Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
// SPDX-License-Identifier: GPL-2.0
/*
 * Renesas RZ/G2L MTU3a PWM Timer driver
 *
 * Copyright (C) 2023 Renesas Electronics Corporation
 *
 * Hardware manual for this IP can be found here
 * https://www.renesas.com/eu/en/document/mah/rzg2l-group-rzg2lc-group-users-manual-hardware-0?language=en
 *
 * Limitations:
 * - When PWM is disabled, the output is driven to Hi-Z.
 * - While the hardware supports both polarities, the driver (for now)
 *   only handles normal polarity.
 * - HW uses one counter and two match components to configure duty_cycle
 *   and period.
 * - Multi-Function Timer Pulse Unit (a.k.a MTU) has 7 HW channels for PWM
 *   operations. (The channels are MTU{0..4, 6, 7}.)
 * - MTU{1, 2} channels have a single IO, whereas all other HW channels have
 *   2 IOs.
 * - Each IO is modelled as an independent PWM channel.
 * - rz_mtu3_channel_io_map table is used to map the PWM channel to the
 *   corresponding HW channel as there are difference in number of IOs
 *   between HW channels.
 */

#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/limits.h>
#include <linux/mfd/rz-mtu3.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/pwm.h>
#include <linux/time.h>

#define RZ_MTU3_MAX_PWM_CHANNELS	12
#define RZ_MTU3_MAX_HW_CHANNELS		7

/**
 * struct rz_mtu3_channel_io_map - MTU3 pwm channel map
 *
 * @base_pwm_number: First PWM of a channel
 * @num_channel_ios: number of IOs on the HW channel.
 */
struct rz_mtu3_channel_io_map {
	u8 base_pwm_number;
	u8 num_channel_ios;
};

/**
 * struct rz_mtu3_pwm_channel - MTU3 pwm channel data
 *
 * @mtu: MTU3 channel data
 * @map: MTU3 pwm channel map
 */
struct rz_mtu3_pwm_channel {
	struct rz_mtu3_channel *mtu;
	const struct rz_mtu3_channel_io_map *map;
};

/**
 * struct rz_mtu3_pwm_chip - MTU3 pwm private data
 *
 * @chip: MTU3 pwm chip data
 * @clk: MTU3 module clock
 * @lock: Lock to prevent concurrent access for usage count
 * @rate: MTU3 clock rate
 * @user_count: MTU3 usage count
 * @enable_count: MTU3 enable count
 * @prescale: MTU3 prescale
 * @channel_data: MTU3 pwm channel data
 */

struct rz_mtu3_pwm_chip {
	struct pwm_chip chip;
	struct clk *clk;
	struct mutex lock;
	unsigned long rate;
	u32 user_count[RZ_MTU3_MAX_HW_CHANNELS];
	u32 enable_count[RZ_MTU3_MAX_HW_CHANNELS];
	u8 prescale[RZ_MTU3_MAX_HW_CHANNELS];
	struct rz_mtu3_pwm_channel channel_data[RZ_MTU3_MAX_HW_CHANNELS];
};

/*
 * The MTU channels are {0..4, 6, 7} and the number of IO on MTU1
 * and MTU2 channel is 1 compared to 2 on others.
 */
static const struct rz_mtu3_channel_io_map channel_map[] = {
	{ 0, 2 }, { 2, 1 }, { 3, 1 }, { 4, 2 }, { 6, 2 }, { 8, 2 }, { 10, 2 }
};

static inline struct rz_mtu3_pwm_chip *to_rz_mtu3_pwm_chip(struct pwm_chip *chip)
{
	return container_of(chip, struct rz_mtu3_pwm_chip, chip);
}

static void rz_mtu3_pwm_read_tgr_registers(struct rz_mtu3_pwm_channel *priv,
					   u16 reg_pv_offset, u16 *pv_val,
					   u16 reg_dc_offset, u16 *dc_val)
{
	*pv_val = rz_mtu3_16bit_ch_read(priv->mtu, reg_pv_offset);
	*dc_val = rz_mtu3_16bit_ch_read(priv->mtu, reg_dc_offset);
}

static void rz_mtu3_pwm_write_tgr_registers(struct rz_mtu3_pwm_channel *priv,
					    u16 reg_pv_offset, u16 pv_val,
					    u16 reg_dc_offset, u16 dc_val)
{
	rz_mtu3_16bit_ch_write(priv->mtu, reg_pv_offset, pv_val);
	rz_mtu3_16bit_ch_write(priv->mtu, reg_dc_offset, dc_val);
}

static u8 rz_mtu3_pwm_calculate_prescale(struct rz_mtu3_pwm_chip *rz_mtu3,
					 u64 period_cycles)
{
	u32 prescaled_period_cycles;
	u8 prescale;

