
	};
	int ret;

	ret = send_output_report(drvdata, report, sizeof(report));
	if (ret)
		return ret;

	drvdata->update_interval = control_byte_to_update_interval(control);
	return 0;
}

static int init_device(struct drvdata *drvdata, long update_interval)
{
	int ret;
	static const u8 detect_fans_report[] = {
		OUTPUT_REPORT_ID_INIT_COMMAND,
		INIT_COMMAND_DETECT_FANS,
	};

	ret = send_output_report(drvdata, detect_fans_report,
				 sizeof(detect_fans_report));
	if (ret)
		return ret;

	return set_update_interval(drvdata, update_interval);
}

static int nzxt_smart2_hwmon_write(struct device *dev,
				   enum hwmon_sensor_types type, u32 attr,
				   int channel, long val)
{
	struct drvdata *drvdata = dev_get_drvdata(dev);
	int ret;

	switch (type) {
	case hwmon_pwm:
		switch (attr) {
		case hwmon_pwm_enable:
			return set_pwm_enable(drvdata, channel, val);

		case hwmon_pwm_input:
			return set_pwm(drvdata, channel, val);

		default:
			return -EINVAL;
		}

	case hwmon_chip:
		switch (attr) {
		case hwmon_chip_update_interval:
			ret = mutex_lock_interruptible(&drvdata->mutex);
			if (ret)
				return ret;

			ret = set_update_interval(drvdata, val);

			mutex_unlock(&drvdata->mutex);
			return ret;

		default:
			return -EINVAL;
		}

	default:
		return -EINVAL;
	}
}

static int nzxt_smart2_hwmon_read_string(struct device *dev,
					 enum hwmon_sensor_types type, u32 attr,
					 int channel, const char **str)
{
	switch (type) {
	case hwmon_fan:
		*str = fan_label[channel];
		return 0;
	case hwmon_curr:
		*str = curr_label[channel];
		return 0;
	case hwmon_in:
		*str = in_label[channel];
		return 0;
	default:
		return -EINVAL;
	}
}

static const struct hwmon_ops nzxt_smart2_hwmon_ops = {
	.is_visible = nzxt_smart2_hwmon_is_visible,
	.read = nzxt_smart2_hwmon_read,
	.read_string = nzxt_smart2_hwmon_read_string,
	.write = nzxt_smart2_hwmon_write,
};

static const struct hwmon_channel_info * const nzxt_smart2_channel_info[] = {
	HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT | HWMON_F_LABEL,
			   HWMON_F_INPUT | HWMON_F_LABEL,
			   HWMON_F_INPUT | HWMON_F_LABEL),
	HWMON_CHANNEL_INFO(pwm, HWMON_PWM_INPUT | HWMON_PWM_MODE | HWMON_PWM_ENABLE,
			   HWMON_PWM_INPUT | HWMON_PWM_MODE | HWMON_PWM_ENABLE,
			   HWMON_PWM_INPUT | HWMON_PWM_MODE | HWMON_PWM_ENABLE),
	HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL,
			   HWMON_I_INPUT | HWMON_I_LABEL,
			   HWMON_I_INPUT | HWMON_I_LABEL),
	HWMON_CHANNEL_INFO(curr, HWMON_C_INPUT | HWMON_C_LABEL,
			   HWMON_C_INPUT | HWMON_C_LABEL,
			   HWMON_C_INPUT | HWMON_C_LABEL),
	HWMON_CHANNEL_INFO(chip, HWMON_C_UPDATE_INTERVAL),
	NULL
};

static const struct hwmon_chip_info nzxt_smart2_chip_info = {
	.ops = &nzxt_smart2_hwmon_ops,
	.info = nzxt_smart2_channel_info,
};

static int nzxt_smart2_hid_raw_event(struct hid_device *hdev,
				     struct hid_report *report, u8 *data, int size)
{
	struct drvdata *drvdata = hid_get_drvdata(hdev);
	u8 report_id = *data;

	switch (report_id) {
	case INPUT_REPORT_ID_FAN_CONFIG:
		handle_fan_config_report(drvdata, data, size);
		break;

	case INPUT_REPORT_ID_FAN_STATUS:
		handle_fan_status_report(drvdata, data, size);
		break;
	}

	return 0;
}

static int __maybe_unused nzxt_smart2_hid_reset_resume(struct hid_device *hdev)
{
	struct drvdata *drvdata = hid_get_drvdata(hdev);

	/*
	 * Userspace is still frozen (so no concurrent sysfs attribute access
	 * is possible), but raw_event can already be called concurrently.
	 */
	spin_lock_bh(&drvdata->wq.lock);
	drvdata->fan_config_received = false;
	drvdata->pwm_status_received = false;
	drvdata->voltage_status_received = false;
	spin_unlock_bh(&drvdata->wq.lock);

	return init_device(drvdata, drvdata->update_interval);
}

static void mutex_fini(void *lock)
{
	mutex_destroy(lock);
}

static int nzxt_smart2_hid_probe(struct hid_device *hdev,
				 const struct hid_device_id *id)
{
	struct drvdata *drvdata;
	int ret;

	drvdata = devm_kzalloc(&hdev->dev, sizeof(struct drvdata), GFP_KERNEL);
	if (!drvdata)
		return -ENOMEM;

	drvdata->hid = hdev;
	hid_set_drvdata(hdev, drvdata);

	init_waitqueue_head(&drvdata->wq);

	mutex_init(&drvdata->mutex);
	ret = devm_add_action_or_reset(&hdev->dev, mutex_fini, &drvdata->mutex);
	if (ret)
		return ret;

	ret = hid_parse(hdev);
	if (ret)
		return ret;

	ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
	if (ret)
		return ret;

	ret = hid_hw_open(hdev);
	if (ret)
		goto out_hw_stop;

	hid_device_io_start(hdev);

	init_device(drvdata, UPDATE_INTERVAL_DEFAULT_MS);

	drvdata->hwmon =
		hwmon_device_register_with_info(&hdev->dev, "nzxtsmart2", drvdata,
						&nzxt_smart2_chip_info, NULL);
	if (IS_ERR(drvdata->hwmon)) {
		ret = PTR_ERR(drvdata->hwmon);
		goto out_hw_close;
	}

	return 0;

out_hw_close:
	hid_hw_close(hdev);

out_hw_stop:
	hid_hw_stop(hdev);
	return ret;
}

static void nzxt_smart2_hid_remove(struct hid_device *hdev)
{
	struct drvdata *drvdata = hid_get_drvdata(hdev);

	hwmon_device_unregister(drvdata->hwmon);

	hid_hw_close(hdev);
	hid_hw_stop(hdev);
}

static const struct hid_device_id nzxt_smart2_hid_id_table[] = {
	{ HID_USB_DEVICE(0x1e71, 0x2006) }, /* NZXT Smart Device V2 */
	{ HID_USB_DEVICE(0x1e71, 0x200d) }, /* NZXT Smart Device V2 */
	{ HID_USB_DEVICE(0x1e71, 0x200f) }, /* NZXT Smart Device V2 */
	{ HID_USB_DEVICE(0x1e71, 0x2009) }, /* NZXT RGB & Fan Controller */
	{ HID_USB_DEVICE(0x1e71, 0x200e) }, /* NZXT RGB & Fan Controller */
	{ HID_USB_DEVICE(0x1e71, 0x2010) }, /* NZXT RGB & Fan Controller */
	{ HID_USB_DEVICE(0x1e71, 0x2011) }, /* NZXT RGB & Fan Controller (6 RGB) */
	{ HID_USB_DEVICE(0x1e71, 0x2019) }, /* NZXT RGB & Fan Controller (6 RGB) */
	{},
};

static struct hid_driver nzxt_smart2_hid_driver = {
	.name = "nzxt-smart2",
	.id_table = nzxt_smart2_hid_id_table,
	.probe = nzxt_smart2_hid_probe,
	.remove = nzxt_smart2_hid_remove,
	.raw_event = nzxt_smart2_hid_raw_event,
#ifdef CONFIG_PM
	.reset_resume = nzxt_smart2_hid_reset_resume,
#endif
};

static int __init nzxt_smart2_init(void)
{
	return hid_register_driver(&nzxt_smart2_hid_driver);
}

static void __exit nzxt_smart2_exit(void)
{
	hid_unregister_driver(&nzxt_smart2_hid_driver);
}

MODULE_DEVICE_TABLE(hid, nzxt_smart2_hid_id_table);
MODULE_AUTHOR("Aleksandr Mezin <mezin.alexander@gmail.com>");
MODULE_DESCRIPTION("Driver for NZXT RGB & Fan Controller/Smart Device V2");
MODULE_LICENSE("GPL");

/*
 * With module_init()/module_hid_driver() and the driver built into the kernel:
 *
 * Driver 'nzxt_smart2' was unable to register with bus_type 'hid' because the
 * bus was not initialized.
 */
late_initcall(nzxt_smart2_init);
module_exit(nzxt_smart2_exit);