	/*
	 * Supported prescale values are 1, 4, 16 and 64.
	 * TODO: Support prescale values 2, 8, 32, 256 and 1024.
	 */
	prescaled_period_cycles = period_cycles >> 16;
	if (prescaled_period_cycles >= 16)
		prescale = 3;
	else
		prescale = (fls(prescaled_period_cycles) + 1) / 2;

	return prescale;
}

static struct rz_mtu3_pwm_channel *
rz_mtu3_get_channel(struct rz_mtu3_pwm_chip *rz_mtu3_pwm, u32 hwpwm)
{
	struct rz_mtu3_pwm_channel *priv = rz_mtu3_pwm->channel_data;
	unsigned int ch;

	for (ch = 0; ch < RZ_MTU3_MAX_HW_CHANNELS; ch++, priv++) {
		if (priv->map->base_pwm_number + priv->map->num_channel_ios > hwpwm)
			break;
	}

	return priv;
}

static bool rz_mtu3_pwm_is_ch_enabled(struct rz_mtu3_pwm_chip *rz_mtu3_pwm,
				      u32 hwpwm)
{
	struct rz_mtu3_pwm_channel *priv;
	bool is_channel_en;
	u8 val;

	priv = rz_mtu3_get_channel(rz_mtu3_pwm, hwpwm);
	is_channel_en = rz_mtu3_is_enabled(priv->mtu);
	if (!is_channel_en)
		return false;

	if (priv->map->base_pwm_number == hwpwm)
		val = rz_mtu3_8bit_ch_read(priv->mtu, RZ_MTU3_TIORH);
	else
		val = rz_mtu3_8bit_ch_read(priv->mtu, RZ_MTU3_TIORL);

	return val & RZ_MTU3_TIOR_IOA;
}

static int rz_mtu3_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip);
	struct rz_mtu3_pwm_channel *priv;
	bool is_mtu3_channel_available;
	u32 ch;

	priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm);
	ch = priv - rz_mtu3_pwm->channel_data;

	mutex_lock(&rz_mtu3_pwm->lock);
	/*
	 * Each channel must be requested only once, so if the channel
	 * serves two PWMs and the other is already requested, skip over
	 * rz_mtu3_request_channel()
	 */
	if (!rz_mtu3_pwm->user_count[ch]) {
		is_mtu3_channel_available = rz_mtu3_request_channel(priv->mtu);
		if (!is_mtu3_channel_available) {
			mutex_unlock(&rz_mtu3_pwm->lock);
			return -EBUSY;
		}
	}

	rz_mtu3_pwm->user_count[ch]++;
	mutex_unlock(&rz_mtu3_pwm->lock);

	return 0;
}

static void rz_mtu3_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip);
	struct rz_mtu3_pwm_channel *priv;
	u32 ch;

	priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm);
	ch = priv - rz_mtu3_pwm->channel_data;

	mutex_lock(&rz_mtu3_pwm->lock);
	rz_mtu3_pwm->user_count[ch]--;
	if (!rz_mtu3_pwm->user_count[ch])
		rz_mtu3_release_channel(priv->mtu);

	mutex_unlock(&rz_mtu3_pwm->lock);
}

static int rz_mtu3_pwm_enable(struct rz_mtu3_pwm_chip *rz_mtu3_pwm,
			      struct pwm_device *pwm)
{
	struct rz_mtu3_pwm_channel *priv;
	u32 ch;
	u8 val;
	int rc;

	rc = pm_runtime_resume_and_get(rz_mtu3_pwm->chip.dev);
	if (rc)
		return rc;

	priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm);
	ch = priv - rz_mtu3_pwm->channel_data;
	val = RZ_MTU3_TIOR_OC_IOB_TOGGLE | RZ_MTU3_TIOR_OC_IOA_H_COMP_MATCH;

	rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TMDR1, RZ_MTU3_TMDR1_MD_PWMMODE1);
	if (priv->map->base_pwm_number == pwm->hwpwm)
		rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TIORH, val);
	else
		rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TIORL, val);

	mutex_lock(&rz_mtu3_pwm->lock);
	if (!rz_mtu3_pwm->enable_count[ch])
		rz_mtu3_enable(priv->mtu);

	rz_mtu3_pwm->enable_count[ch]++;
	mutex_unlock(&rz_mtu3_pwm->lock);

	return 0;
}

static void rz_mtu3_pwm_disable(struct rz_mtu3_pwm_chip *rz_mtu3_pwm,
				struct pwm_device *pwm)
{
	struct rz_mtu3_pwm_channel *priv;
	u32 ch;

	priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm);
	ch = priv - rz_mtu3_pwm->channel_data;

	/* Disable output pins of MTU3 channel */
	if (priv->map->base_pwm_number == pwm->hwpwm)
		rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TIORH, RZ_MTU3_TIOR_OC_RETAIN);
	else
		rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TIORL, RZ_MTU3_TIOR_OC_RETAIN);

	mutex_lock(&rz_mtu3_pwm->lock);
	rz_mtu3_pwm->enable_count[ch]--;
	if (!rz_mtu3_pwm->enable_count[ch])
		rz_mtu3_disable(priv->mtu);

	mutex_unlock(&rz_mtu3_pwm->lock);

	pm_runtime_put_sync(rz_mtu3_pwm->chip.dev);
}

static int rz_mtu3_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
				 struct pwm_state *state)
{
	struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip);
	int rc;

	rc = pm_runtime_resume_and_get(chip->dev);
	if (rc)
		return rc;

	state->enabled = rz_mtu3_pwm_is_ch_enabled(rz_mtu3_pwm, pwm->hwpwm);
	if (state->enabled) {
		struct rz_mtu3_pwm_channel *priv;
		u8 prescale, val;
		u16 dc, pv;
		u64 tmp;

		priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm);
		if (priv->map->base_pwm_number == pwm->hwpwm)
			rz_mtu3_pwm_read_tgr_registers(priv, RZ_MTU3_TGRA, &pv,
						       RZ_MTU3_TGRB, &dc);
		else
			rz_mtu3_pwm_read_tgr_registers(priv, RZ_MTU3_TGRC, &pv,
						       RZ_MTU3_TGRD, &dc);

		val = rz_mtu3_8bit_ch_read(priv->mtu, RZ_MTU3_TCR);
		prescale = FIELD_GET(RZ_MTU3_TCR_TPCS, val);

		/* With prescale <= 7 and pv <= 0xffff this doesn't overflow. */
		tmp = NSEC_PER_SEC * (u64)pv << (2 * prescale);
		state->period = DIV_ROUND_UP_ULL(tmp, rz_mtu3_pwm->rate);
		tmp = NSEC_PER_SEC * (u64)dc << (2 * prescale);
		state->duty_cycle = DIV_ROUND_UP_ULL(tmp, rz_mtu3_pwm->rate);

		if (state->duty_cycle > state->period)
			state->duty_cycle = state->period;
	}

	state->polarity = PWM_POLARITY_NORMAL;
	pm_runtime_put(chip->dev);

	return 0;
}

static u16 rz_mtu3_pwm_calculate_pv_or_dc(u64 period_or_duty_cycle, u8 prescale)
{
	return min(period_or_duty_cycle >> (2 * prescale), (u64)U16_MAX);
}

static int rz_mtu3_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
			      const struct pwm_state *state)
{
	struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip);
	struct rz_mtu3_pwm_channel *priv;
	u64 period_cycles;
	u64 duty_cycles;
	u8 prescale;
	u16 pv, dc;
	u8 val;
	u32 ch;

	priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm);
	ch = priv - rz_mtu3_pwm->channel_data;

	period_cycles = mul_u64_u32_div(state->period, rz_mtu3_pwm->rate,
					NSEC_PER_SEC);
	prescale = rz_mtu3_pwm_calculate_prescale(rz_mtu3_pwm, period_cycles);

	/*
	 * Prescalar is shared by multiple channels, so prescale can
	 * NOT be modified when there are multiple channels in use with
	 * different settings. Modify prescalar if other PWM is off or handle
	 * it, if current prescale value is less than the one we want to set.
	 */
	if (rz_mtu3_pwm->enable_count[ch] > 1) {
		if (rz_mtu3_pwm->prescale[ch] > prescale)
			return -EBUSY;

		prescale = rz_mtu3_pwm->prescale[ch];
	}

	pv = rz_mtu3_pwm_calculate_pv_or_dc(period_cycles, prescale);

	duty_cycles = mul_u64_u32_div(state->duty_cycle, rz_mtu3_pwm->rate,
				      NSEC_PER_SEC);
	dc = rz_mtu3_pwm_calculate_pv_or_dc(duty_cycles, prescale);

	/*
	 * If the PWM channel is disabled, make sure to turn on the clock
	 * before writing the register.
	 */
	if (!pwm->state.enabled) {
		int rc;

		rc = pm_runtime_resume_and_get(chip->dev);
		if (rc)
			return rc;
	}

	val = RZ_MTU3_TCR_CKEG_RISING | prescale;

	/* Counter must be stopped while updating TCR register */
	if (rz_mtu3_pwm->prescale[ch] != prescale && rz_mtu3_pwm->enable_count[ch])
		rz_mtu3_disable(priv->mtu);

	if (priv->map->base_pwm_number == pwm->hwpwm) {
		rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TCR,
				      RZ_MTU3_TCR_CCLR_TGRA | val);
		rz_mtu3_pwm_write_tgr_registers(priv, RZ_MTU3_TGRA, pv,
						RZ_MTU3_TGRB, dc);
	} else {
		rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TCR,
				      RZ_MTU3_TCR_CCLR_TGRC | val);
		rz_mtu3_pwm_write_tgr_registers(priv, RZ_MTU3_TGRC, pv,
						RZ_MTU3_TGRD, dc);
	}

	if (rz_mtu3_pwm->prescale[ch] != prescale) {
		/*
		 * Prescalar is shared by multiple channels, we cache the
		 * prescalar value from first enabled channel and use the same
		 * value for both channels.
		 */
		rz_mtu3_pwm->prescale[ch] = prescale;

		if (rz_mtu3_pwm->enable_count[ch])
			rz_mtu3_enable(priv->mtu);
	}

	/* If the PWM is not enabled, turn the clock off again to save power. */
	if (!pwm->state.enabled)
		pm_runtime_put(chip->dev);

	return 0;
}

static int rz_mtu3_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
			     const struct pwm_state *state)
{
	struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip);
	bool enabled = pwm->state.enabled;
	int ret;

	if (state->polarity != PWM_POLARITY_NORMAL)
		return -EINVAL;

	if (!state->enabled) {
		if (enabled)
			rz_mtu3_pwm_disable(rz_mtu3_pwm, pwm);

		return 0;
	}

	mutex_lock(&rz_mtu3_pwm->lock);
	ret = rz_mtu3_pwm_config(chip, pwm, state);
	mutex_unlock(&rz_mtu3_pwm->lock);
	if (ret)
		return ret;

	if (!enabled)
		ret = rz_mtu3_pwm_enable(rz_mtu3_pwm, pwm);

	return ret;
}

static const struct pwm_ops rz_mtu3_pwm_ops = {
	.request = rz_mtu3_pwm_request,
	.free = rz_mtu3_pwm_free,
	.get_state = rz_mtu3_pwm_get_state,
	.apply = rz_mtu3_pwm_apply,
	.owner = THIS_MODULE,
};

static int rz_mtu3_pwm_pm_runtime_suspend(struct device *dev)
{
	struct rz_mtu3_pwm_chip *rz_mtu3_pwm = dev_get_drvdata(dev);

	clk_disable_unprepare(rz_mtu3_pwm->clk);

	return 0;
}

static int rz_mtu3_pwm_pm_runtime_resume(struct device *dev)
{
	struct rz_mtu3_pwm_chip *rz_mtu3_pwm = dev_get_drvdata(dev);

	return clk_prepare_enable(rz_mtu3_pwm->clk);
}

static DEFINE_RUNTIME_DEV_PM_OPS(rz_mtu3_pwm_pm_ops,
				 rz_mtu3_pwm_pm_runtime_suspend,
				 rz_mtu3_pwm_pm_runtime_resume, NULL);

static void rz_mtu3_pwm_pm_disable(void *data)
{
	struct rz_mtu3_pwm_chip *rz_mtu3_pwm = data;

	clk_rate_exclusive_put(rz_mtu3_pwm->clk);
	pm_runtime_disable(rz_mtu3_pwm->chip.dev);
	pm_runtime_set_suspended(rz_mtu3_pwm->chip.dev);
}

static int rz_mtu3_pwm_probe(struct platform_device *pdev)
{
	struct rz_mtu3 *parent_ddata = dev_get_drvdata(pdev->dev.parent);
	struct rz_mtu3_pwm_chip *rz_mtu3_pwm;
	struct device *dev = &pdev->dev;
	unsigned int i, j = 0;
	int ret;

	rz_mtu3_pwm = devm_kzalloc(&pdev->dev, sizeof(*rz_mtu3_pwm), GFP_KERNEL);
	if (!rz_mtu3_pwm)
		return -ENOMEM;

	rz_mtu3_pwm->clk = parent_ddata->clk;

	for (i = 0; i < RZ_MTU_NUM_CHANNELS; i++) {
		if (i == RZ_MTU3_CHAN_5 || i == RZ_MTU3_CHAN_8)
			continue;

		rz_mtu3_pwm->channel_data[j].mtu = &parent_ddata->channels[i];
		rz_mtu3_pwm->channel_data[j].mtu->dev = dev;
		rz_mtu3_pwm->channel_data[j].map = &channel_map[j];
		j++;
	}

	mutex_init(&rz_mtu3_pwm->lock);
	platform_set_drvdata(pdev, rz_mtu3_pwm);
	ret = clk_prepare_enable(rz_mtu3_pwm->clk);
	if (ret)
		return dev_err_probe(dev, ret, "Clock enable failed\n");

	clk_rate_exclusive_get(rz_mtu3_pwm->clk);

	rz_mtu3_pwm->rate = clk_get_rate(rz_mtu3_pwm->clk);
	/*
	 * Refuse clk rates > 1 GHz to prevent overflow later for computing
	 * period and duty cycle.
	 */
	if (rz_mtu3_pwm->rate > NSEC_PER_SEC) {
		ret = -EINVAL;
		clk_rate_exclusive_put(rz_mtu3_pwm->clk);
		goto disable_clock;
	}

	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);
	rz_mtu3_pwm->chip.dev = &pdev->dev;
	ret = devm_add_action_or_reset(&pdev->dev, rz_mtu3_pwm_pm_disable,
				       rz_mtu3_pwm);
	if (ret < 0)
		return ret;

	rz_mtu3_pwm->chip.ops = &rz_mtu3_pwm_ops;
	rz_mtu3_pwm->chip.npwm = RZ_MTU3_MAX_PWM_CHANNELS;
	ret = devm_pwmchip_add(&pdev->dev, &rz_mtu3_pwm->chip);
	if (ret)
		return dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n");

	pm_runtime_idle(&pdev->dev);

	return 0;

disable_clock:
	clk_disable_unprepare(rz_mtu3_pwm->clk);
	return ret;
}

static struct platform_driver rz_mtu3_pwm_driver = {
	.driver = {
		.name = "pwm-rz-mtu3",
		.pm = pm_ptr(&rz_mtu3_pwm_pm_ops),
	},
	.probe = rz_mtu3_pwm_probe,
};
module_platform_driver(rz_mtu3_pwm_driver);

MODULE_AUTHOR("Biju Das <biju.das.jz@bp.renesas.com>");
MODULE_ALIAS("platform:pwm-rz-mtu3");
MODULE_DESCRIPTION("Renesas RZ/G2L MTU3a PWM Timer Driver");
MODULE_LICENSE("GPL");